Первые три минуты после большого взрыва кратко

Обновлено: 08.07.2024


Планковская эпоха

Вскоре после Большого взрыва первым возникшим периодом была эпоха Планка. В этот конкретный период времени температура Вселенной была 10 32 К, настолько высока, что все четыре фундаментальные силы (гравитационная сила, электромагнитная сила, слабая сила и сильная сила) природы существовали вместе как одна суперсила. Эта эпоха длилась 10 -43 секунды. Поскольку в масштабе Планка современные физические теории не могут быть применены для расчета того, что произошло, о физике эпохи Планка известно очень мало.

Эпоха Великого объединения

Эпоха ТВО или "Великой объединенной теории" началась, когда Вселенной было всего 10 -43 секунды, и продолжалась до 10 -36 секунд после Большого взрыва. После эпохи Планка фундаментальная сила гравитации отделилась от трех других фундаментальных сил стандартной модели. Итак, электрослабое взаимодействие, сильное взаимодействие и электромагнитное взаимодействие были единым целым в эпоху ТВО. Более того, к концу этой эпохи температура упала до 10 29 K с 10 32 K.

Инфляционная и электромагнитная эпоха


Электрослабая эпоха стала третьей по счету после Большого Взрыва. В эту эпоху сильная сила отделилась от двух других сил, таким образом оставив позади слабую и электромагнитную силу как единую силу. Более того, космическая инфляция началась, когда Вселенной было всего 10 -33 секунды. Во время инфляции Вселенная расширялась в геометрической прогрессии и выросла от размера протона до размера, эквивалентного кулаку. Во время инфляции вселенная расширялась со скоростью, превышающей скорость света, однако точная физика этого интенсивно ускорившегося расширения до сих пор не ясна.

Космическая инфляция закончилась очень скоро, и позже Вселенная начала нормально расширяться. Сейчас Вселенной 10 -32 секунды, температура упала до 100 триллионов триллионов кельвинов и, что самое важное, также сформировались W и Z бозоны.

Кварковая эпоха

Электрослабая эпоха закончилась через 10 -12 секунд после Большого взрыва, а затем началась эпоха кварков. К тому времени Вселенная достаточно остыла, чтобы поле Хиггса имело положительное значение. Это привело к тому, что электромагнитная сила и слабая сила отделились друг от друга. Итак, теперь все четыре фундаментальные силы обрели свою индивидуальную идентичность. Все доступные частицы могут взаимодействовать с полем Хиггса и могут набирать массу. Однако температура все еще очень высока для того, чтобы кварки слились и образовали адроны, такие как протоны и нейтроны. В стандартной модели физики кварки являются одним из самых крошечных объектов.

Адронная эра

Адроны - это класс частиц, состоящих из двух или более кварков. Вскоре после того, как эпоха кварков закончилась, эра адронов началась через 1 микросекунду после Большого взрыва. К этому времени температура упала до такой степени, что кварки предыдущей эры могли объединиться в адроны. Хотя небольшая асимметрия вещества и антивещества на более ранних этапах привела к устранению антиадронов, все же большинство пар адрон/антиадрон уничтожили друг друга.

Так что к концу этого периода в основном остались только легкие стабильные адроны: протоны и нейтроны. Эпоха адронов закончилась через 1 секунду после Большого взрыва.

Лептонная эпоха

Когда Вселенная постарела на одну секунду, ее температура стала достаточно благоприятной для образования другого класса элементарных частиц - лептонов. Лептоны - это своего рода элементарные частицы в природе, и поэтому они больше не состоят из каких-либо составляющих частиц, таких как адроны. Электрон - классический пример лептона. Таким образом, к этому времени начали формироваться лептоны и антилептоны, и это производство продолжалось 10 секунд. Лептоны и антилептоны оставались в тепловом равновесии, поскольку энергия фотонов все еще была достаточно высокой для образования электрон-позитронных пар. Однако Вселенная все еще оставалась непрозрачной, поскольку эти свободные электроны могли легко рассеивать фотоны.

Начало нуклеосинтеза


К настоящему времени Вселенная содержит протоны, нейтроны, электроны и фотоны. Фотоны превосходили массивные частицы в миллиарды раз. Все четыре основные силы приобрели свою современную форму. Теперь настало время для начала самого важного процесса нуклеосинтеза.

Проще говоря, нуклеосинтез - это процесс, в котором новые атомные ядра образуются из ранее существовавших нуклонов и меньших ядер. Это процесс, посредством которого образуется большинство более тяжелых элементов в нашей Вселенной.

Так что теперь, в возрасте 2 минут, температура Вселенной упала ниже 1,2 миллиарда градусов Кельвина. При этой температуре средняя энергия фотона составляла 1,8 х 10 -14 Дж, что было эквивалентно энергии связи ядер дейтерия. Ядро дейтерия состоит из протона и нейтрона, удерживаемых вместе сильным ядерным взаимодействием. Итак, через две минуты после Большого взрыва дейтерий образовался в результате слияния протонов и нейтронов. Это произошло впервые после Большого Взрыва, когда Вселенная содержала ядра более сложные, чем один протон.

Наконец, через 3 минуты после Большого взрыва температура Вселенной упала ниже 1 миллиарда градусов Кельвина. При этой температуре средняя энергия фотонов составляла 1,5 х 10 -14 джоулей, что эквивалентно энергии связи ядер гелия. Итак, в возрасте 3 минут дейтерий, протоны и нейтроны объединились с помощью различных возможных процессов, чтобы сформировать ядра гелия.

В двух словах, в первые три минуты после Большого Взрыва протоны и нейтроны начали сливаться вместе, образуя дейтерий, а атомы дейтерия затем соединились друг с другом, образуя гелий-4. За этими тремя минутами последовал ряд различных эпох и разносторонних процессов нуклеосинтеза, которые сформировали вселенную, в которой мы живем сегодня. Но первые три минуты сформировали период, который дал нам самые фундаментальные элементы нашего существования, т.е. водород и гелий, и подготовить почву для продвинутых процессов. Это, несомненно, делает первые три минуты после большого взрыва самыми важными минутами в истории эволюции нашей Вселенной.

Стивен Вайнберг

В новое издание вошла также нобелевская лекция С. Вайнберга, в которой описывается история возникновения единой теории слабых и электромагнитных взаимодействий.

Для читателей, интересующихся проблемами космологии.

Ниже фрагментарно (и с моим, да простит меня автор, форматированием текста для его удобочитаемости) излагается содержание первой, вводной главы, этой увлекательной и познавательной книги.

Полностью книга в формате PDF доступна для скачивания из файлового архива сайта.

Современный взгляд на происхождение Вселенной
(фрагмент первой главы книги)

Примерно через одну сотую долю секунды, самое раннее время, относительно которого мы можем говорить с какой-то определенностью

Примерно через одну сотую долю секунды, самое раннее время, относительно которого мы можем говорить с какой-то определенностью, температура Вселенной была равна примерно ста тысячам миллионов (10 11 ) градусов Цельсия. Это значительно горячее, чем в центре самой горячей звезды, так горячо на самом деле, что ни одни из компонентов обычного вещества — молекулы, атомы или даже ядра атомов — не могли существовать. Вместо этого вещество, разлетавшееся в разные стороны в таком взрыве, состояло из различных типов так называемых элементарных частиц, являющихся предметом изучения современной физики высоких энергий.

Первые три минуты

Мы неоднократно будем встречаться на страницах книги с этими частицами, но в данный момент будет достаточно назвать только те из них, которые присутствовали в ранней Вселенной в наибольшем количестве, отложив более детальные разъяснения до глав III и IV.

Один тип частиц, присутствовавших в больших количествах, — это электроны, отрицательно заряженные частицы, которые переносятся электрическим током по проводам и образуют внешние части всех атомов и молекул нашей теперешней Вселенной.

Другой тип частиц, имевшихся в изобилии на ранней стадии, — это позитроны, положительно заряженные частицы с массой, в точности равной массе электрона. В теперешней Вселенной позитроны обнаруживаются только в лабораториях физики высоких энергий, в некоторых типах радиоактивного распада, а также в бурных астрономических явлениях вроде космического излучения или сверхновых, но в ранней Вселенной число позитронов почти точно равнялось числу электронов.

Вдобавок к электронам и позитронам было примерно одинаковое количество нейтрино различных типов — призрачных частиц, не имеющих вообще ни массы, ни электрического заряда.

Наконец, Вселенная была заполнена светом. Его не следует рассматривать отдельно от частиц — квантовая теория говорит нам, что свет состоит из частиц нулевой массы и нулевого электрического заряда, известных под названием фотонов. (Каждый раз, когда атом в нити накала электрической лампочки переходит из состояния большей энергии в состояние меньшей энергии, испускается один фотон. При этом из электрической лампочки вылетает так много фотонов, что они кажутся слившимися вместе в непрерывный поток света, однако фотоэлемент может сосчитать отдельные фотоны, один за другим). Каждый фотон несет определенную порцию энергии и импульса, зависящую от длины волны света. Чтобы описать тот свет, который заполнял раннюю Вселенную, мы можем сказать, что число и средняя энергия фотонов были примерно такими же, как у электронов, позитронов или нейтрино.

Эти частицы — электроны, позитроны, нейтрино, фотоны — непрерывно рождались из чистой энергии и затем весьма быстро вновь аннигилировали.

Поэтому число этих частиц не было предопределено заранее, а определялось балансом между процессами рождения и аннигиляции. Из этого баланса можно вывести, что плотность такого космического супа при температуре сотни тысяч миллионов градусов была примерно в четыре тысячи миллионов (4 x 10 9 ) раз больше, чем у воды.

Кроме того, имелась небольшая примесь более тяжелых частиц — протонов и нейтронов, которые в сегодняшнем мире являются составными частями атомных ядер. (Протоны положительно заряжены; нейтроны чуть тяжелее и электрически нейтральны.)

Пропорции составляли примерно один протон и один нейтрон на каждую тысячу миллионов электронов, или позитронов, или нейтрино, или фотонов.

Это число — тысяча миллионов фотонов на одну ядерную частицу — является критической величиной, которая должна браться из наблюдений в целях построения стандартной модели Вселенной. Открытие космического фона излучения, обсуждаемое в главе III, в действительности представляло собой измерение этого числа.

В процессе развития взрыва температура падала, достигнув через одну десятую секунды тридцати тысяч миллионов (3 x 10 10 ) градусов Цельсия, через одну секунду — десяти тысяч миллионов градусов и через четырнадцать секунд — трех тысяч миллионов градусов. Это уже было достаточно прохладно для того, чтобы электроны и позитроны начали аннигилировать быстрее, чем они могли рождаться вновь фотонами или нейтрино.

Энергия, выделявшаяся при такой аннигиляции вещества, постепенно замедляла скорость охлаждения Вселенной, но температура продолжала падать, достигнув наконец одной тысячи миллионов градусов в конце первых трех минут. Тут уже стало достаточно прохладно для того, чтобы протоны и нейтроны начали образовывать сложные ядра, начиная с ядра тяжелого водорода (дейтерия), состоящего из одного протона и одного нейтрона. Плотность была все еще достаточно велика (чуть меньше плотности воды), так что эти легкие ядра были способны быстро объединяться в более стабильные легкие ядра, такие, как ядра гелия, состоящие из двух протонов и двух нейтронов.

В конце первых трех минут Вселенная содержала главным образом свет, нейтрино и антинейтрино.

Кроме того, имелось небольшое количество ядерного материала, состоявшего к этому моменту примерно на 73 процента из ядер водорода и на 27 из ядер гелия, и столь же малое количество электронов, оставшихся от эры электрон-позитронной аннигиляции.

Эта материя продолжала расширяться, становясь постепенно холоднее и разреженнее.

через несколько сот тысяч лет, стало уже достаточно холодно для того, чтобы электроны смогли объединиться с ядрами, образовав атомы водорода и гелия.

Значительно позже, через несколько сот тысяч лет, стало уже достаточно холодно для того, чтобы электроны смогли объединиться с ядрами, образовав атомы водорода и гелия.

Образовавшийся газ начал под действием гравитации образовывать сгустки, которые в конце концов сконденсировались, образовав галактики и звезды нынешней Вселенной.

Однако звезды начали свою жизнь как раз с теми составными элементами, которые были изготовлены в первые три минуты.

Обрисованная выше стандартная модель — совсем не самая удовлетворительная из всех мыслимых теорий происхождения Вселенной.

Помимо этого, необходимо, к сожалению, фиксировать начальные условия, в особенности начальное отношение тысяча миллионов к одному для фотонов и ядерных частиц.

Мы предпочли бы теорию, логическая неизбежность которой была бы более очевидной.

Существует альтернативная теория, которая кажется значительно более привлекательной с философской точки зрения, так называемая теория стационарного состояния.

В этой теории, предложенной в конце 40-х годов Германом Бонди, Томасом Голдом и (в несколько иной формулировке) Фредом Хойлом, считается, что Вселенная всегда была почти такой же, как сейчас. В процессе ее расширения непрерывно рождается новая материя, заполняя промежутки между галактиками.

В принципе, на все вопросы о том, почему Вселенная такая, какая она есть, можно ответить в этой теории, показав, что она такая, какая она есть, потому, что это единственный способ, при котором она может оставаться неизменной. Проблемы ранней Вселенной нет, ранней Вселенной просто не было.

Как же мы тогда пришли к стандартной модели? И как же она вытеснила другие теории вроде модели стационарного состояния?

Это было данью чрезвычайной объективности современной астрофизики, благодаря которой единодушие стало возможным не из-за сдвигов в философских симпатиях и не под влиянием ученых-мандаринов от астрофизики, а под давлением эмпирических данных.

В следующих двух главах будут описаны две великие путеводные нити, предоставляемые нам астрономическими наблюдениями и приводящие к стандартной модели, — открытие разбегания далеких галактик и обнаружение слабого фона радиоизлучения, заполняющего Вселенную.

Это богатейший сюжет для историка науки, полный ошибочных начинаний, упущенных возможностей, теоретических предубеждений и действий отдельных личностей.

Вслед за этим обзором наблюдательной космологии я попытаюсь соединить разрозненные данные, чтобы дать единую картину физических условий в ранней Вселенной.

Это заставит нас вернуться к более детальному рассмотрению первых трех минут. Представляется подходящим кинематографический метод: кадр за кадром мы будем следить за тем, как Вселенная расширяется, охлаждается и приготовляется. Мы также попробуем заглянуть немного в эру, все еще окутанную тайной, — а именно, в то, что происходило до первой сотой доли секунды.

Можем ли мы действительно быть уверенными в стандартной модели? Не разрушат ли ее новые открытия и не заменят ли сегодняшнюю стандартную модель какой-то другой космогонией, может быть, даже возродив стационарную модель? Возможно.

Я не в силах избавиться от ощущения нереальности, когда пишу о первых трех минутах так, как будто мы действительно знаем, о чем говорим.

Однако даже если стандартную когда-нибудь вытеснит другая модель, она все равно будет играть чрезвычайно важную роль в истории космологии.

Сейчас стало общепринятым (хотя лишь в последнее десятилетие или около того) проверять теоретические идеи в физике или астрофизике, обсуждая их следствия в рамках стандартной модели. Также обычным стало использование стандартной модели в качестве теоретической основы для определения программ астрономических наблюдений.

Таким образом, стандартная модель обеспечивает необходимый общий язык, который позволяет теоретикам и наблюдателям понимать, что каждый из них делает. Если когда-нибудь стандартную модель заменит лучшая теория, то, вероятнее всего, это произойдет в результате наблюдений или вычислений, обоснование необходимости которых будет получено из стандартной модели.

В последней главе я немного поговорю о будущем Вселенной. Возможно, она будет продолжать расширяться всегда, становясь все более холодной, разреженной и мертвой. Но возможно, что она будет вновь сжиматься, вновь разбивая галактики, звезды, атомы и атомные ядра на их составные части. Все те проблемы, с которыми мы сталкиваемся в понимании первых трех минут, возникнут тогда снова при предсказании течения событий в три последние минуты.

Большой взрыв и первые 3 минуты развития Вселенной [20.10.10]

Актуальность темы исследования. Большой взрыв (англ. Big Bang) — космологическая теория начала расширения Вселенной, перед которым Вселенная находилась в сингулярном состоянии.

Обычно сейчас автоматически сочетают теорию Большого взрыва и модель горячей Вселенной, но эти концепции независимы и исторически существовало также представление о холодной начальной Вселенной вблизи Большого взрыва. Именно сочетание теории Большого взрыва с теорией горячей Вселенной, подкрепляемое существованием реликтового излучения, и рассматривается далее.

Целью написания реферата является изучение теории Большого взрыва и “первых трех минут” развития Вселенной.

1. ЧТО БЫЛО ДО БОЛЬШОГО ВЗРЫВА?

Эта идея, однако, сталкивается с неожиданным препятствием. Арвинд Борд и Алан Гут доказали теорему, которая утверждает, что хотя инфляция вечна в будущем, она не может быть вечной в прошлом, а это значит, что у нее должно быть какое-то начало. И каково бы оно ни было, мы можем продолжать спрашивать: а что было до того? Получается, что один из основных вопросов космологии — с чего началась Вселенная? — так и не получил удовлетворительного ответа.

Единственный предложенный до сих пор способ обойти эту проблему бесконечной регрессии состоит в том, что Вселенная могла быть спонтанно создана из ничего. Часто говорят: ничто не может появиться из ничего. Действительно, материя обладает положительной энергией, и закон ее сохранения требует, чтобы в любом начальном состоянии энергия была такой же. Однако математический факт состоит в том, что замкнутая вселенная обладает нулевой энергией. В общей теории относительности Эйнштейна пространство может быть искривленным и замыкаться на себя подобно поверхности сферы. [5]

Если в такой замкнутой вселенной двигаться все время в одну сторону, то в конце концов вернешься туда, откуда стартовал, — точно так же, как возвращаешься в исходную точку, обойдя вокруг Земли. Энергия материи положительна, но энергия гравитации — отрицательна, и можно строго доказать, что в замкнутой вселенной их вклады в точности компенсируют друг друга, так что полная энергия замкнутой вселенной равна нулю. Другая сохраняющаяся величина — электрический заряд. И тут тоже оказывается, что полный заряд замкнутой вселенной должен быть нулевым.

Если все сохраняющиеся величины в замкнутой вселенной равны нулю, то ничто не препятствует ее спонтанному появлению из ничего. В квантовой механике любой процесс, который не запрещен строгими законами сохранения, с некоторой вероятностью будет происходить. А значит, замкнутые вселенные должны появляться из ничего подобно пузырькам в бокале шампанского. Эти новорожденные вселенные могут быть разного размера и заполнены разными типами вакуума. Анализ показывает, что наиболее вероятные вселенные имеют минимальные начальные размеры и наивысшую энергию вакуума. Стоит появиться такой вселенной, как немедленно под влиянием высокой энергии вакуума она начинает расширяться. Именно так и начинается история вечной инфляции.

2. Современные представления теории Большого взрыва и теории горячей Вселенной

Приблизительно через 10−35 секунд после наступления Планковской эпохи (Планковское время — 10−43 секунд после Большого взрыва, в это время гравитационное взаимодействие отделилось от остальных фундаментальных взаимодействий) фазовый переход вызвал экспоненциальное расширение Вселенной. Данный период получил название Космической инфляции. После окончания этого периода строительный материал Вселенной представлял собой кварк-глюонную плазму. По прошествии времени температура упала до значений, при которых стал возможен следующий фазовый переход, называемый бариогенезисом. На этом этапе кварки и глюоны объединились в барионы, такие как протоны и нейтроны. При этом одновременно происходило асимметричное образование как материи, которая превалировала, так и антиматерии, которые взаимно аннигилировали, превращаясь в излучение.

Дальнейшее падение температуры привело к следующему фазовому переходу — образованию физических сил и элементарных частиц в их современной форме. После чего наступила эпоха нуклеосинтеза, при которой протоны, объединяясь с нейтронами, образовали ядра дейтерия, гелия-4 и ещё нескольких лёгких изотопов. После дальнейшего падения температуры и расширения Вселенной наступил следующий переходный момент, при котором гравитация стала доминирующей силой. Через 380 тысяч лет после Большого взрыва температура снизилась настолько, что стало возможным существование атомов водорода (до этого процессы ионизации и рекомбинации протонов с электронами находились в равновесии).

После эры рекомбинации материя стала прозрачной для излучения, которое, свободно распространяясь в пространстве, дошло до нас в виде реликтового излучения.

3. Начальное состояние и дальнейшая эволюция Вселенной

Невозможность избежать сингулярности в космологических моделях общей теории относительности была доказана в числе прочих теорем о сингулярностях Р. Пенроузом и С. Хокингом в конце 1960-х годов. Её существование является одним из стимулов построения альтернативных и квантовых теорий гравитации, которые стараются разрешить эту проблему.

Согласно теории Большого взрыва, дальнейшая эволюция зависит от экспериментально измеримого параметра — средней плотности вещества в современной Вселенной. Если плотность не превосходит некоторого (известного из теории) критического значения, Вселенная будет расширяться вечно, если же плотность больше критической, то процесс расширения когда-нибудь остановится и начнётся обратная фаза сжатия, возвращающая к исходному сингулярному состоянию. Современные экспериментальные данные относительно величины средней плотности ещё недостаточно надёжны, чтобы сделать однозначный выбор между двумя вариантами будущего Вселенной.

4. Первые три минуты

Предположительно, с начала рождения (или по крайне мере с конца инфляционной стадии) и в течение времени, пока температура остаётся не ниже 1016 ГэВ (10−10с), присутствуют все известные элементарные частицы, причем все они не имеют массы. Этот период называется периодом Великого объединения, когда электрослабое и сильное взаимодействия едины. [4]

На данный момент невозможно сказать, какие же именно частицы присутствуют в тот момент, но кое-что всё же известно. Величина η не только показатель энтропии, но и характеризует избыток частиц над античастицами:

В момент, когда температура опускается ниже 1015 ГэВ выделяются X и Y-бозоны с соответствующими массами.

Эпоху Великого объединения сменяет эпоха электрослабого объединения, когда электромагнитное и слабое взаимодействия представляют единое целое. В эту эпоху идет аннигиляция X и Y-бозонов. В момент, когда температура понижается до 100 ГэВ, эпоха электрослабого объединения заканчивается, образуются кварки, лептоны и промежуточные бозоны.

Настаёт адронная эра, эра активного рождения и аннигиляции адронов и лептонов. В эту эпоху примечателен момент кварк-адронного перехода или конфайнмент кварков, когда стало возможным слияние кварков в адроны. В этот момент температура равна 300-1000 МэВ, а время от рождения Вселенной составляет 10−6 с.

Эпохи адронной эры наследует лептонная эра в момент когда температура падает до уровня 100 МэВ, а на часах 10−4 с. В эту эпоху состав начинает походить на наш, конечно, основные жители это лептоны и фотоны, но помимо них есть только электроны и нейтрино со своими античастицами, а также протоны и нейтроны. В этот период происходит одно важное событие: вещество становится прозрачным для нейтрино. Возникает что-то наподобие реликтового фона, но для нейтрино. Но т.к. отделение нейтрино произошло раньше отделения фотонов, то и остыли они больше. К настоящему времени нейтринный газ должен был остыть до 1.9 К, если нейтрино не имеет массы. [1]

При температуре Т≈0.7 МэВ термодинамическое равновесие бывшее до этого нарушается и отношение концентрации протонов и нейтронов застывает на значении 0.19. Начинается синтез ядер дейтерия, гелия, лития. Спустя ~ 200 секунд после рождения Вселенной температура падает до значений при которых нуклеосинтез более невозможен и химический состав вещества остаётся неизменным до момента рождения первых звёзд.

ЗАКЛЮЧЕНИЕ

Несмотря на значительные успехи, теория горячей Вселенной сталкивается с рядом трудностей. Если бы Большой взрыв вызвал расширение Вселенной, то возникло бы сильное неоднородное распределение вещества, чего не наблюдается. Т.е. теория Большого Взрыва не объясняет расширение Вселенной, оно принимает его как факт.

Теория также предполагает, что соотношение числа частиц и античастиц на первоначальной стадии было таким, что дало в результате современное преобладание материи над антиматерией. Можно предположить, что вначале Вселенная была симметрична — материи и антиматерии было одинаковое количество, но тогда чтобы объяснить барионную асимметрию необходимо, чтобы протон распадался, чего также не наблюдается.

Различные теории Большого объединения предполагают рождения большого числа магнитных монополей, до сего момента также не обнаруженных.

Кроме того, из теории Большого взрыва следует сингулярность в точке самого взрыва и, как следствие, неприменимость любых законов физики в этой точке.

Некоторыми учёными (в частности, Стивеном Хокингом) для решения последней проблемы была предложена идея комплексных координат пространства-времени, где измеряемому нами времени соответствовала бы мнимая координата. При этом, все законы физики становятся симметричными относительно замены координат местами (t'2 = − t2), время перестаёт быть особой координатой, световой конус превращается в сферу нулевого радиуса, и точка Большого взрыва перестаёт быть особой. Аналогично, в географических координатах Южный и Северный полюса являются особыми точками, не являясь ими в действительности.

Существует также точка зрения о том, что законы Большого Взрыва действуют лишь в наблюдаемой нами части Вселенной (Метагалактике).

Кроме того, ТБВ не дает удовлетворительного ответа на вопрос о причинах возникновения сингулярности, или материи/энергии для её возникновения, обычно просто постулируя её безначальность.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

  1. Баранов, Геннадий Владимирович. Концепции современного естествознания. Омск: Изд-во ОмГТУ, 2010
  2. Бондарев, Валерий Петрович. Концепции современного естествознания : учебное пособие. Москва: Альфа-М: 2010
  3. Гольдфейн, Марк Давидович. Концепции современного естествознания. Москва: Изд-во РГТЭУ, 2009
  4. Настин, Игорь Владимирович. Концепции современного естествознания. Структура, методология и идеология научного мышления. Москва: Экон-Информ, 2010
  5. Сверлова, Любовь Ивановна. Концепции современного естествознания. Хабаровск: Хабаровская гос. акад. экономики и права, 2010

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы

Планковская эпоха (10 -43 с)


Планковские величины — планковская длина, планковская энергия, планковское время — это предельные размеры, где мы ещё можем построить хоть какую-то теорию. Называют их так по имени одного из основоположников квантовой физики Макса Планка.

Время Вселенной мы отсчитываем от момента 10 -43 секунды после ее появления. Это минимальное время, за которое в принципе может что-то произойти. Мы не знаем и не можем даже предположить, что было в момент времени 0.

Итак… 10 -43 секунды от начала Вселенной. Поле, наполнявшее тогда мизерную точку, выросшую потом в знакомый нам мир, в этот момент имело колоссальную плотность энергии, соответствующую температуре в 10 32 кельвинов. Диаметр же Вселенной равнялся планковской длине — 10 -35 метра. И ещё рекорд: гигантская плотность — 5×10 96 килограммов на кубический метр.

Эпоха Великого объединения (10 -43 – 10 -36 секунды)


В мире, который нас окружает, известны четыре фундаментальных взаимодействия. Гравитационное притягивает тела друг к другу. Электромагнитное притягивает или отталкивает заряженные частицы, а кванты электромагнитного поля — фотоны, то есть свет. Сильное взаимодействие соединяет кварки в протоны и нейтроны (их вместе называют нуклонами), да и сами нуклоны — в атомы. Благодаря же слабому взаимодействию кварки могут обмениваться друг с другом энергией, массой, зарядом.

В нашем мире эти взаимодействия независимы друг от друга. Но не так было в начале времён. Тогда электромагнитное, слабое и сильное взаимодействия были объединены. Это время и называют эпохой Великого объединения (по логике должна быть ещё эпоха Величайшего, когда в общий котёл добавляется и гравитация, но такой теории пока нет).

В конце эпохи Великого объединения, когда плотность энергии Вселенной снизилась, отделилось сильное взаимодействие, спровоцировав такой важный этап в развитии Вселенной, как инфляция.

Инфляция (10 -36 – 10 -32 секунды)


Вселенная на стадии инфляции — это мыльный пузырь, который не просто не хочет схлопнуться, но расширяется с огромной скоростью. Согласно инфляционной теории, самой популярной в космологии, ранняя Вселенная была заполнена скалярным полем — инфлатоном — с отрицательной плотностью энергии. Инфлатон очень похож на тёмную энергию — малоизученную штуку, которая, однако, составляет 70% массы всего в мире, — и вполне возможно, и является ею, продолжая расширять наш мир с ускорением, только не таким громадным, как в то далекое время.

На стадии инфляции громадная энергия почти мгновенно расширила Вселенную от того миниатюрного состояния, в котором мы ее оставили в прошлом пункте, до объекта размером с микроба.

Эпохи электрослабых взаимодействий, кварков, адронов, лептонов, нуклеосинтеза (10 -32 секунды — 3 минуты)


Все, конечно, помнят уравнение Эйнштейна о соответствии энергии массе вещества. Так вот, в конце инфляции плотность энергии значительно снизилась, и из нее образовалась кварк-глюонная плазма, такой себе кварковый суп. Это заняло по времени доли наносекунды, образовались бозоны — переносчики слабого взаимодействия, и знаменитый бозон Хиггса.

Кварки — фундаментальные строительные кирпичики Вселенной. Три кварка объединяются в тяжелые барионы, самые известные из которых — протон и нейтрон. Этот процесс идет где-то доли миллисекунды, начавшись на инфляционной стадии. Именно в этот момент (хотя точно мы не знаем) происходит труднообъяснимое физиками событие — нарушение барионной симметрии, когда материи вдруг стало больше, чем антиматерии. Ведь частицы и античастицы должны были рождаться в те времена с одинаковой скоростью. Но тогда они бы аннигилировали между собой без остатка, и ничего бы интересного из нашей Вселенной не получилось. Гипотез нарушения симметрии несколько, но ни одна не признана окончательной.

До сотой секунды после Большого взрыва кварк-глюонная плазма охладилась достаточно для массового образования адронов, включая протоны и нейтроны. Из-за аннигиляции вещества и антивещества осталось лишь немного первоначальных частиц. А при аннигиляции частицы и античастицы обращались в фотоны — свет.

Протоны и нейтроны объединялись в ядра атомов, до третьей минуты они образовали ядра водорода — они составили около 75% всех ядер, 25% гелия, немного дейтерия, бора.

Если вы начали читать эту статью с начала, то, скорее всего, уже провели за чтением времени больше, чем заняли все описываемые процессы.


Первые три минуты после Большого взрыва – период великого объединения. Все элементы были настолько маленькими и горячими, что не имели массы. Их природа не подвластна современной физике.

Спустя 3 минуты после Взрыва начинается планковская эпоха. Физика принимает привычный для нас вид, появляются понятия длинны, времени и массы.

Около 13 769 600 000 лет назад – появляются первые химические элементы – водород и гелий. В это же время формируются элементарные соединения.

13 200 000 000 лет назад – рождение первой звезды в галактике Млечный Путь. Имя этой звезды – HE 1523-0901.

Около 9 000 000 000 лет назад – взрыв нескольких сверхновых, энергия которых дала материал для формирования Солнца

4 570 000 000 лет назад – рождение Солнца и формирование первых протопланет Солнечной Системы.

4 540 000 000 – появление Протопланеты Земля

4 360 000 000 лет назад – Земля столкнулась с другой планетой. Осколок от столкновения притянулся к земной орбите, выровнялся и стал Луной.

ИСТОРИЯ ЗЕМЛИ ВРЕМЕН БЕСПОЗВОНОЧНЫХ

4 000 000 000 лет назад – в слоях Земли появились первый полезные ископаемые

3 800 000 000 лет назад – в воде зарождается жизнь

2 500 000 000 – 1 600 000 000 лет назад – самая активная фаза стабилизации континентов

2 300 000 000 лет назад – заполнение Земли кислородом

450 000 000 лет назад – первый следы позвоночных

440 000 000 лет назад – в результате Ордовикско-Силдурийского вымирания исчезают более 70% видов живых существ

430 000 000 лет назад – первые растения и животные выходят из воды

364 000 000 лет назад – второе великое вымирание, которое оставило в живых лишь 25% видов. А произошло оно из за переизбытка деревьев. Миллиарды деревьев сбрасывали листья в воду, перегнившая листва давала жизнь водорослям, которые, в свою очередь, поглощали кислород. Но когда водорослей стало слишком много, три четверти морских существ просто задохнулись

250 000 000 лет назад – Великое Пермское вымирание. На этот раз вымерло 95% живых существ. Среди выживших были динозавроподобные и дальние предки млекопитающих. Причиной вымирания стало извержение гигантского вулкана

250 000 000 лет назад – первые динозавроподобные ящеры

228 000 000 лет назад – появление первого динозавра. Им был Ставрикозавр

216 000 000 лет назад – появление первых млекопитающих

200 000 000 лет назад – извержения вулканов по всей планете приводят к еще одному глобальному вымиранию

155-145 млн лет назад – жизнь Стегозавра

68 000 000 лет назад – появление Тиранозавра

65 000 000 лет назад – вымирание динозавров.

1 450 000 лет назад – освоение огня первобытными людьми

Около 40 000 лет назад – появление Человека Разумного. Примерно в то же время появились и самые старые из найденных наскальных рисунков

35 000 год до н. э – освоение людьми элементарного счета

10 000 год до н. э – древние племена заселили все континенты, кроме Антарктиды

8 000 год до н. э – первое сохранившееся рукотворное колесо

4 000 год до н. э – одомашнивание лошади

3 000 год до н. э – создание первого государства в Египте

2 600 год до н. э – первая египетская пирамида

1 800 год до н. э – появление первого сборника законов. Ими стали законы царя Хаммурапи

1 400 год до н. э – хетты начали выплавлять железо

1000 год до н. э – греки и финикийцы создали первый алфавит

776 год до н. э – первые Олимпийские игры в Греции

600 год до н. э – морское путешествие вокруг Африки

563 год до н. э – рождение Будды

473 год до н. э – смерть Будды

336-323 года до н. э – поход Александра Македонского в Азию

221 год до н. э – объединение Китая

49 год до н. э – начало правления Юлия Цезаря

44 год до н. э – убийство Цезаря

НАЧАЛО НАШЕЙ ЭРЫ

12-100 год – начало христианского движения.

105 год – изобретение бумаги

410 год – разгром Рима варварами

540-541. Эпидемия чумы все цивилизованные страны Европы и дальнего востока. Общее количество жертв превышает 120 миллионов.

476 – окончательное падение Римской Империи

610. Возникновение Ислама

1096-1099. Первый крестовый поход

1207-1279. Захват Евразии монголо-татарами

1294. Распад Монгольской Империи

1337. Начало столетней войны между Англией и Францией

1348. Эпидемия чумы уносит жизни половины населения Европы

1439. Изобретение печатного станка, начало развития литературы

1443-1444. Последний крестовый поход

1453. Конец столетней войны и начало роста Османской Империи

ЭПОХА ВЕЛИКИХ ГЕОГРАФИЧЕСКИ ОТКРЫТИЙ

1492. Высадка Колумба на острове в Багамском Архипелаге

1499. Высадка Америго Веспуччи в Южной Америке

1500-1502. Эпидемия натуральной оспы в Америке унесла жизни 90% коренного населения. Это стало поводом для захвата нового света. Со временем болезнь распространилась и на Европу.

1519-1522. Первое кругосветное путешествие под командованием испанца Фернана Магеллана. Сам капитан погиб в 1521 году, так и не окончив плаванье.

1577-1580. Второе кругосветное путешествие под командованием англичанина Фрэнсиса Дрейка

1606. Открытие Австралии европейцами

1637. Изобретение микроскопа, начало исследований микромира

1756-1763. Русско-Прусская война. Победа Пруссии.

1776. США получает независимость от Великобритании

1796. Эдвард Дженнер создал вакцину от натуральной оспы, спася жизни миллионов европейцев. Эта вакцина стала первой в истории человечества.

1799-1815. Наполеоновские войны.

1820. Открытие Антарктиды

1821. Создание электродвигателя

1824. Война за освобождение Латинской Америки и ее освобождение из под власти Испании

1848. Первая волна феминизма

1861-1865. Гражданская война в США и основание первого Ку-Клус-Клана, который нашел более 550 тысяч последователей

1876. Александр Белл изобрел телефон

1904. Первый полет братьев Райт

1904-1907. Заключение союза Антанта

1914. Австро-Венгрия объявляет войну Сербии из-за убийства австрийского герцога сербским националистом. Россия выступает в поддержку Сербии. Германия, союзник Австро-Венгрии объявляет войну России. Союзники Германии и России поддерживают это решение. Начинается Первая Мировая

1915-1916. Альберт Эйнштейн публикует теорию относительности

1916. Изобретение танка

1918. Россия выходит из войны. Первая Мировая заканчивается победой Антанты.

1922. Нестабильная ситуация в России позволяет партии большевиков захватить власть и основать СССР

1923. Ослабленная войной, Османская Империя распадается

1926. Джон Лоуги Бэрд создает первый черно-белый телевизор

1927. Начало китайской гражданской войны между силами Китайской Республики и коммунистами

1928. Александр Флеминг изобретает пенициллин

1930. Египет получает независимость от Англии. Начинается деколонизация Африки

1939. Германия и Словакия объявляют войну Польше. Начинается Вторая Мировая

1940. Изобретение мобильного телефона

1945. Германия подписывает соглашение о безоговорочной капитуляции. Конфликт в Японии продолжается еще полгода, в течение которых США сбросили на Японию две атомных бомбы

1950. Гражданская война в Китае заканчивается победой коммунистов

1950-1955. Начало демографического взрыва

1951. Создание Европейского объединения угля и стали, которое сегодня известно как Евросоюз

1956. Создание первой модели самообучающегося искусственного интеллекта

1957. Запуск первого искусственного спутника Земли

1961. Запуск Гагарина на орбиту

1969. Высадка человека на Луну

1976.Создание компании Apple, которая сегодня является самым дорогим брендом в мире

1977. Изобретение интернета

1986. Авария на ЧАЭС

1989. Падение Берлинской стены

1990. Пик и конец демографического взрыва. Годовой прирост населения составил 86,5 млн человек

1991. Распад СССР

1998. Основание компании Google и запуск МКС

1999. Мокао выходит из под контроля Португалии. Деколонизация Африки завершена

2001. Запуск википедии

2004. Запуск Facebook

2008. Запуск Большого Адронного Колайдера и авария на нем

2016. Попытка военного переворота и ужесточение режима в Турции, смерть Фиделя Кастро

Читайте также: