Планетарная туманность это кратко

Обновлено: 05.07.2024

Планетарные туманности — одни из самых красивых объектов во вселенной. Но почему их так называют? Что они из себя представляют? Как возникают? На эти вопросы мы ответим в этой статье.

Как возникают планетарные туманности?

В конце своего жизненного цикла красные гиганты и сверхгиганты с массой от 0,8 до 8 масс Солнца сбрасывают внешние слои вещества, а на месте звезды остаётся только её раскалённое ядро, которое называют белым карликом.

Выброшенное звездой вещество разлетается в космос, и со временем рассеивается. Плотность туманности уменьшается. Излучение белого карлика ионизирует разлетающееся вещество, что заставляет его светится.

Именно эти светящиеся облака газа с белым карликом в центре, образовавшиеся в конце жизненного цикла звёзд и называют планетарными туманностями.

Почему их так называют?

Первая открытая им планетарная туманность (M27 или NGC 6854 также известная, как Туманность Гантель) была внешне очень похожа на планету Уран. Поэтому Шарль Месье предложил называть такие туманности планетарными.

Уже тогда астрономы понимали, что несмотря на внешнюю схожесть, перед ними не планета, а иной объект, так как в отличие от планет планетарные туманности неподвижны на небосводе.

Живут планетарные туманности всего 10-15 тыс. лет, что очень мало по астрономическим меркам. С течением времени звёздное вещество образующее туманность разреживается, плотность туманности становится столь низкой, что свечение вещества практически невозможно различить.

Планетарные туманности обычно имеют размер от 0,03 до 0,35 светового года, крупнейшие до 1 светового года, что также мало в сравнении с туманностями других видов.

Подписывайтесь на мой канал здесь, а также на мой канал на youtube . Каждую неделю там выходят видео, где я отвечаю на вопросы о космосе, физике, футурологии и многом другом! А кроме того посетите мой сайт .

Планетарная туманность

Туманности

Общее описание

В любом случае процесс образования рассматриваемых феноменов (планетарных туманностей) является важным в химической эволюции галактических систем. Ведь в межзвёздное пространство происходит выброс материала, в составе которого присутствуют тяжёлые элементы – продукты нуклеосинтеза.

Строение симметричной планетарной туманности. Быстрый звёздный ветер (голубые стрелки) горячего белого карлика — ядра звезды (в центре), сталкиваясь со сброшенной оболочкой — медленным звёздным ветром красного гиганта (красные стрелки), создаёт плотную оболочку (голубого цвета), светящуюся под воздействием ультрафиолетового излучения ядра.

Строение симметричной планетарной туманности. Быстрый звёздный ветер (голубые стрелки) горячего белого карлика — ядра звезды (в центре), сталкиваясь со сброшенной оболочкой — медленным звёздным ветром красного гиганта (красные стрелки), создаёт плотную оболочку (голубого цвета), светящуюся под воздействием ультрафиолетового излучения ядра.

Основные характеристики

Классификация

Условно все планетарные туманности могут быть разделены на две группы.

  1. Те, которые не имеют достаточного количества материи, чтобы поглощать УФ фотоны. Это значит, что видимая часть абсолютно ионизирована.
  2. Кто испускают мало УФ фотонов для ионизации всего объёма окружающего газа.

Учёных интересует действие магнитных полей планетарных туманностей, которые влияют на структуру и формирование волокнистости.

Историческая справка по исследованиям

Большинство изучаемых тел являются тусклыми, и обнаружить их без специальных приспособлений нереально. Первая планетарная туманность, которую удалось открыть – Гантель (группа звёзд – Лисички). Её нашёл Шарль Мессье, который искал кометы. Произошло это в 1764 году. В каталоге объект присутствует как M27.

Двадцатью годами позже Уильямом Гершелем был открыт целый класс туманностей – 4. По характеристикам они практически ничем не отличаются от диска планеты, но свойства, как можно догадаться, иные.

Первым специалистом в сфере астрономии, которому удалось получить спектры, стал Уильям Хаггинс. Когда он наблюдал за ними (а именно: за NGC 6543, M27, M57 и другими), смог выяснить, что спектр имеет отличия от спектров звёзд: всё, что было получено к тому моменту, относилось к спектрам поглощения. Что касается планетарных туманностей, их спектры были эмиссионными и содержали незначительное количество линий. Это означало, что по природе своей они отличаются от звёзд.

Особого внимания также заслуживал вопрос, связанный с химическими особенностями рассматриваемых объектов. Хаггинсу удалось добиться максимальной идентификации линий азота и водорода. К сожалению, в спектрах известных на тот момент времени веществ она не наблюдалась. Поэтому учёный предположил, что она соответствует неизвестному веществу. Его назвали небулием по тому же принципу, что и в случае с гелием в 1868 г. (когда проводился спектральный анализ Солнца).

В итоге версии и гипотезы, связанные с его открытием, так и не нашли подтверждения в официальном плане. Однако в самом начале 20 столетия ещё один учёный – Генри Расселл – создал новые теории. В то же время удалось отметить, что атомы и ионы способны переходить в состояние чрезмерного возбуждения, оно, в свою очередь, в случае высоких плотностей существуют недолго.

В 1927 г. эксперт с фамилией Боуэн снова идентифицировал эту линию. Он сообщил, что она способна возникать в процессе перехода атома кислорода из одного состояния в другое – из метастабильного в основное. Несмотря на то, что многие ответы до сих пор не были найдены, спектроскопические исследования позволили дать оценку верхней границы плотности газа. Невзирая на то, что специалистам удалось получить полноценную информацию о таких важных вопросах, как строение, структурный состав, механизм, проблемы происхождения, продолжали оставаться не решёнными.

И продолжалось всё это до середины предыдущего века. Впоследствии учёный Шкловский заметил совпадение комплекса параметров с характеристиками атмосфер, которые имеют красные гиганты. Что касается их ядер, они имели немало общество с характеристиками белых карликовых объектов. На сегодняшний день эта теория применяется до сих пор, т. к. получила подтверждение вследствие различных наблюдений и подсчётов.

К концу 20 столетия технологии в сфере астрономии стали более совершёнными. Это означает, что у учёных появилась возможность более детального изучения планетарных туманностей. Для этих целей использовались агрегаты, с помощью которых удалось изучить спектры за пределами видимой части и сделать это непосредственно с Земли. Более точные результаты были получены в УФ и ИК диапазоне. Поэтому эксперты смогли максимально детально проанализировать такие данные, как температурный режим, плотность, химический состав.

Особенности и версии происхождения

Типичный светящийся объект малого веса светит почти в течение всей своей жизни. Основной причинный фактор, который провоцирует возникновение данного явления, заключается в протекании реакций, связанных с синтезом. Синтезируется в данном случае гелий и водород, всё это наблюдается в ядре. В ходе протекания реакций наблюдается высвобождение энергетического потока, который способствует удержанию светила от коллапса и созданию у него стабильности.

При этом извне будет происходить охлаждение и едва заметное увеличение в размерах. Светило превратится в красный гигант, и процессы, протекающие в его ядре, будут продолжаться. Когда температурная отметка достигнет 100 млн. К, начнётся синтез.

Процесс сжатия ядра столкнётся с многочисленными препятствиями, если произойдёт возобновление термоядерных реакций. В итоге выгорающий гелий сформирует ядро с оболочкой, и светило утратит собственную стабильность. Из-за незначительного прироста температуры произойдёт моментальный рост скорости реакций. Что в итоге? Конечно же, ускорится процесс выделения энергии, повысится температурный режим. А когда верхние слои гелия, который горит, расширятся, и температура снизится, реакция станет более медленной. Вследствие этих явлений могут возникнуть сильные пульсации.

Но также стоит отметить, что газ, который был выброшен, создаёт оболочку вокруг ядерной зоны. По мере отделения от объекта появляется значительное количество глубоких слоёв с высокими температурными показателями. Когда они становятся равны 30 000 К, энергии становится достаточно для ионизации атомных частиц, что вынуждает тело быть святящимся. В результате из облака формируется планетарная туманность.

Длительность жизни

Планетарная туманность содержит вещество, которое способно разлетаться. Скорость данного явления равняется несколько десятков км/с. По мере его истечения ядерная часть подвергается остыванию, при этом она продолжает излучать остатки энергии. Вследствие данного процесса наблюдается прекращение термоядерных реакций, поскольку звезда не имеет достаточной массы для поддержания оптимального температурного режима.

Синтез углерода и кислорода в таких условиях не происходит. В итоге светило остывает настолько сильно, что утрачивает возможность излучения УФ для ионизации оболочки газа, которая отдалилась. Что в итоге? Светило превращается в белого карлика. А само облако начинает превращаться, в свою очередь, в невидимый объект.

Роль в эволюции галактических систем

Любая планетарная туманность имеет решающее значение в эволюционном процессе галактик. Дело в том, что изначально Вселенная имела в составе только водород и гелий. Именно из этих веществ происходило формирование объектов, относящихся ко второму типу. Однако с течением времени стали появляться более тяжёлые элементы (углерод, кислород, азот). По мере того как происходило расширение и проникновение в пространство между звёздами, они стали обогащаться металлами. Поэтому последующие поколения будут иметь максимальное количество тяжёлых элементов.

Структурный состав

Планетарная туманность в большинстве случаев является симметричной и располагает почти сферической формой. Тем не менее, она может иметь и многие другие конфигурации. Порядка 10% всех подобных объектов биполярны. И только малая их часть асимметрична. Есть версия, что происходит всё это из-за гравитационного взаимовлияния светил в рамках двойных систем. Есть другая теория, планеты нарушают процесс равномерного растекания материи при появлении планетарной туманности.

Планетарная туманность изучена достаточно хорошо, однако у представителей учёного мира до сих пор имеются вопросы. Например, точное расстояние до объектов. До некоторых из них расчёт удалённости не вызовет трудностей, поскольку можно использовать параллакс расширения. Но их количество велико, поэтому выявить дистанцию до всех известных субъектов не получится.

Ещё одна задача, возникающая в процессе изучения планетарной туманности, заключается в методах поиска металлов. На сегодня их количество равно двум, но, несмотря на их относительную эффективность, учёные до сих пор не могут получить ответы на определённые вопросы. В связи с этим планетарная туманность требует более детального изучения.

Какой вывод можно сделать?

Рассматриваемый объект получил своё название потому, при наблюдении похож на планеты, хотя в некоторых случаях это не так. Свойства и структурные особенности при этом никакой роли не играют, поскольку для рассматриваемых космических объектов они являются различными. Несмотря на относительную изученность планетарной туманности, она нуждается в проведении более глубокого анализа и требует выявления основных закономерностей и принципов. Сегодня учёные активно занимаются решением данного вопроса. Возможно, это позволит ещё более глубокому освоению космического пространства и поиску новых тел и объектов в нём.


NGC 6543, Туманность Кошачий Глаз — внутренняя область, изображение в псевдоцвете (красный — Hα; синий — нейтральный кислород, 630 нм; зелёный — ионизированный азот, 658.4 нм).

Планета́рная тума́нность — астрономический объект, состоящий из ионизированной газовой оболочки и центральной звезды, белого карлика. Планетарные туманности образуются при сбросе внешних слоёв (оболочек) красных гигантов и сверхгигантов с массой 2.5—8 солнечных на завершающей стадии их эволюции. Планетарная туманность — быстропротекающее (по астрономическим меркам) явление, длящееся всего несколько десятков тысяч лет, при продолжительности жизни звезды-предка в несколько миллиардов лет. В настоящее время в нашей галактике известно около 1500 планетарных туманностей.

Процесс образования планетарных туманностей, наряду со вспышками сверхновых, играет важную роль в химической эволюции галактик, выбрасывая в межзвёздное пространство материал, обогащённый тяжёлыми элементами — продуктами звёздного нуклеосинтеза (в астрономии тяжёлыми считаются все элементы, за исключением продуктов первичного нуклеосинтеза Большого взрыва — водорода и гелия, такие как углерод, азот, кислород и кальций).

В последние годы при помощи снимков, полученных космическим телескопом Хаббл, удалось выяснить, что многие планетарные туманности имеют очень сложную и своеобразную структуру. Несмотря на то, что приблизительно пятая часть из них имеет околосферическую форму, большинство не обладает какой бы то ни было сферической симметрией. Механизмы, благодаря которым возможно образование такого многообразия форм, остаются на сегодняшний день до конца не выясненными. Считается, что большую роль в этом могут играть взаимодействие звёздного ветра и двойных звёзд, магнитного поля и межзвёздной среды.

Содержание

История исследований


Необычность природы планетарных туманностей обнаружилась в середине XIX века, с началом использования в наблюдениях метода спектроскопии. Уильям Хаггинс стал первым астрономом, получившим спектры планетарных туманностей — объектов, выделявшихся своей необычностью:

При изучении Хаггинсом спектров туманностей NGC 6543 (Кошачий Глаз), M27 (Гантель), M57 (кольцевая туманность в Лире) и ряда других, оказалось, что их спектр чрезвычайно отличается от спектров звёзд: все полученные к тому времени спектры звёзд являлись спектрами поглощения (непрерывный спектр с большим количеством тёмных линий), в то время как спектры планетарных туманностей оказались эмиссионными спектрами с небольшим количеством эмиссионных линий, что указывало на их природу, в корне отличающуюся от природы звёзд:

Несомненно, что туманности 37 H IV (NGC 3242), Struve 6 (NGC 6572), 73 H IV (NGC 6826), 1 H IV (NGC 7009), 57 M, 18 H. IV (NGC 7662) и 27 M не могут более считаться скоплениями звёзд того же типа, к которым относятся неподвижные звёзды и наше Солнце. эти объекты обладают особой и отличной от них структурой мы, по всей вероятности, должны считать эти объекты огромными массами светящегося газа или пара * .

Другой проблемой был химический состав планетарных туманностей: Хаггинс сравнением с эталонными спектрами сумел идентифициировать линии азота и водорода, однако самая яркая из линий с длиной волны 500.7 нм не наблюдалась в спектрах известных тогда химических элементов. Было выдвинуто предположение, что эта линия, соответствует неизвестному элементу. Ему заранее дали название небулий — по аналогии с идеей, приведшей к открытию гелия при спектральном анализе Солнца в 1868 году.

Предположения об открытии нового элемента небулия не подтвердились. В начале XX века Генри Рассел выдвинул гипотезу о том, что линия на 500.7 нм соответствует не новому элементу, а старому элементу в неизвестных условиях.

Несмотря на достаточно подробное понимание строения, состава и механизма излучения планетарных туманностей, вопрос об их происхождении оставался открытым до середины 50-х годов XX века, пока И. С. Шкловский не обратил внимание, что если проэкстраполировать параметры планетарных туманностей к моменту начала их расширения, то получившийся набор параметров совпадает со свойствами атмосфер красных гигантов, а свойства их ядер — со свойствами горячих белых карликов * , * . В настоящее время эта теория происхождения планетарных туманностей подтверждена многочисленными наблюдениями и расчётами.

К концу XX века совершенствование технологий позволило более детально изучить планетарные туманности. Космические телескопы позволили исследовать их спектры за пределами видимого диапазона, что невозможно было сделать раньше, проводя наблюдения с поверхности Земли. Наблюдения в инфракрасном и ультрафиолетовом диапазонах волн дали новую, гораздо более точную оценку температуры, плотности и химического состава планетарных туманностей. Применение технологии ПЗС-матриц позволило проводить анализ существенно менее чётких спектральных линий. Использование космического телескопа Хаббл раскрыло чрезвычайно сложную структуру планетарных туманностей, ранее считавшихся простыми и однородными.

Принято считать, что планетарные туманности имеют спектральный класс P, хотя такое обозначение редко применяется на практике.

Происхождение


Строение симметричной планетарной туманности. Быстрый звёздный ветер (голубые стрелки) горячего белого карлика — ядра звезды(в центре), сталкиваясь со сброшенной оболочкой — медленным звёздным ветром красного гиганта (красные стрелки), создаёт плотную оболочку (голубого цвета), светящуюся под воздействием ультрафиолетового излучения ядра.

Планетарные туманности представляют собой заключительный этап эволюции для многих звёзд. Наше Солнце представляет собой звезду средней величины, и лишь небольшое количество звёзд превосходят его по массе. Звёзды с массой в несколько раз больше солнечной на заключительном этапе существования превращаются в сверхновые. Звёзды средней и малой массы в конце эволюционного пути создают планетарные туманности.

По прошествии нескольких миллиардов лет запас водорода иссякает, и энергии становится недостаточно для сдерживания внешних слоёв звезды. Ядро начинает сжиматься и нагреваться. В настоящее время температура ядра Солнца составляет приблизительно 15 млн К, но после того, как запас водорода будет исчерпан, сжатие ядра заставит температуру подняться до отметки в 100 млн К. При этом внешние слои охлаждаются и значительно увеличиваются в размерах из-за очень высокой температуры ядра. Звезда превращается в красный гигант. Ядро на этом этапе продолжает сжиматься и нагреваться; при достижении температуры в 100 млн К начинается процесс синтеза углерода и кислорода из гелия.

Возобновление термоядерных реакций позволяет прекратиться дальнейшему сжатию ядра. Выгорающий гелий вскоре создаёт инертное ядро, состоящее из углерода и кислорода, окружённое оболочкой из горящего гелия. Термоядерные реакции с участием гелия очень чувствительны к температуре. Скорость протекания реакции пропорциональна T 40 , то есть увеличение температуры всего на 2 % приведёт к удвоению скорости протекания реакции. Это делает звезду очень нестабильной: малый прирост температуры вызывает быстрое увеличение скорости хода реакций, повышая выделение энергии, что, в свою очередь, заставляет увеличиваться температуру. Верхние слои горящего гелия начинают быстро расширяться, температура понижается, реакция замедляется. Всё это может быть причиной мощных пульсаций, иногда достаточно сильных, чтобы выбросить значительную часть атмосферы звезды в космическое пространство.

Выброшенный газ формирует расширяющуюся оболочку вокруг обнажившегося ядра звезды. По мере того, как всё большая часть атмосферы отделяется от звезды, проявляются всё более и более глубокие слои с более высокими температурами. При достижении обнажённой поверхностью (фотосферой звезды) температуры в 30 000 К энергия испускаемых ультрафиолетовых фотонов становится достаточной для ионизации атомов в выброшенном веществе, что заставляет его светиться. Таким образом, облако становится планетарной туманностью.

Продолжительность жизни


Компьютерное моделирование формирования планетарной туманности из звезды с диском неправильной формы, иллюстрирующее, как малая начальная асимметрия может в результате привести к образованию объекта со сложной структурой.

Вещество планетарной туманности разлетается от центральной звезды со скоростью в несколько десятков километров в секунду. В то же время, по мере истечения вещества центральная звезда остывает, излучая остатки энергии; термоядерные реакции прекращаются, так как звезда теперь не обладает достаточной массой для поддержания температуры, требуемой для синтеза углерода и кислорода. В конце концов, звезда остынет настолько, что перестанет излучать достаточно ультрафиолета для ионизации отдалившейся газовой оболочки. Звезда становится белым карликом, а газовое облако рекомбинирует, становясь невидимым. Для типичной планетарной туманности время от образования до рекомбинации составляет 10 000 лет.

Галактические переработчики

Планетарные туманности играют значительную роль в эволюции галактик. Ранняя Вселенная состояла в основном из водорода и гелия, но со временем в результате термоядерного синтеза в звёздах образовались более тяжёлые элементы. Таким образом, вещество планетарных туманностей имеет высокое содержание углерода, азота и кислорода, а по мере расширения и проникновения в межзвёздное пространство оно обогащает его этими тяжёлыми элементами, в общем называемыми астрономами металлами.

Последующие поколения звёзд, формирующиеся из межзвёздного вещества, будут содержать большее начальное количество тяжёлых элементов; хотя их присутствие в составе звёзд остаётся незначительным, они ощутимо влияют на их эволюцию. Звёзды, сформировавшиеся вскоре после образования Вселенной, содержат относительно малые количества металлов — их относят к звёздам II типа. Звёзды, обогащённые тяжёлыми элементами, принадлежат к звёздам I типа (см. Звёздное население).

Характеристики

Физические характеристики

Типичная планетарная туманность имеет среднюю протяжённость в один световой год и состоит из сильно разреженного газа плотностью около 1000 частиц на см³, что пренебрежимо мало в сравнении, например, с плотностью атмосферы Земли, но примерно в 10-100 раз больше, чем плотность межпланетного пространства на расстоянии орбиты Земли от Солнца. Молодые планетарные туманности имеют наибольшую плотность, иногда достигающую 10 6 частиц на см³. По мере старения туманностей их расширение приводит к уменьшению плотности.

Излучение центральной звезды нагревает газы до температур порядка 10 000 К. Парадоксально, что температура газа нередко повышается с увеличением расстояния от центральной звезды. Это происходит по той причине, что чем большей энергией обладает фотон, тем менее вероятно, что он будет поглощён. Поэтому во внутренних областях туманности поглощаются малоэнергетические фотоны, а оставшиеся, обладающие высокой энергией, поглощаются во внешних областях, вызывая рост их температуры.

Туманности можно разделить на бедные материей и бедные излучением. Согласно этой терминологии, в первом случае туманность не обладает достаточным количеством материи для поглощения всех ультрафиолетовых фотонов, излучаемых звездой. Поэтому видимая туманность полностью ионизирована. Во втором же случае центральная звезда испускает недостаточно ультрафиолетовых фотонов, чтобы ионизировать весь окружающий газ, и ионизационный фронт переходит в нейтральное межзвёздное пространство.

Так как бо́льшая часть газа планетарной туманности ионизирована (то есть является плазмой), значительный эффект на её структуру оказывает действие магнитных полей, вызывая такие феномены, как волокнистость и нестабильность плазмы.

Количество и распределение

На сегодняшний день в нашей галактике, состоящей из 200 миллиардов звёзд, известно 1500 планетарных туманностей. Их краткая по сравнению со звёздной продолжительность жизни является причиной их малого числа. В основном, все они лежат в плоскости Млечного Пути, причём большей частью сосредоточившись вблизи центра галактики, и практически не наблюдаются в звёздных скоплениях.

Использование ПЗС-матриц вместо фотоплёнки в астрономических исследованиях позволило значительно расширить список известных планетарных туманностей.

Структура


Большинство планетарных туманностей симметричны и имеют почти сферический вид, что не мешает им иметь множество очень сложных форм. Приблизительно 10 % планетарных туманностей практически биполярны, и лишь малое их число асимметричны. Известна даже прямоугольная планетарная туманность. Причины такого разнообразия форм до конца не выяснены, но считается, что большую роль могут играть гравитационные взаимодействия звёзд в двойных системах. По другой версии, имеющиеся планеты нарушают равномерное растекание материи при образовании туманности. В январе 2005 года американские астрономы объявили о первом обнаружении магнитных полей вокруг центральных звёзд двух планетарных туманностей, а затем выдвинули предположение, что именно они частично или полностью ответственны за создание формы этих туманностей. Существенная роль магнитных полей в планетарных туманностях была предсказана Григором Гурзадяном ещё в 1960-ые годы (см. например Гурзадян Г. А., 1993 и ссылки там). Есть также предположение, что биполярная форма может быть обусловлена взаимодействием ударных волн от распространения фронта детонации в слое гелия на поверхности формирующегося белого карлика (например, в туманностях Кошачий Глаз, Песочные Часы, Муравей).

Текущие вопросы в изучении планетарных туманностей

Одна из проблем в изучении планетарных туманностей — это точное определение расстояния до них. Для некоторых близлежащих планетарных туманностей возможно вычислить удалённость от нас, используя измеренный параллакс расширения: снимки с высоким разрешением, полученные несколько лет назад, демонстрируют расширение туманности перпендикулярно к лучу зрения, а спектроскопический анализ Доплеровского смещения даст возможность вычислить скорость расширения вдоль луча зрения. Сравнение углового расширения с полученной скоростью расширения сделает возможным вычисление расстояния до туманности.

Существование такого разнообразия форм туманностей является темой жарких дискуссий. Широко распространено мнение, что причиной этому может быть взаимодействие между веществом, удаляющимся от звезды с различными скоростями. Некоторые астрономы считают, что двойные звёздные системы ответственны, по крайней мере, за наиболее сложные очертания планетарных туманностей. Недавние исследования подтвердили наличие у нескольких планетарных туманностей мощных магнитных полей, предположения о чём уже неоднократно выдвигались. Магнитные взаимодействия с ионизированным газом также могут играть некоторую роль в становлении формы некоторых из них.

На данный момент существуют две различных методики обнаружения металлов в туманности, основывающиеся на различных типах спектральных линий. Иногда эти два метода дают совершенно непохожие результаты. Некоторые астрономы склонны объяснять это наличием слабых флуктуаций температуры в пределах планетарной туманности. Другие полагают, что различия в наблюдениях слишком разительны, чтобы объяснить их при помощи температурных эффектов. Они выдвигают предположения о существовании холодных сгустков, содержащих очень малое количество водорода. Однако сгустки, наличие которых, по их мнению, способно объяснить разницу в оценке количества металлов, ни разу не наблюдались.


Планетарная туманность — астрономический объект, состоящий из ионизированной газовой оболочки и центральной звезды, белого карлика. Планетарные туманности образуются при сбросе внешних слоёв (оболочек) красных гигантов и сверхгигантов с массой до 1.4 солнечных на завершающей стадии их эволюции. Планетарная туманность — быстропротекающее (по астрономическим меркам) явление, длящееся всего несколько десятков тысяч лет, при продолжительности жизни звезды-предка в несколько миллиардов лет. В настоящее время в нашей Галактике известно около 1500 планетарных туманностей.

Процесс образования планетарных туманностей, наряду со вспышками сверхновых, играет важную роль в химической эволюции галактик, выбрасывая в межзвёздное пространство материал, обогащённый тяжёлыми элементами — продуктами звёздного нуклеосинтеза (в астрономии тяжёлыми считаются все элементы, за исключением продуктов первичного нуклеосинтеза Большого взрыва — водорода и гелия, такие как углерод, азот, кислород и кальций).

История исследований

Туманность Гантель

Туманность Гантель в условных цветах

Необычность природы планетарных туманностей обнаружилась в середине XIX века, с началом использования в наблюдениях метода спектроскопии. Уильям Хаггинс стал первым астрономом, получившим спектры планетарных туманностей — объектов, выделявшихся своей необычностью:

Одними из самых загадочных из этих замечательных объектов являются те, которые при телескопическом наблюдении имеют вид круглых или слегка овальных дисков. …Замечателен и их зеленовато-голубой цвет, чрезвычайно редкий для одиночных звёзд. Кроме того, в этих туманностях нет признаков центрального сгущения. По этим признакам планетарные туманности резко выделяются как объекты, которым присущи свойства, совершенно отличающиеся от свойств Солнца и неподвижных звёзд. Из этих соображений, а также благодаря их яркости, я избрал эти туманности как наиболее подходящие для спектроскопического исследования.

При изучении Хаггинсом спектров туманностей NGC 6543 (Кошачий Глаз), M27 (Гантель), M57 (кольцевая туманность в Лире) и ряда других, оказалось, что их спектр чрезвычайно отличается от спектров звёзд: все полученные к тому времени спектры звёзд являлись спектрами поглощения (непрерывный спектр с большим количеством тёмных линий), в то время как спектры планетарных туманностей оказались эмиссионными спектрами с небольшим количеством эмиссионных линий, что указывало на их природу, в корне отличающуюся от природы звёзд:

Несомненно, что туманности 37 H IV (NGC 3242), Struve 6 (NGC 6572), 73 H IV (NGC 6826), 1 H IV (NGC 7009), 57 M, 18 H. IV (NGC 7662) и 27 M не могут более считаться скоплениями звёзд того же типа, к которым относятся неподвижные звёзды и наше Солнце. эти объекты обладают особой и отличной от них структурой мы, по всей вероятности, должны считать эти объекты огромными массами светящегося газа или пара.

Другой проблемой был химический состав планетарных туманностей: Хаггинс сравнением с эталонными спектрами сумел идентифицировать линии азота и водорода, однако самая яркая из линий с длиной волны 500,7 нм не наблюдалась в спектрах известных тогда химических элементов. Было выдвинуто предположение, что эта линия соответствует неизвестному элементу. Ему заранее дали название небулий — по аналогии с идеей, приведшей к открытию гелия при спектральном анализе Солнца в 1868 году.

Предположения об открытии нового элемента небулия не подтвердились. В начале XX века Генри Расселл выдвинул гипотезу о том, что линия на 500,7 нм соответствует не новому элементу, а старому элементу в неизвестных условиях.

Несмотря на достаточно подробное понимание строения, состава и механизма излучения планетарных туманностей, вопрос об их происхождении оставался открытым до середины 50-х годов XX века, пока И. С. Шкловский не обратил внимание, что если проэкстраполировать параметры планетарных туманностей к моменту начала их расширения, то получившийся набор параметров совпадает со свойствами атмосфер красных гигантов, а свойства их ядер — со свойствами горячих белых карликов. В настоящее время эта теория происхождения планетарных туманностей подтверждена многочисленными наблюдениями и расчётами.

Принято считать, что планетарные туманности имеют спектральный класс P, хотя такое обозначение редко применяется на практике.

Происхождение

Планетарная туманность

Строение симметричной планетарной туманности. Быстрый звёздный ветер (голубые стрелки) горячего белого карлика — ядра звезды (в центре), сталкиваясь со сброшенной оболочкой — медленным звёздным ветром красного гиганта (красные стрелки), создаёт плотную оболочку (голубого цвета), светящуюся под воздействием ультрафиолетового излучения ядра.

Планетарные туманности представляют собой заключительный этап эволюции для многих звёзд. Наше Солнце представляет собой звезду средней величины, и лишь небольшое количество звёзд превосходят его по массе. Звёзды с массой в несколько раз больше солнечной на заключительном этапе существования превращаются в сверхновые. Звёзды средней и малой массы в конце эволюционного пути создают планетарные туманности.

По прошествии нескольких миллиардов лет запас водорода иссякает, и энергии становится недостаточно для сдерживания внешних слоёв звезды. Ядро начинает сжиматься и нагреваться. В настоящее время температура ядра Солнца составляет приблизительно 15 млн К, но после того, как запас водорода будет исчерпан, сжатие ядра заставит температуру подняться до отметки в 100 млн К. При этом внешние слои охлаждаются и значительно увеличиваются в размерах из-за очень высокой температуры ядра. Звезда превращается в красный гигант. Ядро на этом этапе продолжает сжиматься и нагреваться; при достижении температуры в 100 млн К начинается процесс синтеза углерода и кислорода из гелия.

Возобновление термоядерных реакций позволяет прекратиться дальнейшему сжатию ядра. Выгорающий гелий вскоре создаёт инертное ядро, состоящее из углерода и кислорода, окружённое оболочкой из горящего гелия. Термоядерные реакции с участием гелия очень чувствительны к температуре. Скорость протекания реакции пропорциональна T 40 , то есть увеличение температуры всего на 2 % приведёт к удвоению скорости протекания реакции. Это делает звезду очень нестабильной: малый прирост температуры вызывает быстрое увеличение скорости хода реакций, повышая выделение энергии, что, в свою очередь, заставляет увеличиваться температуру. Верхние слои горящего гелия начинают быстро расширяться, температура понижается, реакция замедляется. Всё это может быть причиной мощных пульсаций, иногда достаточно сильных, чтобы выбросить значительную часть атмосферы звезды в космическое пространство.

Выброшенный газ формирует расширяющуюся оболочку вокруг обнажившегося ядра звезды. По мере того, как всё большая часть атмосферы отделяется от звезды, проявляются всё более и более глубокие слои с более высокими температурами. При достижении обнажённой поверхностью (фотосферой звезды) температуры в 30 000 К энергия испускаемых ультрафиолетовых фотонов становится достаточной для ионизации атомов в выброшенном веществе, что заставляет его светиться. Таким образом, облако становится планетарной туманностью.

Продолжительность жизни

Планетарная туманность

Компьютерное моделирование формирования планетарной туманности из звезды с диском неправильной формы, иллюстрирующее, как малая начальная асимметрия может в результате привести к образованию объекта со сложной структурой.

Вещество планетарной туманности разлетается от центральной звезды со скоростью в несколько десятков километров в секунду. В то же время, по мере истечения вещества центральная звезда остывает, излучая остатки энергии; термоядерные реакции прекращаются, так как звезда теперь не обладает достаточной массой для поддержания температуры, требуемой для синтеза углерода и кислорода. В конце концов, звезда остынет настолько, что перестанет излучать достаточно ультрафиолета для ионизации отдалившейся газовой оболочки. Звезда становится белым карликом, а газовое облако рекомбинирует, становясь невидимым. Для типичной планетарной туманности время от образования до рекомбинации составляет 10 000 лет.

Галактические переработчики

Планетарные туманности играют значительную роль в эволюции галактик. Ранняя Вселенная состояла в основном из водорода и гелия, но со временем в результате термоядерного синтеза в звёздах образовались более тяжёлые элементы. Таким образом, вещество планетарных туманностей имеет высокое содержание углерода, азота и кислорода, а по мере расширения и проникновения в межзвёздное пространство оно обогащает его этими тяжёлыми элементами, в общем называемыми астрономами металлами.

Последующие поколения звёзд, формирующиеся из межзвёздного вещества, будут содержать большее начальное количество тяжёлых элементов; хотя их присутствие в составе звёзд остаётся незначительным, они ощутимо влияют на их эволюцию. Звёзды, сформировавшиеся вскоре после образования Вселенной, содержат относительно малые количества металлов — их относят к звёздам II типа. Звёзды, обогащённые тяжёлыми элементами, принадлежат к звёздам I типа.

Характеристики

Физические характеристики

Типичная планетарная туманность имеет среднюю протяжённость в один световой год и состоит из сильно разреженного газа плотностью около 1000 частиц на см³, что пренебрежимо мало в сравнении, например, с плотностью атмосферы Земли, но примерно в 10—100 раз больше, чем плотность межпланетного пространства на расстоянии орбиты Земли от Солнца. Молодые планетарные туманности имеют наибольшую плотность, иногда достигающую 10 6 частиц на см³. По мере старения туманностей их расширение приводит к уменьшению плотности.

Излучение центральной звезды нагревает газы до температур порядка 10 000 К. Парадоксально, что температура газа нередко повышается с увеличением расстояния от центральной звезды. Это происходит по той причине, что чем большей энергией обладает фотон, тем менее вероятно, что он будет поглощён. Поэтому во внутренних областях туманности поглощаются малоэнергетические фотоны, а оставшиеся, обладающие высокой энергией, поглощаются во внешних областях, вызывая рост их температуры.

Туманности можно разделить на бедные материей и бедные излучением. Согласно этой терминологии, в первом случае туманность не обладает достаточным количеством материи для поглощения всех ультрафиолетовых фотонов, излучаемых звездой. Поэтому видимая туманность полностью ионизирована. Во втором же случае центральная звезда испускает недостаточно ультрафиолетовых фотонов, чтобы ионизировать весь окружающий газ, и ионизационный фронт переходит в нейтральное межзвёздное пространство.

Так как бо́льшая часть газа планетарной туманности ионизирована (то есть является плазмой), значительный эффект на её структуру оказывает действие магнитных полей, вызывая такие феномены, как волокнистость и нестабильность плазмы.

Количество и распределение

На сегодняшний день в нашей Галактике, состоящей из 200 миллиардов звёзд, известно 1500 планетарных туманностей. Их краткая по сравнению со звёздной продолжительность жизни является причиной их малого числа. В основном, все они лежат в плоскости Млечного Пути, причём большей частью сосредоточившись вблизи центра галактики, и практически не наблюдаются в звёздных скоплениях.

Использование ПЗС-матриц вместо фотоплёнки в астрономических исследованиях позволило значительно расширить список известных планетарных туманностей.

Структура

Большинство планетарных туманностей симметричны и имеют почти сферический вид, что не мешает им иметь множество очень сложных форм. Приблизительно 10 % планетарных туманностей практически биполярны, и лишь малое их число асимметричны. Известна даже прямоугольная планетарная туманность. Причины такого разнообразия форм до конца не выяснены, но считается, что большую роль могут играть гравитационные взаимодействия звёзд в двойных системах. По другой версии, имеющиеся планеты нарушают равномерное растекание материи при образовании туманности. В январе 2005 года американские астрономы объявили о первом обнаружении магнитных полей вокруг центральных звёзд двух планетарных туманностей, а затем выдвинули предположение, что именно они частично или полностью ответственны за создание формы этих туманностей. Существенная роль магнитных полей в планетарных туманностях была предсказана Григором Гурзадяном ещё в 1960-е годы. Есть также предположение, что биполярная форма может быть обусловлена взаимодействием ударных волн от распространения фронта детонации в слое гелия на поверхности формирующегося белого карлика (например, в туманностях Кошачий Глаз, Песочные Часы, Муравей).

Текущие вопросы в изучении планетарных туманностей

Одна из проблем в изучении планетарных туманностей — это точное определение расстояния до них. Для некоторых близлежащих планетарных туманностей возможно вычислить удалённость от нас, используя измеренный параллакс расширения: снимки с высоким разрешением, полученные несколько лет назад, демонстрируют расширение туманности перпендикулярно к лучу зрения, а спектроскопический анализ доплеровского смещения даст возможность вычислить скорость расширения вдоль луча зрения. Сравнение углового расширения с полученной скоростью расширения сделает возможным вычисление расстояния до туманности.

Существование такого разнообразия форм туманностей является темой жарких дискуссий. Широко распространено мнение, что причиной этому может быть взаимодействие между веществом, удаляющимся от звезды с различными скоростями. Некоторые астрономы считают, что двойные звёздные системы ответственны, по крайней мере, за наиболее сложные очертания планетарных туманностей. Недавние исследования подтвердили наличие у нескольких планетарных туманностей мощных магнитных полей, предположения о чём уже неоднократно выдвигались. Магнитные взаимодействия с ионизированным газом также могут играть некоторую роль в становлении формы некоторых из них.

На данный момент существуют две различных методики обнаружения металлов в туманности, основывающиеся на различных типах спектральных линий. Иногда эти два метода дают совершенно непохожие результаты. Некоторые астрономы склонны объяснять это наличием слабых флуктуаций температуры в пределах планетарной туманности. Другие полагают, что различия в наблюдениях слишком разительны, чтобы объяснить их при помощи температурных эффектов. Они выдвигают предположения о существовании холодных сгустков, содержащих очень малое количество водорода. Однако сгустки, наличие которых, по их мнению, способно объяснить разницу в оценке количества металлов, ни разу не наблюдались.

Планетарные туманности

Первое объяснение

Сколько живет туманность?

По астрономическим меркам, туманность живет не очень долго – около десяти тысяч лет. Из-за такого короткого жизненного цикла астрономы видят не более полутора тысяч различных объектов в нашей галактике. Каждый из них имеет свой уникальный вид: необычную форму, цвет, размер. Известны туманности в Магеллановых Облаках, Туманности Андромеды и в других уголках Вселенной.

Планетарные туманности возникают в результате

Строение объекта

Планетарные туманности представляют собой сложную систему, состоящую из центрального ядра и окружающей его газовой оболочки (их может быть несколько). Оболочка и ядро связаны между собой. Сама оболочка – это полностью ионизированное газовое образование с электронной температурой 10-12 тысяч К. Если в оболочке имеется примесь пылевых частиц, то она подсвечивается красным светом. Свечение может быть самых разных оттенков.

Планетарные туманности возникают в результате гибели звезд. После утраты стабильности объект увеличивается, расширяется, изменяется форма. Постепенно туманность становится слабой и не может удерживать осколки звезды.

Умирающие звезды

Как известно, все планетарные туманности образованы от звезд, которые завершают свое существование и превращаются в белых карликов. Звезды с массами, как у нашего Солнца, после рождения проживают длительную стабильную жизнь, во время которой растапливаются водородные ядра, давая начало ядрам гелия. Как только в центре звезды водород полностью израсходуется, эта часть объекта начинает нагреваться: температура доходит до ста миллионов градусов. Этот процесс вызывает расширение слоев и охлаждение: звезда превращается в красного гиганта. В этот момент звезда теряет стабильность, ее внешние слои могут быть выброшены наружу. Именно эти выбросы образуют оболочку, которая удерживается вокруг белого карлика – того, что остается от распавшейся звезды.

Планетарная туманность в созвездии Лиры

Процесс расширения

Астрономы, оценивающие фото планетарных туманностей, видят изменения их оболочки, ее размера. Скорость расширения оболочки - несколько десятков километров в секунду. Очень быстро оболочка сливается с космическим пространством и перестает быть видимой.

Самые известные туманности

Существует немало самых разных планетарных туманностей, среди которых есть объекты, отчетливо видные в любительские телескопы, а есть такие, что с трудом видны даже в телескопы обсерваторий. Среди самых популярных объектов туманности Кольцо, Сова, Гантель, М76, Муравей, Песочные Часы и многие другие.

Планетарные туманности фото

Туманность Кольцо

Самая знаменитая планетарная туманность в созвездии Лиры – это объект, получивший название Кольцо. У этого образования есть и другое название – М57. Оно располагается в летнем созвездии Лиры, на удалении от Земли примерно на 2300 световых лет.

Кольцо было открыто в 1779 году астрономом А. Даркье де Пельпуа. Ученый описал образование как идеальный диск размером примерно с Юпитер, но имеющий более бледное свечение. Спустя шесть лет англичанином В. Гершелем это тело было названо небесной достопримечательностью.

Кольцо появилось от звезды, температура которой превышает 100000 градусов. Туманность постоянно расширяется – приблизительно со скоростью 25 километров в секунду, поэтому ее зримые размеры увеличиваются примерно на одну секунду в столетие.

Улитка

Сатурн

В 1782 году В. Гершель открыл туманность Сатурна, расположенную в созвездии Водолея. Однако увидеть это образование в телескоп непросто, так как оно достаточно мелкое. При 150-кратном увеличении можно рассмотреть вытянутой формы образование.

Расстояние от Земли до планетарной туманности

Гантель

Гантель, или М27, – это еще одно космическое образование, которое можно увидеть в телескоп. Оно располагается в созвездии Лисички. Астрономы утверждают, что эта туманность возникла приблизительно четыре тысячи лет тому назад.

Если посмотреть на тело в телескоп, то при значительном увеличении можно рассмотреть вытянутую форму, из-за которой она и получила свое название.

NGC3242

Планетарная туманность NGC3242 или, как ее еще называют, Призрак Юпитера, – это сложное для наблюдения образование. При 100-кратном увеличении ее можно рассмотреть в телескопе достаточно отчетливо, увидеть округлую форму.

В созвездии Большой Медведицы располагается планетарная туманность М97, или Сова. Она была открыта в 1848 году Уильямом Парсонсом. Это уникальное космическое образование напоминает совиные глаза, за что и получила свое необычное название.

При 100-кратном увеличении на телескопе можно рассмотреть округлую форму, а также увидеть два темных пятна внутри М97. По мнению астрономов, Сове уже восемь тысяч лет, а значит, жить ей остается недолго.

Во Вселенной существуют тысячи самых разных туманностей, о которых еще неизвестно. Некоторые из объектов уже полностью распались или близки к этому, а есть и такие, которые только что зародились.

Читайте также: