Переменный резистор это кратко

Обновлено: 02.07.2024

Переменный резистор называется часто потенциометром. Этот радиоэлемент состоит из двух постоянных выводов и одного подвижного. Первые два располагаются на краях и соединяются своими началами и концами с подвижным контактирующим элементом. Таким образом образуется общая величина сопротивления. Средний контакт соединяется с подвижным элементом, способный перемещаться, тем самым изменяя сопротивление, на то, которое нужно в данный момент.

Такие радиодетали используются очень широко, при производстве самой различной электроники. В данной статье будет описан принцип работы этого типа резисторов и как они используются в современной электронике. В качестве дополнительной информации, статья содержит два видеоматериала и одну научно-популярную статью по данной теме.

Что такое сопротивление

Резисторы обладают сопротивление, а что такое сопротивление? Постараемся с этим разобраться.

Для ответа на этот вопрос поможет сантехническая аналогия. Под действием силы тяжести или под действием давления насоса, вода устремляется от точки большего давления в точку с меньшим давлением. Так и электрический ток под действием напряжения течет из точки большего потенциала в точку с меньшим потенциалом.

Что может помешать движению воды по трубам? Движению воды может помешать состояние труб, по которым она бежит. Трубы могут быть широкими и чистыми, а могут быть загажены и вообще представлять собой печальное зрелище. В каком случае скорость водного потока будет больше? Естественно, что вода будет течь быстрее если ее движению не будет оказываться никакого сопротивления.

Переменный резистор.

Переменный резистор

В случае с чистым трубопроводом так и будет, воде будет оказываться наименьшее сопротивление и ее скорость будет практически неизменной. В загаженной трубе сопротивление на водный поток будет значительным, и соответственно скорость движения воды будет не очень.

Резистор с переменным сопротивлением.

Хорошо, теперь переносимся из нашей водопроводной модели в реальный мир электричества. Теперь становится понятно, что скорость воды в наших реалиях представляет собой силу тока, измеряемую в амперах. Сопротивление, которое оказывали трубы на воду, в реальной токоведущей системе будет сопротивление проводов, измеряемое в омах.

Как и трубы, провода могут оказывать сопротивление на ток. Сопротивление напрямую зависит от материала, из которого сделаны провода. Поэтому совсем не случайно провода часто изготавливают из меди, так как медь имеет небольшое сопротивление.

Резистор — это пассивный элемент электрической цепи, обладающий фиксированным или переменным значением электрического сопротивления.

Другие металлы могут оказывать очень большое сопротивление электрическому току. Так для примера, удельное сопротивление (Ом*мм²) нихрома составляет 1.1Ом*мм². Величину сопротивления нетрудно оценить, сравнив с медью, у которой удельное сопротивление 0,0175Ом*мм².

Переменный резистор

При пропускании тока через материал с высоким сопротивлением, мы можем убедиться, что ток в цепи будет меньше, достаточно провести несложные замеры.

Переменное сопротивление – назначение

Переменные сопротивления главным образом применяются для регулировки громкости в различной бытовой и профессиональной радиоаппаратуре. Можно сказать, что они предназначены для плавного изменения напряжения или тока в различных электросхемах посредством изменения собственного сопротивления. Например, с их помощью можно плавно регулировать яркость свечения электрической лампочки.

Как выглядит резистор?

В природе встречаются абсолютно различные резисторы. Есть резисторы с постоянным сопротивление, есть резисторы с переменным сопротивлением. И каждый вид резисторов находит свое применение. Что бы раскрыть нашу тему, необходимо рассмотреть основные виды резисторов, ведь всё познаётся в сравнении.

Резисторы Резисторы Резисторы

Постоянный резистор

Постоянный резистор имеет два вывода и само название говорит о том, что они обладают постоянным фиксированным сопротивлением. Каждый такой резистор изготавливается с определенным сопротивлением, определенной рассеиваемой мощностью.

Переменный резистор

Рассеиваемая мощность — это еще одна характеристика резисторов, так же, как и сопротивление. Мощность рассеяний говорит о том, какую мощность может рассеять резистор в виде тепла (вы, наверное, замечали, что резистор во время работы может значительно нагреваться).

Естественно, что на заводе не могут изготавливать резисторы абсолютно любые. Поэтому постоянные резисторы имеют определенную точность, указываемую в процентах. Эта величина показывает в каких пределах будет гулять результирующее сопротивление. И естественно, чем точнее резистор, тем дороже он будет. Так зачем переплачивать?

Также сама величина сопротивления не может быть любой. Обычно сопротивление постоянных резисторов соответствует определенному номинальному ряду сопротивлений. Эти сопротивления обычно выбираются из рядов Е3, Е6, Е12,Е24.

Номинальные ряды
E3E6E12E24 E3E6E12E24 E3E6E12E24
1,01,01,01,02,22,22,22,24,74,74,74,7
1,1 2,4 5,1
1,21,2 2,72,7 5,65,6
1,3 3,0 6,2
1,51,51,5 3,33,33,3 6,86,86,8
1,6 3,6 7,5
1,81,8 3,93,9 8,28,2
2,0 4,3 9,1

Как видите резисторы из ряда Е24 имеют более богатый набор сопротивлений. Но это еще не предел так как существуют номинальные ряды E48, E96, E192.

На электрических схемах постоянные резисторы обозначаются эдаким прямоугольником с выводами. На самом условном графическом обозначении может надписываться мощность рассеяния.

Подстроечные резистор

Переменный резистор

Основная цель подстроечного резистора- изменение или подстройка сопротивления лишь на этапе сборки изделия.

Переменный резистор обладает меньшей точностью нежели постоянный. Это плата за возможность регулировки, в результате которой сопротивление может гулять в некоторых пределах.

Конечно на этапе налаживания изделия может применяться так называемый подборочный резистор. Это обычный постоянный резистор, только при монтаже он подбирается из кучки резисторов с близкими номиналами.

Переменный резистор

Подбор резисторов имеет место быть, когда требуется регулировка параметров изделия и при этом требуется высокая точность работы (чтобы требуемый параметр как можно меньше плавал). Таким образом нужно чтобы резистор был как можно большей точностью 1% или даже 0,5%.

Так для подстройки параметров схемы чаще всего применяют подстроечные резисторы. Эти резисторы специально придуманы для этих целей. Подстройка осуществляется посредством тоненькой часовой отвертки, причем после достижения требуемой величины сопротивления ползунок резистора часто фиксируют краской или клеем.

Переменные резисторы

Переменные резисторы служат для регулирования напряжения или тока в уже готовом изделии. Этим резистором может регулироваться сопротивление в схеме формирования звука. Тогда громкость звука будет меняться пропорционально углу поворота ручки резистора. Так сам корпус находится внутри устройства, а та самая крутилка остается на поверхности.

Более того, бывают еще и сдвоенные, строенные, счетверенные и так далее переменные резисторы. Обычно их применяют, когда нужно параллельное изменение сопротивления сразу в нескольких участках схемы.

Переменный резистор

Основные компоненты

Состоит из двух основных компонентов: резистивного слоя и ползунка. Резистивный слой имеет на своих концах контакты. Сопротивление между этими контактами и определяет сопротивление переменного резистора. Резистивный слой изготавливается из углерода, металлокерамики или может быть в виде проволочной катушки (резистор переменный проволочный). Проволочные переменные резисторы могут быть довольно приличной мощности.

Ползунок передвигается по этому слою, имея с ним электрический контакт. При этом ползунок тоже имеет свой вывод. В процессе движения ползунка от одного крайнего положения до другого изменяется сопротивление между ним и крайними контактами переменного сопротивления.

Переменные сопротивления обычно бывают поворотные, т.е. шток резистора надо крутить. Но бывают также и ползунковые переменные резисторы. В них резистивный слой в виде прямой линии и ползунок движется по нему прямо. Поэтому и шток такого резистора надо двигать, а не крутить.

Переменный резистор

Условное обозначение и схема

Переменный резистор с выключателем

В случае использования переменных резисторов в качестве регулятора громкости, например, в радиоприёмнике, часто используют переменные резисторы с выключателем. Т.е. регулятор громкости совмещён с выключателем напряжения питания радиоприёмника. Как это работает: в крайнем положении регулятора, когда он соответствует минимальному значению громкости, выключатель питания выключен и устройство, в данном случае радиоприёмник, тоже выключено.

Чтобы его включить, надо начать поворачивать регулятор в сторону увеличения громкости. Произойдёт небольшой щелчок – выключатель включится и дальнейший поворот регулятора приведёт к увеличению громкости звучания приёмника. В дальнейшем, чтобы выключить устройство, надо повернуть ручку громкости до минимума звука, а затем ещё чуть-чуть до характерного щелчка, означающего что выключатель сработал и устройство выключено.

Переменный резистор

Сдвоенный переменный резистор

Сдвоенный переменный резистор – ещё одно исполнение данных устройств. В общем случае, такие сдвоенные резисторы предназначены для одновременного изменения сопротивления в разных независимых частях схемы или вообще в разных устройствах.

Переменный резистор

Самое частое применение сдвоенных переменных резисторов – звуковые стереофонические усилители мощности, где необходимо регулировать громкость одновременно в двух каналах: правом и левом.

Такие резисторы имеют две резистивные дорожки, каждая со своими выводами и со своим ползунком, и один общий шток, который двигает сразу оба ползунка.

Некоторые переменные сопротивления разработаны для установки сразу на печатную плату и их контакты запаиваются непосредственно в схему. Другие предназначены для установки в корпус радиоаппаратуры, в предварительно просверленное отверстие и крепятся там при помощи гайки. В схему такие сопротивления запаиваются уже при помощи проводов. На корпусе пер. сопротивлений наносится значение его сопротивления и мощности.

Формулы

При выборе резистора, помимо его конструктивной особенности, следует обращать внимания на основные его характеристики. А основными его характеристиками, как я уже упоминал, являются сопротивление и мощность рассеяния.

Между этими двумя характеристиками есть взаимосвязь. Что это значит? Вот допустим в схеме у нас стоит резистор с определенной величиной сопротивления. Но по каким-либо причинам мы выясняем, что сопротивление резистора должно быть значительно меньше того, что есть сейчас.

И вот что получается, мы ставим резистор с значительно меньшим сопротивлением и в соответствии с законом Ома мы можем получить небольшое западло.

Так как сопротивление резистора было большим, а напряжение в цепи у нас фиксированное, то вот что получилось. При уменьшении номинала резистора общее сопротивление в цепи упало, следовательно, ток в проводах возрос.

Но что если мы поставили резистор с прежней мощностью рассеяния? При возросшем токе, новый резистор может и не выдержать нагрузки и умереть, его душа улетит вместе с клубком дыма из бездыханного тельца резистора.

Схема

Выходит, что при номинале резистора 10 Ом, в цепи будет течь ток равный 1 А. Мощность, которая будет рассеиваться на резистор. Поэтому при выборе резистора, обязательно нужно смотреть его допустимую мощность рассеяния.

Что такое сопротивление?

Резистор — это пассивный элемент электрической цепи, обладающий фиксированным или переменным значением электрического сопротивления.

Резисторы обладают сопротивление, а что такое сопротивление? Постараемся с этим разобраться.

Чтобы ответить на этот вопрос, давайте вернемся снова к нашей сантехнической аналогии. Под действием силы тяжести или под действием давления насоса, вода устремляется от точки большего давления в точку с меньшим давлением. Так и электрический ток под действием напряжения течет из точки большего потенциала в точку с меньшим потенциалом.

Что может помешать движению воды по трубам? Движению воды может помешать состояние труб, по которым она бежит. Трубы могут быть широкими и чистыми, а могут быть загажены и вообще представлять собой печальное зрелище. В каком случае скорость водного потока будет больше? Естественно, что вода будет течь быстрее если ее движению не будет оказываться никакого сопротивления.

В случае с чистым трубопроводом так и будет, воде будет оказываться наименьшее сопротивление и ее скорость будет практически неизменной. В загаженной трубе сопротивление на водный поток будет значительным, и соответственно скорость движения воды будет не очень.

Хорошо, теперь переносимся из нашей водопроводной модели в реальный мир электричества. Теперь становится понятно, что скорость воды в наших реалиях представляет собой силу тока измеряемую в амперах. Сопротивление которое оказывали трубы на воду, в реальной токоведущей системе будет сопротивление проводов измеряемое в Омах.

Как и трубы, провода могут оказывать сопротивление на ток. Сопротивление напрямую зависит от материала из которого сделаны провода. Поэтому совсем не случайно провода часто изготавливают из меди, так как медь имеет небольшое сопротивление.

Другие металлы могут оказывать очень большое сопротивление электрическому току. Так для примера, удельное сопротивление (Ом*мм²) нихрома составляет 1.1Ом*мм². Величину сопротивления нетрудно оценить сравнив с медью у которой удельное сопротивление 0,0175Ом*мм². Неплохо да?

При пропускании тока через материал с высоким сопротивлением, мы можем убедиться, что ток в цепи будет меньше, достаточно провести несложные замеры.

Как выглядит резистор?

В природе встречаются абсолютно различные резисторы. Есть резисторы с постоянным сопротивление, есть резисторы с переменным сопротивлением. И каждый вид резисторов находит свое применение. Так давайте остановимся и постараемся уделить вниманием некоторые из них.

При передаче электрического тока на расстояние из-за сопротивления проводов теряется часть энергии. В таких случаях сопротивление является негативным фактором и его стараются свести к минимуму.

Другое дело электрические цепи в электронных устройствах. Там резистор выполняет много полезных функций. В электронных схемах используется свойства этих пассивных компонентов для ограничения тока в многочисленных цепях. С их помощью обеспечивается нужный режим работы усилительных каскадов.

Что такое резистор?

Название этого электронного элемента произошло от латинского слова resisto — сопротивляюсь. То есть – это пассивный элемент применяемый в электрических цепях, действие которого основано на сопротивлении току. Основной характеристикой этого электронного компонента является величина его электрического сопротивления.

Пассивность данного электронного компонента означает то, что основной его функцией является поглощение электрической энергии. В отличие от активных элементов электроники, он ничего не генерирует, а только пассивно рассеивает электричество, преобразуя его в тепло. В схемах замещения сопротивление является основным параметром, в то время как ёмкость и индуктивность – паразитные величины.

Применение

Резисторы применяются во всех электрических схемах для установления нужных значений тока в цепях, с целью демпфирования колебаний в различных фильтрах, в качестве делителей напряжений и т. п.

Резисторы выполняют функции нагрузки в резистивных цепях, используются в качестве делителя напряжения (см. рисунок ниже) и тока, являются элементами фильтров, применяются для формирования импульсов, выполняют функции шунтов и многое другое. Сегодня трудно себе представить электрическую схему, в которой не задействованы несколько резистивных элементов.

делитель напряжения на резисторах

Рис. 1. Пример использования резисторов в схеме делителя напряжения

Без резисторов не работает ни один электронный прибор.

Устройство и принцип работы

Конструкция постоянных резисторов довольно простая. Они состоят из керамической трубки, поверх которой намотана проволока или нанесена резистивная плёнка с определённым сопротивлением. На концы трубки вставлены металлические колпачки с припаянными выводами для поверхностного монтажа. Для защиты слоя используется лакокрасочное покрытие.

Устройство таких элементов можно понять из рисунка 2 ниже.

В большинстве моделей такая конструкция традиционно сохраняется, но сегодня существуют различные виды сопротивлений с использованием резистивного материала, устройство которых немного отличается от конструкции описанной выше.

Строение резистора

Рис. 2. Строение резистора

Современную электронную аппаратуру наполняют платы, начинённые миниатюрными деталями. Поскольку тенденция к уменьшению размеров электронных приборов сохраняется, то требования к уменьшению габаритов коснулись и резисторов. Для этих целей идеально подходят непроволочные сопротивления. Они просты в изготовлении, а их номинальные мощности хорошо согласуются с параметрами маломощных цепей.

Казалось бы, что эра проволочных резисторов постепенно уходит в прошлое. Однако это не так. Спрос на проволочные сопротивления остаётся в тех сферах, где транзисторы с металлоплёночным или с композитным резистивным слоем не справляются с мощностями электрических цепей.

Для непроволочных резисторов используются следующие резистивные материалы:

  • нихром;
  • манганин;
  • константан;
  • никелин;
  • оксиды металлов;
  • металлодиэлектрики;
  • углерод и другие материалы.

Перечисленные вещества обладают высокими показателями удельного сопротивления. Это позволяет изготавливать электронные компоненты с очень маленькими корпусами, сохраняя при этом значения номинальных величин.

Размеры и формы корпусов, проволочных выводов современных резисторов соответствуют стандартам, разработанным для автоматической сборки печатных плат. С целью надёжного соединения выводов способом пайки, выводы деталей проходят процесс лужения.

Конструкция регулировочных (рис. 3) и подстроечных резисторов (рис.4) немного сложнее. Эти переменные транзисторы состоят из кольцевой резистивной пластины, по которой скользит бегунок. Перемещаясь по кругу, подвижный контакт изменяет расстояние между точками на резистивном слое, что приводит к изменению сопротивления.

Рис. 3. Регулировочные резисторы Рис. 4. Подстроечные резисторы

Принцип действия.

Работа резистора основана на действии закона Ома: I = U/R , где I – сила тока, U – напряжение, R – сопротивление на участке цепи. Из формулы видно как зависят от величины сопротивления параметры тока и напряжения.

Подбирая резисторы соответствующего номинала, можно изменять на участках цепей величины тока и напряжения. Например, увеличивая сопротивление последовательно включённого резистора на участке цепи, можно пропорционально уменьшить силу тока.

Условно резистор можно представить себе в виде узкого горлышка на участке трубки, по которой течёт некая жидкость (см. рис. 5). На выходе из горлышка давление будет ниже, чем на его входе. Примерно, то же самое происходит и с потоком заряженных частиц – чем больше сопротивление, тем слабее ток на выходе резистора.

Принцип работы

Рис. 5. Принцип работы

Мы уже упомянули два типа резисторов, отличающиеся по конструкции: постоянные, у которых сопротивление статичное (допускается мизерное отклонение параметров при нагреве элемента) и переменные. К последним можно добавить подвид переменных сопротивлений (полупроводниковых резисторов) – нелинейные.

Сопротивление нелинейных компонентов изменяется в широких пределах под воздействием различных факторов:

  • изменения температуры (терморезисторы);
  • яркости света (фоторезисторы);
  • изменений напряжения (варисторы);
  • деформации (тензорезисторы);
  • напряжённости электрического поля (магниторезисторы);
  • от протекающего заряда (мемристоры).

За видом резистивного материала классификация может быть следующей:

Отличие плёночных smd компонентов от композиционных деталей состоит в способах их изготовления. Композиционные детали производятся путём прессования композитных смесей, а плёночные – путём напыления на изоляционную подложку.

В интегральных монокристаллических микросхемах методом трафаретной печати или способом напыления в вакууме создают встроенные интегральные резисторы.

По назначению сопротивления подразделяются на детали общего назначения и на компоненты специального назначения:

  • прецизионные и сверхпрецизионные (высокоточные детали с допуском отклонений параметров от 0,001% до 1%);
  • высокоомные (от десятков МОм до нескольких Том);
  • высокочастотные, способные работать с частотами до сотен МГц;
  • высоковольтные, с рабочим напряжением, достигающим десятков кВ.

Можно классифицировать детали и по другим признакам, например по типу защиты от влаги или по способу монтажа: печатный либо навесной.

Номиналы резисторов

Элементы имеют свой допуск в отклонениях номинальных сопротивлений. В соответствии с допусками номиналы резисторов разбиты на 3 ряда, которые обозначаются: Е6, Е12, и Е24.

Компоненты ряда Е6 имеют допуск отклонения ± 20%; ряда Е12 – ± 10%, а ряда Е24 – ± 5%.

Номиналы резисторов каждого ряда представлены в справочных таблицах, которые можно найти в интернете.

Маркировка

Раньше на корпусах сопротивлений проставляли номинал, ряд, мощность и серийный номер. В связи с миниатюризацией деталей перешли на цветовую маркировку. Параметры сопротивлений кодируют с помощью цветных колец (см. рис. 8).

Цветовая маркировка

Рис. 8. Цветовая маркировка

Если на корпусе присутствует 3 кольца, то первые два обозначают величину сопротивления, третье – множитель, а допустимое отклонение составляет 20%.

Если на корпусе 4 кольца, то значения первых трёх из них такие же, как в предыдущем примере, а четвёртое кольцо указывает на величину отклонения.

Пять колец: первые 3 указывают величину сопротивления, на четвёртой позиции – множитель, а на пятой – допуск.

На сверхточных деталях наносятся 6 цветовых полос: три первых указывают величину сопротивления, полоса на четвёртой позиции – множитель, а пятое кольцо — допустимое отклонение.

Каждому цвету присвоена конкретная цифра (от 0 до 9). Учитывая позицию кольца и его цвет, можно с точностью определить параметры изделия. Для этого удобно пользоваться таблицей цветов (рис. 9).

Таблица цветов

Рис. 9. Таблица цветов

В некоторых случаях вместо сопротивления используют обычные перемычки. Считается что у них нулевое сопротивление. Вместо перемычек иногда устанавливают резистор с нулевым сопротивлением (по сути та же перемычка, только адаптирована под размеры резистора). На корпус такого сопротивления наносят 1 чёрную полоску.

Маркировка SMD-резисторов

Сопротивления, предназначенные для поверхностного монтажа маркируют цифрами (см. рис. 10). Кодировка сложна для запоминания. В ней учитывается количество цифр и их позиции. Цифрами кодируют типоразмеры изделий и значения основных параметров. Для расшифровки кодов данного типа маркировки существуют справочные таблицы или калькуляторы.

Цифровая маркировка

Рис. 10. Цифровая маркировка

Код на рисунке расшифровывается так: номинальное сопротивление 120×10 6 Ом (последняя цифра показывает количество нулей, то есть степень числа 10). Резистор из ряда Е96 с допуском 1%, типоразмер 0805 либо 1206 (значения, выделенные курсивом, определяются по справочнику).

Обозначение на схемах

Возле значка проставляют букву R и номинал резистора.

Обозначение на схемах

Рис. 12. Обозначение на схемах

В отличие от постоянных деталей, обозначение переменных резисторов имеет особенность: над прямоугольником добавляется стрелка, указывающая, что в конструкции детали есть скользящий контакт (бегунок).

Например, УГО потенциометра выгляди так:

Типы резисторов и их обозначения

Типы резисторов и их обозначения

Характеристики и параметры

Пределы границ сопротивлений для деталей общего назначения находятся в промежутке от 10 Ом до 10 МОм. Для таких компонентов номинальная мощность рассеивания составляет 0,125 – 100 Вт.

Сопротивление высокоомных деталей составляет порядка 10 13 Ом. Такие изделия применяются в измерительных устройствах, предназначенных для малых токов. Величины номинальных мощностей на корпусах таких компонентов могут не указываться. Рабочее напряжение от 100 до 300 В.

Класс высоковольтных деталей предназначен для работы под напряжением 10 – 35 кВ. Их сопротивление достигает 10 11 Ом.

Для высокочастотных резисторов важен номинал рабочей частоты. Они способны работать на частотах свыше 10 МГц. Высокочастотные токи сильно нагревают детали. При интенсивном охлаждении номинальные мощности таких компонентов достигают величин 5, 20, 50 кВт.

В точных измерительных и вычислительных устройствах, а также в релейных системах применяются прецизионные резисторы. Они обладают высокой стабильностью параметров. Мощность рассеивания у таких деталей не превышает 2 Вт, а номинальное сопротивление лежит в пределах 1 – 10 6 Ом.

Кроме основных характеристик иногда важно знать уровень напряжений шума, зависимость сопротивления реальных резисторов от нагревания (температурный коэффициент сопротивления) и некоторые другие.

Соединение резисторов

Сопротивления можно соединять двумя способами – параллельно либо последовательно.

  • Для параллельного соединения 2 резисторов имеем: R = (R1* R2) / (R1+R2).
  • При последовательном соединении 2 резисторов – общее сопротивление определяем по формуле: R = R1 + R2.

Для расчета последовательно и параллельно соединенных резисторов удобно воспользоваться нашими калькуляторами:

Резистор (лат. resisto - сопротивляюсь) - один из наиболее распространенных радиоэлементов, а переменный резистор в простом транзисторном приемнике исчисляется до нескольких десятков, а в современном телевизоре - до нескольких сотен.

Переменный резистор - это резистор, у которого электрическое сопротивление между подвижным контактом и выводами резистивного элемента можно изменять механическим способом.

Резисторы выступают как нагрузочные и токоограничительные элементы, делители напряжения, добавочные сопротивления и шунты в измерительных цепях и т. д. Основная задача резистора - оказывать сопротивление, то есть перекрывать протекание электротока. Сопротивление измеряют в омах, килоомах (1000 Ом) и мегаомах (1 000000 Ом).

Переменный резистор

Резистор переменного тока.

Переменные резисторы осуществляют изменение сопротивления в процессе функционирования аппаратуры. Сопротивление резисторов меняется при разовой или периодической регулировке, но его не меняют в процессе функционирования аппаратуры. Они бывают одноэлементными и многоэлементными, с круговым и прямолинейным перемещением подвижного контакта, многооборотными и однооборотными, с выключателем и без него, с упором и без, с фиксацией и без фиксации подвижной системы, с наличием дополнительных отводов и без них.

Переменный резистор имеет как минимум три вывода: от концов токопроводящего элемента и щеточного контакта, по которым может перемещаться ток. Чтобы уменьшить размеры и упростить конструкцию, токопроводящий элемент выполняют в виде незамкнутого кольца, при этом щеточный контакт закрепляется на валике, при этом его ось проходит через центр. Во время вращения валика контакт меняет свое положение на поверхности токопроводящего элемента, вызывая изменение результатов сопротивления между ним и крайними выводами.

Непроволочные переменные резисторы.

Непроволочные переменные резисторы обладают токопроводящим слоем, который наносят на подковообразную пластинку из гетинакса или текстолита (резисторы СП, СПЗ-4) или вдавливают в дугообразную канавку керамического основания (резисторы СПО). В проволочном резисторе сопротивление создается с помощью высокоомного провода, который намотан в один слой на кольцеобразном барабане. Чтобы обеспечить надежное соединение между обмоткой и подвижным контактом, производят зачистку провода на глубину не менее четверти его диаметра, а иногда еще и полируют.

Переменные резисторы включаются в электрическую сеть в двух случаях. В первом они используются для регулирования тока в цепи, такой регулируемый резистор еще называют реостатом, в другом случае - для регулирования напряжения, его также называют потенциометром. Чтобы обеспечить регулирование тока в цепи, данный резистор может включаться при помощи двух выводов: от щеточного контакта и одного из концов токопроводящего элемента, что не является допустимым. Если в процессе регулирования случайно нарушится соединение щеточного контакта с токопроводящим элементом, то электрическая цепь окажется разомкнутой, что может привести к повреждению прибора.

Этого можно избежать, если соединить вывод токопроводящего элемента с выводом щеточного контакта. В данном случае, если и произойдет нарушение соединения, это не разомкнет электрическую цепь.

Промышленностью выпускаются следующие непроволочные переменные резисторы:

- Б - с логарифмической;

- В - с обратно-логарифмической зависимостью сопротивления, которое возникает между правым и средним выводами от угла поворота оси.

Наиболее востребованными являются резисторы группы А, их используют в радиотехнике, на схемах обычно не указывается характеристика изменения их сопротивления. В переменных резисторах нелинейных (логарифмических), на схеме указано символ резистора, который перечеркнут знаком нелинейного регулирования, а внизу помещают соответствующую математическую формулу закона изменения.

Резисторы групп Б и В отличаются от резисторов группы А своим токопроводящим элементом: на подковку таких резисторов наносится токопроводящий слой, который обладает удельным сопротивлением, которое меняется по длине. Проволочные резисторы имеют соответствующую форму каркаса, в них длина витка высокоомного провода меняется по соответствующему закону.

Размеры малогабаритных подстроечных резисторов.

На рисунке ниже вы можете видеть малогабаритные подстроечные резисторы (триммеры) Bourns и их габаритные размеры. Обратите внимание, что некоторые типы этих резисторов оказались 100% аналогами отечественных подстроечных резисторов: 3329Н — СПЗ-19А; 3362Р — СПЗ-19А; 3329Н — СПЗ-19Б; 3296W — СП5–2ВБ-0,5 Вт. Номинал на корпусе также обозначается цифровым кодом (можно видеть в таблице ниже).

Подстроечные резисторы BOURNS бывают разного конструктивного исполнения. Они обозначаются при помощи кода, который состоит из 4 цифр, обозначающих модель, буквы — характеризуют тип, цифры, описывают особенности конструкции и 3 цифр, которые обозначают номинал. Например, 3214W-1–103. Стандартный ряд номиналов подстроечных резисторов: 10, 20, 50, 100, 200, 500, 1К, 2К, 5К, 10К, 20К, 25К, 50К, 100К, 200К, 250К, 500К, 1М.

Последняя цифра в обозначении номинала говорит о показателе степени числа 10, на которую необходимо умножить 2 первые цифры.

Читайте также: