Пептиды это в химии кратко

Обновлено: 05.07.2024

В 1900 году немецкий химик-органик Герман Эмиль Фишер выдвинул гипотезу о том, что пептиды состоят из цепочки аминокислот, образованных определёнными связями, и уже в 1902 году он получил неопровержимые доказательства существования пептидной связи, а к 1905 году разработал общий метод, при помощи которого стало возможным синтезировать пептиды в лабораторных условиях. Постепенно учёные изучали строение различных соединений, разрабатывали методы разделения полимерных молекул на мономеры, синтезировали всё больше и больше пептидов [7] .

Сайт учителя химии и биологии МБОУ СОШ №2 с.Казаки Елецкого р-на Липецкой обл. Радиной М.В.

Общая характеристика

Пептиды — это продукты конденсации двух или более моле­кул аминокислот. Две молекулы аминокислоты могут реагировать друг с другом с отщеплением молекулы воды и образованием продукта, в котором фрагменты связаны пептидной связью -CO-NH-.

Полученное соединение называют дипептидом . Молекула дипептида, подобно аминокислотам, содержит аминогруппу и карбок­сильную группу и может реагировать еще с одной молекулой аминокислоты:

Продукт реакции называется трипептидом . Процесс наращивания пептидной цепи может продолжаться, в принципе, неограниченно и приводить к веществам с очень высокой молекулярной массой (белкам).

Число пептидов, которые могут быть построены из 20 при­родных аминокислот, огромно. Теоретически можно получить 20 n пептидов, содержащих и остатков. Таким образом, может суще­ствовать 400 дипептидов, 8000 трипептидов и т.д. При n = 62 чис­ло возможных пептидов превосходит число атомов во Вселенной (10 80 ).

Формулы пептидов обычно записывают так, что свободная аминогруппа находится слева (на N-конце цепи), а свободная карбоксильная группа — справа (на С-конце). Основная часть пептидной цепи построена из повторяющихся участков -СН-CO-NH- и боковых групп R, R' и т.д.

Структуру пептидов, содержащих большое число остатков аминокислот, записывают в сокращенном виде с использованием обозначений, приведенных выше (см. "Аминокислоты", "Общая характеристика"). Например, строение молекулы вазопрессина — пептида, построенного из 9 аминокис­лотных остатков, можно изобразить следующим образом:

Структурная формула вазопрессина.

Эту же структуру можно изобразить в сокращенном виде с ис­пользованием трехбуквенных и однобуквенных обозначений аминокислот:

Сокращенное представление молекулы вазопрессина.

Обратите внимание на то, что в этом пептиде остатки цистеина связаны дисульфидным мостиком. С-конец цепи содержит амидную группу -СО- N Н2 вместо карбоксильной.

Химические свойства

Основное свойство пептидов - спо­собность к гидролизу. При гидролизе происходит полное или час­тичное расщепление пептидной цепи и образуются более корот­кие пептиды с меньшей молекулярной массой или α-аминокислоты, составляющие цепь. Анализ продуктов полного гидролиза позволяет установить аминокислотный состав пептида. Полный гидролиз происходит при длительном нагревании пепти­да с концентрированной соляной кислотой.

Последовательность аминокислот в цепи может быть устано­влена путем частичного гидролиза пептида. Для этого необходи­мо последовательно, одну за другой, отщеплять аминокислоты от одного из концов цепи и устанавливать их структуру.

Гидролиз пептидов может происходить в кислой или щелоч­ной среде, а также под действием ферментов. В кислой и щелоч­ной средах образуются соли аминокислот. Ферментативный гидролиз важен тем, что протекает селективно, т.е. позволяет расщеплять строго определенные участки пептидной цепи. Интересно, что селективный гидролиз может протекать и под действием неорганических реа­гентов. Так, бромистый циан (B r CN) расщепляет полипептидную цепь только по пептидной связи, образованной карбоксильной группой метионина

Биологическое значение . Многие пептиды проявляют биоло­гическую активность. Простейший из них — трипептид глутатион , который относится к классу гормонов - веществ, регули­рующих процессы жизнедеятельности. Этот гормон построен из остатков аланина, цистеина и глутаминовой кислоты. Известны гормоны, содержащие 9 аминокислотных остатков, — вазопрессин и окситоцин . Вазопрессин повышает кровяное давление, а окситоцин стимулирует выделение молока молочными железами.

Пептиды – продукт конденсации 2х или более аминокислот. Эти фрагменты связаны пептидной связью:

Пептиды Свойства пептидов

Это соединение называется дипептидом. При этом дипептид может реагировать еще с одной аминокислотой, образую трипептид:

Пептиды Свойства пептидов

Формулы пептидов записывают так, чтобы свободная аминогруппа находилась слева, а свободная карбоксильная группа – справа.

Структуру пептидов записывают в сокращенном виде (если в пептиде много остатков аминокислот). Например, вазопрессин:

Пептиды Свойства пептидов

Эту же структуру можно написать в сокращенном виде:

Пептиды Свойства пептидов

Химические свойства пептидов.

Основным свойством пептидов является их способность к гидролизу. При гидролизе происходит полное или частичное разрушение цепи, после чего образуются пептиды более короткого строения. Полный гидролиз происходит при длительном нагревании пептида с концентрированной соляной кислотой.

Гидролиз может быть кислотным и щелочным, а также может протекать под действием ферментов. В кислой и щелочной среде образуются соли аминокислот, а ферментативный процесс протекает селективно, т.к. можно расщепить конкретные фрагменты цепи пептида.

Биологическое значение пептидов.

Многие пептиды проявляют свою биологическую активность. Простейший пептид – глутатион, который относится к классу гормонов. Он построен из остатков глицина, цистеина и глутаминовой кислоты.


Обзор

Автор
Редакторы

Кроме этого, важную биологическую роль играют антимикробные пептиды [1], секретируемые как животными, так и растениями (встречаются, например, в семенах или в слизи лягушек), а также антибиотики пептидной природы, о которых ещё будет немного сказано далее.

Однако давайте разбираться по порядку, и, чтобы не утратить исторической перспективы, начнём с короткой экскурсии в историю изучения пептидных веществ в нашей стране.

Историческая справка: пептидная школа в СССР

В 1959 году в Академии наук СССР был создан Институт химии природных соединений, во главе которого встал академик Михаил Михайлович Шемякин (1908–1970). Сотрудники института с самого начала были ориентированы на изучение природных биорегуляторов, таких как витамины и антибиотики. Большую работу по синтезу пептидных антибиотиков вёл молодой инициативный учёный — будущий директор института и вице-президент АН СССР Юрий Анатольевич Овчинников (1934–1988).

На лабораторном коллоквиуме в Институте химии природных соединений

Пептидные антибиотики — вещь, бесспорно, интересная, однако они по большей части вырабатываются микроорганизмами и действуют на микроорганизмы же, а значит, исследования должны были двигаться дальше — в сторону изучения пептидов животных и человека. Чтобы сделать переход к рассказу о человеческих пептидах более плавным, сначала коротко расскажем о мурамилпептидах — компонентах клеточной стенки бактерий, способных стимулировать врождённый иммунитет у человека.

Во-вторых, состав пептидных пулов устойчиво воспроизводится при нормальных условиях и не обнаруживает индивидуальных отличий. Это значит, что у разных особей пептидóмы мозга, сердца, лёгких, селезёнки и других органов будет примерно совпадать, но между собой эти пулы будут достоверно различаться. У разных видов (по крайней мере, среди млекопитающих) состав аналогичных пулов также весьма схож.

И, наконец, в-третьих, при развитии паталогических процессов, а также в результате стрессов (в том числе, длительного лишения сна) или применения фармакологических препаратов состав пептидных пулов меняется, и иногда довольно сильно. Это может использоваться для диагностики различных патологических состояний, — в частности, такие данные есть для болезней Ходжкина и Альцгеймера.

Пептидные пулы — общая черта живых организмов?

Большинство пионерских работ по пептидомике проведены на тканях животных, и во всех случаях были выявлены пептидные пулы определённого и характерного состава — у человека, быка, крысы, мыши, свиньи, суслика, гидры, дрозофилы, саранчи. Но является ли феномен наличия пептидных пулов общим, например, для растений и прокариот? В случае простейших или бактерий выяснить ситуацию ещё предстоит, но вот для растений, видимо, уже можно дать положительный ответ. В частности, для модельного растения — мха Рhyscomitrella patens, геном которого недавно был расшифрован, — было показано, что на каждой стадии развития (у нитчатой формы, протонемы и на стадии зрелой стадии, гаметофоров) в растении присутствует большое число эндогенных пептидов — фрагментов клеточных белков, набор которых индивидуален для каждой формы растения. (Схема экспериментального анализа пептидов из мха показана на рисунке 2.)

Схема анализа пептидов мха

Рисунок 2. Схема анализа пептидов мха

Механизм образования пептидных пулов проще всего выяснить на культурах клеток, потому что, в отличие от целых тканей и органов, в этом случае появляется уверенность, что пептиды генерируются именно этим типом клеток, а не каким-то другим (или вообще не являются артефактом выделения из тканей). Наиболее подробно в этом смысле изучены эритроциты человека [10] — клетки тем более интересные, что они лишены ядра, а, следовательно, большинство биохимических процессов в них сильно заторможено.

Даже беглый взгляд на перечень пептидных фрагментов гемоглобина (рис. 3) приводит к выводу, что разнообразие эндогенных пептидов значительно превосходит традиционный набор пептидных гормонов, нейромодуляторов и антибиотиков. Несмотря на множество разрозненных данных об активности отдельных компонентов пептидных пулов, ключевой вопрос о биологической роли пептидных пулов в целом оставался не решённым. Представляет ли основная масса пептидов в пулах просто нейтральные промежуточные продукты разрушения белковых субстратов на пути к аминокислотам, вновь используемым для ресинтеза белков, или эти пептиды играют самостоятельную биологическую роль?

Образование пептидов в культуре эритроцитов человека

Рисунок 3. Образование пептидов в культуре эритроцитов человека. На чёрном фоне показаны аминокислотные последовательности α- и β-глобина, а на сером — последовательности пептидов, идентифицированных как фрагменты этих белков.

Для ответа на этот вопрос было изучено действие более 300 пептидов — компонентов пептидных пулов тканей млекопитающих — на набор культур опухолевых и нормальных клеток. В результате оказалось, что более 75% этих пептидов оказывают выраженное пролиферативное или антипролиферативное действие хотя бы на одну культуру (то есть, ускоряют или замедляют деление клеток) [11]. Были обнаружены и другие виды биологической активности, более или менее пересекающиеся с активностями гормонов, парагормонов и нейротрансмиттеров. В результате ряда таких работ было сделано несколько выводов:

Будущие приложения пептидомики

Таблица 2. Лекарственные препараты, созданные на основе пептидных пулов
ПрепаратИсточникПоказание
Солкосерил (Швейцария)Депротеинизированный гемодериват из телячьей кровиЗаживление ран, трансплантация, ишемия
Актовегин (Дания)Пептиды плазмы кровиЗаживление ран, трансплантация, ишемия
Вирулизин (Канада)Экстракт желчного пузыря крупного рогатого скотаИммунодефициты, онкология
Тимулин (Россия)Экстракт тимуса крупного рогатого скотаИммунодефициты
Церебролизин (Австрия), Кортексин (Россия)Экстракт головного мозга крупного рогатого скота/свиньиИнсульт, болезнь Альцгеймера
Раверон (Швейцария) Простатилен (Россия)Экстракт предстательной железы крупного рогатого скотаПростатит, аденома предстательной железы

Одно из перспективных направлений здесь — использование упоминавшейся уже антипролиферативной активности пептидов. Так, в опытах на карциноме молочной железы мышей один из фрагментов гемоглобина (так называемый VV-геморфин-5) удваивал выживаемость животных при совместном применении со стандартным цитостатиком эпирубицином по сравнению с применением одного только эпирубицина [12] (рис. 4). Этот эксперимент даёт основания полагать, что на основе природных пептидных пулов возможно создание вспомогательных и поддерживающих препаратов для онкологической терапии.

Средняя продолжительность жизни мышей с карциномой молочной железы

Рисунок 4. Средняя продолжительность жизни мышей с карциномой молочной железы при интраперитонеальном введении эпирубицина и комбинированной терапии эпирубицином с VV-геморфином-5. Выживаемость во втором случае была выше в два раза.

Однако разработка и тестирование новых лекарств — чрезвычайно долгий и затратный процесс, осложняемый конкурентной борьбой фармацевтических гигантов [13]. Более близкая перспектива использования пептидных пулов — это диагностика заболеваний и прочих патологических состояний. Выше уже не раз было сказано, что пептидный состав образца сильно зависит от состояния, в котором находился организм — донор ткани. Уже есть примеры использования пептидомного подхода для выявления маркеров тех или иных заболеваний, в том числе — онкологических.

В Институте биоорганической химии разработана методика масс-спектрометрического анализа пептидного профиля образцов крови и выявлены статистически достоверные различия, по которым можно диагностировать рак яичников, колоректальный рак или сифилис (рис. 5). Масс-спектр, отражающий состав пептидного пула образца тканей, в случае больного человека будет иметь характерные отличия, по которым исследователи — а в перспективе и врачи — смогут ставить точный диагноз.

Медицинская диагностика на основе пептидного профилирования образцов крови

Рисунок 5. Медицинская диагностика на основе пептидного профилирования образцов крови. Сочетание масс-спектрометрических и биоинформатических методов позволяет выявить различия между пептидным составом крови больных и здоровых пациентов.

Читайте также: