Пламя это кратко и понятно

Обновлено: 05.07.2024

пл а мя, род. и дат. пламени, пламенем, пламени, мн. (устар. редк.) пламена, пламён, пламена, ср. (книж.).

3. Светящийся пар или газ, выделяемый при горении некоторыми веществами (хим.). Пламя водорода. Пламя окиси углерода. Излучение пламени.

Этимологический Словарь Русского Языка

Древнерусское – полми (жечь, сжигать).

Литовское – pelni (зола).

Древнепрусское – pelanno (очаг).

Словенское и чешское – plamen.

Словарь терминов и определений по средствам охранной и пожарной защиты

Зона горения в газовой фазе с видимым излучением.

Источник: СТ СЭВ 383-87

Тезаурус русской деловой лексики

Словарь Ожегова

ПЛАМЯ, мени, менем, ср. и (устар. и высок.) ПЛАМЕНЬ, меня, менем, м. Горящий и светящийся раскалённый газ, огонь. Языки пламени. Пламя войны (перен.; высок.). Пламя страсти (перен.; высок.). Пламень души (душевные силы). Гори (всё) синим пламенем! (то же, что гори всё огнём; см. гореть в 1 знач.) (прост.).

| прил. пламенный, ая, ое (спец.). Пламенная печь (заводская печь, в к-рой обрабатывают материал жаром пламени).

Словарь Ефремовой

  1. ср.
    1. :
      1. Огонь, подымающийся над горящим предметом.
      2. Что-л. напоминающее огонь, подымающийся над горящим предметом.
      1. Жар, зной, тепло.
      2. перен. Страсть, воодушевление.

      Энциклопедия Брокгауза и Ефрона

      — см. Сатирические журналы.

      (хим.). — Из химических реакций, встречающихся в обыкновенной жизни, всегда возбуждали большой интерес реакции, сопровождающиеся выделением значительного количества тепла и света. Сюда относятся явления горения, некоторые случаи разложения и пр. Относительно всех этих случаев говорят, что образуется "огонь". Иногда появление "огня" сопровождается новым явлением — образованием "пламени". П. наблюдается вообще в тех случаях, когда благодаря выделившемуся при реакции теплу начинают светиться пары или газы, принимающие то или другое участие в реакции. Свойства их и определяют характер П. Этим объясняется образование пламени при горении на воздухе дерева, керосина и тому подобных веществ, так как все они при температуре горения выделяют газообразные продукты, которые, собственно, и подвергаются процессу горения. По этой же причине железо горит без П., так как ни оно, ни продукт его горения не летучи в этих условиях (хотя у поверхности его и находится слой сильно накаленного воздуха, но по его незначительности и по слабой светимости его не заметно). Изучением свойств П. (главным образом в явлениях горения, на чем мы и остановимся) в текущем столетии занимались многие ученые (Дэви, Фарадей, С. К. Девиль, Франкланд и др.); оно имеет как теоретический интерес, так и практический, так как с ним связано множество вопросов, имеющих большое значение в технике, напр., для освещения, для металлургических процессов и пр. П. какого-либо тела в различных частях вообще имеет обыкновенно различные свойства; для получения однородного пламени нужно, чтобы горючее тело образовало однородную смесь с воздухом, в обыкновенных же условиях, напр., при горении свечи, лампы, дерева и пр., этого не бывает. Рассматривая, напр., П. стеариновой свечи, мы видим внутри у самой светильни темный конус — это постоянно образующиеся тяжелые пары веществ, пропитывающих светильню, смешанные с продуктами разложения. Температура здесь благодаря постоянному испарению невелика. Темный конус окружен светлым конусом, где происходит самый энергичный процесс горения; наконец, замечается третий, едва заметный, внешний конус — здесь в избытке кислорода догорает все то, что не успело сгореть раньше (подробности и рис. П. см. Паяльная трубка, Горение). П. бывает обыкновенно вытянуто по вертикальному направлению благодаря тому, что накаленные газы легче воздуха и поднимаются вверх, но ему можно придать какой угодно наклон, устраивая искусственную тягу или дутье (см., например, Паяльная трубка). Форму и величину П. при прочих равных условиях можно изменить, увеличивая или уменьшая приток воздуха или содержание в нем кислорода. Если, напр., горящую свечу внести в атмосферу, бедную кислородом, то П. вытягивается, так как горючие пары успеют пройти дальше прежде, чем найдут достаточное количество кислорода для своего сгорания, и пр. П. можно изменить также, изменяя скорость обращения в пар горящего тела, например, увеличивая или уменьшая поверхность испарения или температуру его и пр. Температура пламени зависит от степени перемешивания горящих паров с воздухом. Наивысшая температура получается тогда, когда горючие пары или газы являются тесно смешанными с таким количеством воздуха, которое только необходимо для их полного сжигания; избыток воздуха вреден, так как для нагревания его должно расходоваться тепло. С другой стороны, здесь играет роль темп. взятого воздуха, так как, если взять воздух холодный, то должно быть затрачено некоторое количество тепла, чтобы нагреть его до той темп., при которой он может вступить в реакцию; поэтому для получения наиболее высоких температур, напр., при металлургических процессах, воздух предварительно прогревают. Понятно также, что замена воздуха кислородом должна увеличить темп. пламени. Химические реакции, которые производятся П., бывают различны и зависят как от его темп., так и от его состава. В одних случаях важно тепло, в нем находящееся, напр., для разного рода плавок, перегонок и множества операций, требующих высокой темп.; в других — оно само своими составными частями принимает участие в реакции. Если в П. находится избыток кислорода, то при своей высокой темп. оно является энергичным окислителем; если же П. является результатом неполного горения, содержит, напр., окись углерода, водород, углеводороды и пр., то, наоборот, представляет энергичный восстановитель. Присутствие сернистого газа, как это иногда бывает, сказывается в образовании сернистых соединений, сернокислых и пр. Один из вопросов, который наиболее занимал ученых при изучении П., это — напряженность его света. Известно, что одно П. является очень бледным, почти незаметным, напр., П. водорода, спирта и пр., тогда как другое, напр., ацетиленовое, необыкновенно ярко, ослепительно. Дэви, основываясь на том факте, что введением порошков нелетучих тел можно значительно увеличить силу света пламени, высказал мысль, что и вообще свет пламени зависит от присутствия в нем твердых частичек, которые являются или как продукт разложения горящего тела (напр., при горении свечи, масла, дерева — это частички угля), или как продукт горения (напр., при горении магния — магнезия). Интенсивность света пламени должна зависеть от количества этих частичек, их температуры и от их лучеиспускательной способности. Применяясь к мысли Дэви, являлся понятным тот факт, что водород или окись углерода горят почти бесцветным пламенем. С другой стороны, простой опыт, казалось, нагляднейшим образом показывает на присутствие, напр., частичек угля в горящей свече. Именно достаточно ввести в П. холодный предмет, как он тотчас покрывается сажей. Мнение Дэви держалось продолжительное время. Только в конце 60-х годов Франкланд показал, что явление не так просто, как казалось раньше. Прежде всего, он нашел, что если водород или окись углерода горят в сжатом кислороде (до 20 атм.), то П. становится блестящим; то же происходит и с пламенем спирта; затем он указал, что мышьяк горит в кислороде ослепительно ярким П., между тем как сам мышьяк и мышьяковистая кислота кипят при 200°, и потому невозможно допустить их существование при горении в твердом виде. То же можно сказать и относительно фосфора. Франкланд указывает, что выделяющаяся на холодном предмете сажа не является чистым углеродом, а всегда содержит водород (она есть как бы углеводород). Из своих опытов он выводит заключение, что свет пламени зависит от присутствия в нем накаленных тяжелых паров или газов, лучеиспускательная способность которых значительно возрастает с плотностью.

      пламя ср. 1) а) Огонь, подымающийся над горящим предметом. б) Что-л. напоминающее огонь, подымающийся над горящим предметом. 2) а) Жар, зной, тепло. б) перен. Страсть, воодушевление. 3) Светящийся пар или газ, выделяемый некоторыми веществами при горении.

      ПЛАМЯ

      пламя с.flame, flare; (яркое) blaze вспыхнуть пламенем — burst* into flame языки пламени — tongues of flame

      ПЛАМЯ

      пламя факел, страсть, страстность, пламень, пылкость, свет, пламечко, жар, полымя, пыл, пожар, огненная стихия, огонь, огнь Словарь русских синонимов. пламя 1. см. огонь. 2. см. страстность 1 Словарь синонимов русского языка. Практический справочник. — М.: Русский язык.З. Е. Александрова.2011. пламя сущ., кол-во синонимов: 20 • воодушевление (36) • жар (39) • зажигалка (19) • зной (20) • огненная стихия (2) • огнь (3) • огонь (56) • пламень (5) • пламечко (1) • пожар (7) • полымя (3) • пыл (27) • пылкость (29) • свет (64) • смага (3) • страстность (31) • страсть (106) • тепло (29) • файер (2) • факел (9) Словарь синонимов ASIS.В.Н. Тришин.2013. . Синонимы: жар, зажигалка, огненная стихия, огнь, огонь, пламень, пламечко, пожар, полымя, пыл, пылкость, свет, смага, страстность, страсть, файер, факел. смотреть

      ПЛАМЯ

      Пламя (хим.). — Из химических реакций, встречающихся в обыкновенной жизни, всегда возбуждали большой интерес реакции, сопровождающиеся выделением значительного количества тепла и света. Сюда относятся явления горения, некоторые случаи разложения и пр. Относительно всех этих случаев говорят, что образуется "огонь". Иногда появление "огня" сопровождается новым явлением — образованием "пламени". П. наблюдается вообще в тех случаях, когда благодаря выделившемуся при реакции теплу начинают светиться пары или газы, принимающие то или другое участие в реакции. Свойства их и определяют характер П. Этим объясняется образование пламени при горении на воздухе дерева, керосина и тому подобных веществ, так как все они при температуре горения выделяют газообразные продукты, которые, собственно, и подвергаются процессу горения. По этой же причине железо горит без П., так как ни оно, ни продукт его горения не летучи в этих условиях (хотя у поверхности его и находится слой сильно накаленного воздуха, но по его незначительности и по слабой светимости его не заметно). Изучением свойств П. (главным образом в явлениях горения, на чем мы и остановимся) в текущем столетии занимались многие ученые (Дэви, Фарадей, С. К. Девиль, Франкланд и др.); оно имеет как теоретический интерес, так и практический, так как с ним связано множество вопросов, имеющих большое значение в технике, напр., для освещения, для металлургических процессов и пр. П. какого-либо тела в различных частях вообще имеет обыкновенно различные свойства; для получения однородного пламени нужно, чтобы горючее тело образовало однородную смесь с воздухом, в обыкновенных же условиях, напр., при горении свечи, лампы, дерева и пр., этого не бывает. Рассматривая, напр., П. стеариновой свечи, мы видим внутри у самой светильни темный конус — это постоянно образующиеся тяжелые пары веществ, пропитывающих светильню, смешанные с продуктами разложения. Температура здесь благодаря постоянному испарению невелика. Темный конус окружен светлым конусом, где происходит самый энергичный процесс горения; наконец, замечается третий, едва заметный, внешний конус — здесь в избытке кислорода догорает все то, что не успело сгореть раньше (подробности и рис. П. см. Паяльная трубка, Горение). П. бывает обыкновенно вытянуто по вертикальному направлению благодаря тому, что накаленные газы легче воздуха и поднимаются вверх, но ему можно придать какой угодно наклон, устраивая искусственную тягу или дутье (см., например, Паяльная трубка). Форму и величину П. при прочих равных условиях можно изменить, увеличивая или уменьшая приток воздуха или содержание в нем кислорода. Если, напр., горящую свечу внести в атмосферу, бедную кислородом, то П. вытягивается, так как горючие пары успеют пройти дальше прежде, чем найдут достаточное количество кислорода для своего сгорания, и пр. П. можно изменить также, изменяя скорость обращения в пар горящего тела, например, увеличивая или уменьшая поверхность испарения или температуру его и пр. Температура пламени зависит от степени перемешивания горящих паров с воздухом. Наивысшая температура получается тогда, когда горючие пары или газы являются тесно смешанными с таким количеством воздуха, которое только необходимо для их полного сжигания; избыток воздуха вреден, так как для нагревания его должно расходоваться тепло. С другой стороны, здесь играет роль темп. взятого воздуха, так как, если взять воздух холодный, то должно быть затрачено некоторое количество тепла, чтобы нагреть его до той темп., при которой он может вступить в реакцию; поэтому для получения наиболее высоких температур, напр., при металлургических процессах, воздух предварительно прогревают. Понятно также, что замена воздуха кислородом должна увеличить темп. пламени. Химические реакции, которые производятся П., бывают различны и зависят как от его темп., так и от его состава. В одних случаях важно тепло, в нем находящееся, напр., для разного рода плавок, перегонок и множества операций, требующих высокой темп.; в других — оно само своими составными частями принимает участие в реакции. Если в П. находится избыток кислорода, то при своей высокой темп. оно является энергичным окислителем; если же П. является результатом неполного горения, содержит, напр., окись углерода, водород, углеводороды и пр., то, наоборот, представляет энергичный восстановитель. Присутствие сернистого газа, как это иногда бывает, сказывается в образовании сернистых соединений, сернокислых и пр. Один из вопросов, который наиболее занимал ученых при изучении П., это — напряженность его света. Известно, что одно П. является очень бледным, почти незаметным, напр., П. водорода, спирта и пр., тогда как другое, напр., ацетиленовое, необыкновенно ярко, ослепительно. Дэви, основываясь на том факте, что введением порошков нелетучих тел можно значительно увеличить силу света пламени, высказал мысль, что и вообще свет пламени зависит от присутствия в нем твердых частичек, которые являются или как продукт разложения горящего тела (напр., при горении свечи, масла, дерева — это частички угля), или как продукт горения (напр., при горении магния — магнезия). Интенсивность света пламени должна зависеть от количества этих частичек, их температуры и от их лучеиспускательной способности. Применяясь к мысли Дэви, являлся понятным тот факт, что водород или окись углерода горят почти бесцветным пламенем. С другой стороны, простой опыт, казалось, нагляднейшим образом показывает на присутствие, напр., частичек угля в горящей свече. Именно достаточно ввести в П. холодный предмет, как он тотчас покрывается сажей. Мнение Дэви держалось продолжительное время. Только в конце 60-х годов Франкланд показал, что явление не так просто, как казалось раньше. Прежде всего, он нашел, что если водород или окись углерода горят в сжатом кислороде (до 20 атм.), то П. становится блестящим; то же происходит и с пламенем спирта; затем он указал, что мышьяк горит в кислороде ослепительно ярким П., между тем как сам мышьяк и мышьяковистая кислота кипят при 200°, и потому невозможно допустить их существование при горении в твердом виде. То же можно сказать и относительно фосфора. Франкланд указывает, что выделяющаяся на холодном предмете сажа не является чистым углеродом, а всегда содержит водород (она есть как бы углеводород). Из своих опытов он выводит заключение, что свет пламени зависит от присутствия в нем накаленных тяжелых паров или газов, лучеиспускательная способность которых значительно возрастает с плотностью. С. П. Вуколов. Δ .

      В процессе горения образуется пламя, строение которого обусловлено реагирующими веществами. Его структура поделена на области в зависимости от температурных показателей.

      Определение

      Пламенем называют газы в раскаленном виде, в которых присутствуют составляющие плазмы или вещества в твердой дисперсной форме. В них осуществляются преобразования физического и химического типа, сопровождающиеся свечением, выделением тепловой энергии и разогревом.

      Наличие же в газообразной среде ионных и радикальных частичек характеризует его электрическую проводимость и особое поведение в электромагнитном поле.

      пламя строение

      Что такое языки пламени

      Обычно так называют процессы, связанные с горением. По сравнению с воздухом, газовая плотность меньше, но высокие температурные показатели обуславливают поднятие газа. Так и образуются языки пламени, которые бывают длинными и короткими. Часто происходит и плавный переход одних форм в другие.

      Пламя: строение и структура

      Для определения внешнего вида описываемого явления достаточно зажечь газовую горелку. Появившееся несветящееся пламя нельзя назвать однородным. Визуально можно выделить три его основные области. Кстати, изучение строения пламени показывает, что различные вещества горят с образованием различного типа факела.

      При горении смеси из газа и воздуха вначале происходит формирование короткого факела, цвет которого имеет голубые и фиолетовые оттенки. В нем просматривается ядро - зелено-голубое, напоминающее конус. Рассмотрим это пламя. Строение его разделяется на три зоны:

      1. Выделяют подготовительную область, в которой происходит нагревание смеси из газа и воздуха при выходе из отверстия горелки.
      2. За ней следует зона, в которой происходит горение. Она занимает верхушку конуса.
      3. Когда имеется недостаток воздушного потока, газ сгорает не полностью. Выделяется углерода двухвалентный оксид и водородные остатки. Их догорание протекает в третьей области, где есть кислородный доступ.

      Теперь отдельно рассмотрим разные процессы горения.

      Горение свечи

      Горение свечи подобно горению спички или зажигалки. А строение пламени свечи напоминает раскаленный газовый поток, который вытягивается вверх за счет выталкивающих сил. Процесс начинается с нагревания фитиля, за которым следует испарение парафина.

      Самую нижнюю зону, находящуюся внутри и прилегающую к нити, называют первой областью. Она обладает небольшим свечением синего цвета из-за большого количества топлива, но малого объема кислородной смеси. Здесь осуществляется процесс неполного сгорания веществ с выделением угарного газа, который в дальнейшем окисляется.

      строение пламени свечи

      Первую зону окружает светящаяся вторая оболочка, характеризующая строение пламени свечи. В нее поступает больший кислородный объем, что обуславливает продолжение окислительной реакции с участием топливных молекул. Температурные показатели здесь будут выше, чем в темной зоне, но недостаточные для конечного разложения. Именно в первых двух областях при сильном нагревании капелек несгоревшего топлива и угольных частичек появляется светящийся эффект.

      Вторая зона окружена слабозаметной оболочкой с высокими температурными значениями. В нее заходит много кислородных молекул, что способствует полному догоранию топливных частичек. После окисления веществ, в третьей зоне светящийся эффект не наблюдается.

      Схематическое изображение

      Для наглядности представляем вашему вниманию изображение горения свечи. Схема пламени включает:

      1. Первую или темную область.
      2. Вторую светящуюся зону.
      3. Третью прозрачную оболочку.

      Нить свечи не подвергается горению, а только происходит обугливание загнутого конца.

       схема пламени

      Горение спиртовки

      Для химических экспериментов часто используют небольшие резервуары со спиртом. Их называют спиртовками. Фитиль горелки пропитывается залитым через отверстие жидким топливом. Этому способствует давление капиллярное. При достижении свободной верхушки фитиля, спирт начинает испаряться. В парообразном состоянии он поджигается и горит при температуре не более 900 °C.

      Пламя спиртовки имеет обычную форму, оно практически бесцветное, с небольшим оттенком голубого. Его зоны не так четко видны, как у свечки.

      У спиртовой горелки, названной в честь ученого Бартеля, начало огня располагается над калильной сеткой горелки. Такое заглубление пламени приводит к уменьшению внутреннего темного конуса, а из отверстия выходит средний участок, который считается самым горячим.

      пламя спиртовки

      Цветовая характеристика

      Излучения различных цветов пламени, вызывается электронными переходами. Их еще называют тепловыми. Так, в результате горения углеводородного компонента в воздушной среде, синее пламя обусловлено выделением соединения H-C. А при излучении частичек C-C, факел окрашивается в оранжево-красный цвет.

      Трудно рассмотреть строение пламени, химия которого включает соединения воды, углекислого и угарного газа, связь OH. Его языки практически бесцветны, так как вышеуказанные частички при горении выделяют излучения ультрафиолетового и инфракрасного спектра.

      Окраска пламени взаимосвязана с температурными показателями, с наличием в нем ионных частиц, которые относятся к определенному эмиссионному или оптическому спектру. Так, горение некоторых элементов приводит к изменению цвета огня в горелке. Отличия в окрашивании факела связаны с расположением элементов в разных группах системы периодической.

      Огонь на наличие излучений, относящихся к видимому спектру, изучают спектроскопом. При этом было установлено, что простые вещества из общей подгруппы оказывают и подобное окрашивание пламени. Для наглядности используют горение натрия в качестве теста на данный металл. При внесении его в пламя, языки становятся ярко-желтыми. На основании цветовых характеристик выделяют натриевую линию в эмиссионном спектре.

      Для щелочных металлов характерно свойство быстрого возбуждения светового излучения атомарных частиц. При внесении труднолетучих соединений таких элементов в огонь горелки Бунзена происходит его окрашивание.

      Спектроскопическое исследование показывает характерные линии в области, видимой для глаза человека. Быстрота возбуждения светового излучения и простое спектральное строение тесно взаимосвязаны с высокой электроположительной характеристикой данных металлов.

      Характеристика

      В основе классификации пламени лежат следующие характеристики:

      • состояние агрегатное сгорающих соединений. Они бывают газообразной, аэродисперсной, твердой и жидкой формы;
      • тип излучения, которое может быть бесцветным, светящимся и окрашенным;
      • распределительная скорость. Существует быстрое и медленное распространение;
      • высота пламени. Строение может быть коротким и длинным;
      • характер передвижения реагирующих смесей. Выделяют пульсирующее, ламинарное, турбулентное перемещение;
      • визуальное восприятие. Вещества горят с выделением коптящего, цветного или прозрачного пламени;
      • температурный показатель. Пламя может быть низкотемпературным, холодным и высокотемпературным.
      • состояние фазы топливо – окисляющий реагент.

      Возгорание происходит в результате диффузии или при предварительном перемешивании активных компонентов.

      языки пламени

      Окислительная и восстановительная область

      Процесс окисления протекает в слабозаметной зоне. Она самая горячая и располагается вверху. В ней топливные частицы подвергаются полному сгоранию. А наличие в кислородного избытка и горючего недостатка приводит к интенсивному процессу окисления. Этой особенностью следует пользоваться при нагревании предметов над горелкой. Именно поэтому вещество погружают в верхнюю часть пламени. Такое горение протекает намного быстрее.

      Восстановительные реакции проходят в центральной и нижней части пламени. Здесь содержится большой запас горючих веществ и малое количество O2 молекул, осуществляющих горение. При внесении в эти области кислородсодержащих соединений осуществляется отщепление O элемента.

      В качестве примера восстановительного пламени используют процесс расщепления железа двухвалентного сульфата. При попадании FeSO4 в центральную часть факела горелки, происходит вначале его нагревание, а затем разложение на оксид трехвалентного железа, ангидрид и двуокись серы. В данной реакции наблюдается восстановление S с зарядом от +6 до +4.

      Сварочное пламя

      Данный вид огня образуется в результате сгорания смеси из газа или пара жидкости с кислородом чистого воздуха.

      изучение строения пламени

      Примером служит формирование пламени кислородно-ацетиленового. В нем выделяют:

      • зону ядра;
      • среднюю область восстановления;
      • факельную крайнюю зону.

      Так горят многие газокислородные смеси. Различия в соотношении ацетилена и окислителя приводят к разному типу пламени. Оно может быть нормального, науглероживающего (ацетиленистого) и окислительного строения.

      Теоретически процесс неполного сгорания ацетилена в чистом кислороде можно охарактеризовать следующим уравнением: HCCH + O2 → H2 + CO +CO (для реакции необходима одна моль O2).

      Полученный же молекулярный водород и угарный газ реагируют с воздушным кислородом. Конечными продуктами является вода и оксид четырехвалентного углерода. Уравнение выглядит так: CO + CO + H2 + 1½O2 → CO2 + CO2 +H2O. Для этой реакции необходимо 1,5 моля кислорода. При суммировании O2 получается, что 2,5 моль затрачивается на 1 моль HCCH. А так как на практике трудно найти идеально чистый кислород (часто он имеет небольшое загрязнение примесями), то соотношение O2 к HCCH будет 1,10 к 1,20.

      Когда значение пропорции кислорода к ацетилену меньше 1,10, возникает науглероживающее пламя. Строение его имеет увеличенное ядро, очертания его становятся расплывчатыми. Из такого огня выделяется копоть, вследствие недостатка кислородных молекул.

      Если же соотношение газов больше 1,20, то получается окислительное пламя с кислородным избытком. Лишние его молекулы разрушают атомы железа и другие компоненты стальной горелки. В таком пламени ядерная часть становится короткой и имеет заострения.

      Температурные показатели

      Каждая зона огня свечи или горелки имеет свои значения, обусловленные поступлением кислородным молекул. Температура открытого пламени в разных его частях колеблется от 300 °C до 1600 °C.

      Примером служит пламя диффузионное и ламинарное, которое образовано тремя оболочками. Конус его состоит из темного участка с температурой до 360 °C и недостатком окисляющего вещества. Над ним располагается зона свечения. Ее температурный показатель колеблется от 550 до 850 °C, что способствует разложению термическому горючей смеси и ее горению.

      температура пламени

      Внешняя область едва заметная. В ней температура пламени доходит до 1560 °C, что обусловлено природными характеристиками топливных молекул и быстротой поступления окисляющего вещества. Здесь горение наиболее энергичное.

      Вещества воспламеняются при разных температурных условиях. Так, металлический магний горит только при 2210 °С. Для многих твердых веществ температура пламени около 350 °С. Возгорание спичек и керосина возможно при 800 °С, тогда как древесины – от 850 °С до 950 °С.

      Сигарета горит пламенем, температура которого варьируется от 690 до 790 °С, а в пропан-бутановой смеси – от 790 °С до 1960 °С. Бензин воспламеняется при 1350 °С. Пламя горения спирта имеет температуру не более 900 °С.

      Огонь – это процесс окисления, сопровождающийся излучением в видимом диапазоне и выделением тепловой энергии. Является причиной пожаров.

      Чем отличается пламя от огня

      Газообразная среда, т.е. область пространства, в которой происходит процесс окисления и выделения тепла называется пламенем. Проще говоря, пламя – это видимая часть огня (химические вещества сгорают, окрашивая пламя в различные цвета отдельными своими частицами (атомами или ионами), которые высвобождаются под воздействием высокой температуры).

      Но бывают случаи, когда происходит горение химических веществ без пламени. Для этого рассмотрим два случая: горение свечи и сигареты. В обоих случая имеется огонь! При горении свечи наблюдается видимая часть огня (пламя свечи), а при горении сигареты – тление.

      Огонь

      Как выглядит огонь

      В целях обеспечения пожарной безопасности требования нормативных документов жестко ограничивают использование большинства видов источников открытого огня в быту.

      Но, курение, использование газовых плит, отопительных, кухонных печей на твердом органическом топливе с инициированием пламени спичками, зажигалками; огневые работы по отогреву, ремонту систем водоснабжения, отопления дают возможность возникнуть очагу возгорания в жилом доме, квартире, ведь любой из таких источников открытого огня может воспламенить горючие материалы (вещества).

      Дополнительно о том, что такое открытый огонь и что к нему относится

      Причины

      Для создания и существования огня во времени требуются 3 составляющих: горючее вещество (топливо), окислитель и источник зажигания (тепла). Многие вещества могут выступать в качестве топлива (см. Горючие вещества и материалы).

      Кислород часто играет роль окислителя, но другие элементы, например, такие как хлор или фтор, могут действовать аналогично. Любопытно, что вода горит в атмосфере фтора с бледно-фиолетовым пламенем, в то время как вода является топливом, и в результате сгорания выделяется кислород.

      Другими словами, без окислителя вещество не может загореться. Однако, если энергию передать веществу при нагревании, которая превышает энергию межмолекулярных связей, оно распадется на горючие компоненты. Например, когда древесину нагревают без доступа воздуха, ее сначала разделяет на древесный уголь и смолу, а затем на легковоспламеняющиеся газы – углеводороды.

      Третья составляющая в существовании огня – температура, которая зависит от свойств окислителей и топлива. Таким образом, в отсутствие любого из этих трех факторов – огонь невозможен.

      Способы добычи

      В первобытном обществе использовали следующие способы добычи огня:

      1. Трение. Этот способ заключался в трении твердого дерева о более мягкое. Огонь можно получить быстрее, если твердый кусок тереть в желобке мягкого.
      2. Сверление. Твердый острый кусок дерева вводился в отверстие в мягком дереве и руками приводился в движение при помощи вращения. Кроме того, в отверстие клали трут гнилого дерева, который быстро воспламенялся. Еще быстрее, если деревянный стержень приводился в движение при помощи тетивы лука.


      1. Высекание. Ударяя друг о друга два камня, получали искры, которые зажигали ранее подготовленный трут. Использовали в основном серный колчедан, разного рода кварц, кремень из-за их особой твёрдости. Также использовался для высекания искры в кремневых и колесцовых замках. Этот способ применялся вплоть до начала XX-го века по всей Европе, когда, во-первых, получили распространение спички и зажигалки, а, во-вторых, вышли из употребления искровые замки из-за явного превосходства над ними ударно-спускового механизма современного неавтоматического и автоматического оружия (они менее капризны при работе, позволяют держать в оружии много зарядов, меньше изнашиваются при стрельбе и т.п.).
      2. Электричество (молния, постоянный и переменный ток и другое). По некоторым данным, первый огонь был добыт человеком с лесных пожаров, вызванных ударом молнии, или же с выхода на поверхность источников природного газа, рядом с которым ударила молния. По тому же принципу работают современные приборы для получения огня и воспламеняются взрывчатые вещества.

      Затем появились спички, зажигалки и множество других способов добычи огня.

      Масса

      Массу огонь, как и любая другая материя имеет, но она может изменяться в процессе горения, если его продуктами являются газообразные вещества, в случае низких температур, и в случае очень высоких – благодаря ядерному распаду.

      Читайте также: