Откуда берется электричество кратко

Обновлено: 05.07.2024

Любая наука оперирует не реальным объектом, а его моделью.

Модель описывает объект с определенной степенью приближения.

Если модель позволяет предсказывать поведение объекта при интересующих нас воздействиях, мы говорим, что модель в достаточной мере соответствует объекту для решения наших задач.

Поэтому, прежде чем ответить на ваш вопрос, следует уточнить: с какой целью интересуетесь?

Если перед вами стоит электротехническая задача, то вам достаточно иметь в голове следующую модель:

Электрический ток - это направленный поток заряженных частиц под воздействием электромагнитного поля.

Если вы интересуетесь квантовыми процессами, то такое определение вам покажется поверхностным.

В данной короткой статье попытаюсь на пальцах объяснить основы электротехники. Для тех, кто не понимает откуда в розетке электричество, но спрашивать вроде как уже неприлично.

1. Что такое электрический ток.
"Главный инженер повернул рубильник, и электрический ток все быстрее и быстрее побежал по проводам" (с)

1.1 Пара общих слов по физике вопроса
Электрический ток - это движение заряженных частиц. Из заряженных частиц у нас имеются электроны и немножко ионы. Ионы - это атомы, которые потеряли или приобрели один или несколько электронов и поэтому потеряли электрическую нейтральность, приобрели электрический заряд. Так-то атом электрически нейтрален - заряд положительно заряженного ядра компенсируется зарядом электронной оболочки. Ионы обычно являются переносчиком заряда в электролитах, в металлических проводах носителями являются электроны. Металлы хорошо проводят ток, потому что некоторые электроны могут перескакивать от одного атому к другому. В непроводящих материалах электроны привязаны к своему атому и перемещаться не могут. (Напомню, данная статья - это объяснение физики на пальцах! Подробнее искать по "электронная теория проводимости").

Будем рассматривать ток в металлических проводниках, который создаётся электронами. Можно провести аналогию между электронами в проводнике и жидкости в водопроводной трубе. (На начальном этапе электричество так и считали особой жидкостью.) Как через стенки трубы вода не выливается, так и электроны не могут покинуть проводник, потому что положительно заряженные ядра атомов притянут их обратно. Электроны могут перемещаться только в внутри проводника.

1.2 Создание электрического тока.
Но просто так ток в проводнике не возникнет. Это все равно, что залить воду в кусок трубы и заварить с обоих концов. Вода никуда не потечет. В куске проводника электроны тоже не могут двигаться в одном направлении. Если электроны почему-то сдвинутся вправо, то слева возникнет нескомпенсированный положительный заряд, который потянет их обратно. Поэтому электроны могут только прыгать от одного атома к другому и обратно. Но если трубу свернуть в кольцо, то вода уже может течь вдоль трубы, если каким-то образом заставить ее двигаться. Точно также и концы проводника можно соединить друг с другом, и тогда электроны смогут перемещаться вдоль проводника, если их заставить. Если концы проводника соединены друг с другом, то получается замкнутая цепь. Постоянный ток может идти только в замкнутой цепи. Если цепь разомкнута, то ток не идет. Чтобы заставить воду течь по трубе используется насос. В электрической цепи роль насоса выполнят батарейка. Батарейка гонит электроны по проводнику и тем самым создает электрический ток. По научному батарейка называется генератором. Так в электротехнике называют насос для создания электрического тока.

Бывают два типа генераторов - генератор напряжения и генератор тока.
Это фундаментальная вещь на самом деле, обратите внимание! См. рисунок ниже

рис 1. Генератор напряжения величиной U

рис 1. Генератор напряжения величиной U

рис 2. Генератор тока величиной I

рис 2. Генератор тока величиной I

На верхней картинке изображен генератор напряжения, на нижней - генератор тока. Насос -генератор напряжения создает постоянное давление, насос-генератор тока создает постоянный поток. Верхняя цепь разомкнута, и нижняя - замкнута. Рассмотрим, какими свойствами обладает генератор напряжения. Представим следующую цепь

рис 3. Генератор напряжения величиной U с нагрузкой R1

рис 3. Генератор напряжения величиной U с нагрузкой R1


В терминах водопроводной аналогии, генератор -это насос, создающий постоянное давление, выключатель SW1 - это клапан, открывающий\перекрывающий трубу, сопротивление R1 - это кран\вентиль который насколько-то приоткрыт. Этот крантель можно прикрыть - сопротивление увеличится, поток воды уменьшится. Можно открыть побольше - сопротивление уменьшится, поток воды увеличится. Вроде все интуитивно понятно. Теперь представим, что мы открываем кран все больше и больше. Тогда поток воды будет увеличиваться и увеличиваться. При этом генератор напряжения по определению поддерживает напряжение (давление) постоянным, независимо от величины потока! Если кран открыть полностью и сопротивление станет равно 0, то поток станет равным бесконечности. При этом генератор все равно будет выдавать напряжение равное U! Конечно все это происходит в идеальной модели, когда мощность генератора бесконечна. Реальные генераторы (батарейки или аккумуляторы) примерно соответствуют этой модели в определенном диапазоне напряжений и токов.

Рассмотрим теперь цепь с генератором тока.

рис 4. Генератор тока величиной I с нагрузкой R2

рис 4. Генератор тока величиной I с нагрузкой R2

Что делает генератор тока? Он гонит ток! Ему сказано гнать ток величиной I, и он его гонит, невзирая на величину сопротивления (насколько открыт кран). Открыт кран полностью - ток будет равен I. Напряжение (давление) будет равно.
Закрыт кран полностью - ток все равно будет равен I! Но при этом напряжение (давление) будет равно бесконечности. Опять таки в модели.
Из этих рассуждений интуитивно понятно вытекает основной закон электротехники - Закон Ома. ( "С красной строки. Подчеркни" (с))

2. Закон Ома.

Сначала c точки зрения генератора напряжения

Если к сопротивлению R приложить напряжение U, то через сопротивление пойдет ток
I =U/R Теперь с точки зрения генератора тока

Если через сопротивление R пропускать ток I, то на сопротивлении возникнет падение напряжения U=I*R

Вот как-то надо этот момент осознать. Эти две формулировки совершенно равноправны и применение их зависит только от того, какой генератор рассматривается. Можно конечно еще записать R=U/I. Что-то вроде - если к участку цепи приложено напряжение U, и при этом в этом участке проходит ток I, то цепь имеет сопротивление R. Дальше по хорошему надо рассматривать варианты цепей с параллельным или последовательным включением резисторов, но неохота. Это чисто технические моменты. Что-то вроде

рис 5. Последовательное включение резисторов

рис 5. Последовательное включение резисторов

Через данную цепь из последовательно соединенных резисторов R1 и R2 проходит ток величиной I. Какое падение напряжения будет на каждом резисторе U1 и U2?
Используйте закон Ома и все!
Эта цепь кстати с генератором тока, поскольку входная переменная здесь ток. Ну то есть самого генератора тока может и не быть, просто ток в цепи известен и считается постоянным и равным I. Поэтому как бы этот ток гонит генератор тока.
Еще - говорят "падение напряжения на резисторе", потому что "производит" напряжение (давление) генератор, а после каждого резистора напряжение будет уменьшаться, падать на этом резисторе на величину U=I*R.

Хотя пару важных практических случаев все таки рассмотрим.

1. Самая важная схема.
Самая важная схема, с которой инженеру-электронщику предстоит иметь дело постоянно на протяжении всей жизни - это делитель напряжения.
( "С красной строки. Подчеркни" (с))

3. Делитель напряжения
Схема имеет вид.

рис 6. Делитель напряжения

рис 6. Делитель напряжения


Делитель напряжения представляет собой два резистора, соединенных последовательно друг с другом.

Кстати, резистором называется электронный компонент (деталька), которая реализует электрическое сопротивление определенной величины . Его также (детальку) часто называют сопротивлением. Получается немного тавтология - сопротивление имеет сопротивление R. Поэтому для деталей лучше использовать название резистор. Резистор сопротивлением 1 килоом, например.

Так вот. Что же делает эта схема? Два последовательных резистора имеют некоторое эквивалентное сопротивление, назовем его R12. По цепи проходит ток I, от плюса генератора к минусу через резистор R1 и через резистор R2. При этом на резисторе R1 падает напряжение U1=I*R1, а на резисторе R2 падает напряжение U2=I*R2. Согласно закону Ома. Напряжение U=U1+U2, как видно из схемы. Таким образом U=I*R1+I*R2=I*(R1+R2).
То есть эквивалентное сопротивление последовательно соединенных резисторов равно сумме их сопротивлений.
Выражение для тока I=U/(R1+R2)
Найдем теперь, чему равно напряжение U2. U2=I*R2= U* R2/(R1+R2).


Пример картинки из интернета. Если резисторы равны, то входное напряжение Uвx делится пополам.

Второй важный случай - учет выходного сопротивления источника (генератора) и входного сопротивления приемника (цепи, к которой генератор подключен)

рис 7. Выходное сопротивление источника и входное сопротивление приемника.

рис 7. Выходное сопротивление источника и входное сопротивление приемника.

Идеальный генератор напряжения имеет нулевое выходное сопротивление, то есть при нулевом сопротивлении внешней цепи величина тока будет равна бесконечности ∝. Реальный генератор напряжения обеспечить бесконечный ток не может. Поэтому при замыкании внешней цепи ток в ней будет ограничен внутренним сопротивлением генератора, на рис. обозначен буквой r.

Кстати, правильный способ проверки пальчиковых батареек, заключается в измерении тока, которые они могут отдать. То есть на тестере выставляется предел 10А, режим измерения тока, и щупы прикладываются к контактам батареи. Ток в районе 1А или больше говорит о том, что батарейка свежая. Если ток меньше 0.5А, то можно выкидывать. Или попробовать в настенных часах, может сколько-то проработает.

Если выходное сопротивление источника (внутреннее сопротивление r на рисунке) соизмеримо со входным сопротивлением приемника (R3 на рисунке), то эти резисторы будут действовать, как делитель напряжения. На приемник при этом будет поступать не полное напряжение источника U, а U1=U*R3/(r+R3). Если эта схема предназначена для измерения напряжения U, то она будет врать!

В следующих статьях планируется рассмотреть цепи с конденсаторами и индуктивностями.
Затем диоды, транзисторы и операционные усилители.

Электричество – обыденное и жизненно необходимое для большинства людей явление. И как любая привычная вещь, оно редко заметно. Мало кто задаётся вопросом откуда оно появляется, как работает, что с его помощью можно сделать. Однако, его исследованием занимались задолго до нашей эры и до сих пор некоторые загадки остаются без ответа.

История открытия электричества

Что понимают под электрическим током

Электричество – это комплекс явлений, связанный с существованием электрических зарядов. Под этим словом чаще всего подразумевается электрический ток и все процессы, которые он вызывает.

Электрический ток – это направленное движение частиц, несущих заряд, под воздействием электрического поля.

Кто придумал электричество — история

Частные проявления электричества изучались ещё задолго до нашей эры. Но соединить их в одну теорию, объясняющую вспышки молний в небе, притяжение предметов, способность вызывать пожары и онемение частей тела или даже смерть человека, оказалось непростой задачей.

История открытия электричества

Учёные издревле изучали три проявления электричества:

  • Рыбы, вырабатывающие электричество; ;
  • Магнетизм.

В Древнем Египте целители знали о странных способностях нильского сома и пытались с его помощью лечить головную боль и другие заболевания. Древнеримские врачи использовали в сходных целях электрического ската. Древние греки подробно изучали странные способности ската и знали, что оглушить человека существо могло без прямого контакта через трезубец и рыболовные сети.

Несколько раньше было обнаружено, что если потереть янтарь о кусок шерсти, то он начнёт притягивать шерстинки и небольшие предметы. Позже был открыт и другой материал со сходными свойствами – турмалин.

Примерно в 500-х годах до н.э. индийские и арабские учёные знали о веществах, способных притягивать железо и активно использовали эту способность в разных областях. Около 100-го года до н.э. китайские учёные изобрели магнитный компас.

История открытия электричества

В 1633 год инженер Отто фон Герике изобретает электростатическую машину, которая может не только притягивать, но и отталкивать предметы, а в 1745 году Питер ван Мушенбрук сооружает первый в мире накопитель электрического заряда.

В 1800 году итальянец Алессандро Вольта изобретает первый источник тока – электрическую батарею, вырабатывающую постоянный ток. Также он смог передать электрический ток на расстояние. Поэтому именно этот год многие считают годом изобретения электричества.

В 1831 году Майк Фарадей открывает явление электромагнитной индукции и открывает направление для изобретения различных устройств на основе электрического тока.

История открытия электричества

На рубеже XIX-XX веков совершается огромное количество открытий и достижений, благодаря деятельности Николы Тесла. Среди прочего, он изобрёл высокочастотный генератор и трансформатор, электродвигатель, антенну для радиосигналов.

Наука, изучающая электричество

Электричество – природное явление. Оно частично изучается в биологии, химии и физике. Наиболее полно электрические заряды рассматриваются в рамках электродинамики – одного из разделов физики.

Теории и законы электричества

Законов, которым подчиняется электричество немного, но они полностью описывают явление:

  • Закон сохранения энергии – фундаментальный закон, которому подчиняются и электрические явления;
  • Закон Ома – основной закон электрического тока;
  • Закон электромагнитной индукции – о электромагнитном и магнитном полях;
  • Закон Ампера – о взаимодействии двух проводников с токами;
  • Закон Джоуля-Ленца – о тепловом эффекте электричества;
  • Закон Кулон – об электростатике;
  • Правила правой и левой руки – определяющие направления силовых линий магнитного поля и силы Ампера, действующей на проводник в магнитном поле;
  • Правило Ленца – определяющее направление индукционного тока;
  • Законы Фарадея – об электролизе.

Первые опыты с электричеством

Первые опыты с электричеством носили, в основном, развлекательный характер. Их суть была в лёгких предметах, которые притягивались и отталкивались под действием плохо изученной силы. Другой занимательный опыт – передача электричества через цепочку людей, взявшихся за руки. Физиологическое действие электричества активно изучал Жан Нолле, заставивший пройти электрический заряд через 180 человек.

Из чего состоит электрический ток

Электрический ток – это направленное или упорядоченное движение заряженных частиц (электронов, ионов). Такие частицы называют носителями электрического заряда. Для того чтобы движение появилось, в веществе должны быть свободные заряженные частицы. Способность заряженных частиц перемещаться в веществе определяет проводимость этого вещества. По проводимости вещества различают на проводники, полупроводники, диэлектрики и изоляторы.

История открытия электричества

В металлах заряд перемещают электроны. Само вещество при этом никуда не утекает – ионы металла надёжно закреплены в узлах структуры и лишь слегка колеблются.

В жидкостях заряд переносят ионы: положительно заряженные катионы и отрицательно заряженные анионы. Частицы устремляются к электродам с противоположным зарядом, где становятся нейтральными и оседают.

В газах под действием сил с разными потенциалами образуется плазма. Заряд переносится свободными электронами и ионами обоих полюсов.

В полупроводниках, заряд перемещают электроны, перемещаясь от атома к атому и оставляя после себя разрывы, считающиеся положительно заряженными.

История открытия электричества

Откуда берется электрический ток

Электричество, поступающее по проводам в дома, вырабатывается электрическим генератором на различных электростанциях. На них генератор соединён с постоянно вращающейся турбиной.

В конструкции генератора есть ротор – катушка, которая располагается между полюсами магнита. При вращении турбиной этого ротора в магнитном поле по законам физики появляется или наводится электрический ток. Таким образом назначение генератора – преобразовывать кинетическую силу вращения в электричество.

История открытия электричества

Заставить турбину крутиться можно многими способами, используя разнообразные источники энергии. Они разделяются на три вида:

  • Возобновляемые – энергия, получаемая из неисчерпаемых ресурсов: потоков воды, солнечного света, ветра, геотермальных источников и биотоплива;
  • Невозобновляемые – энергия, получаемая из ресурсов, которые возникают очень медленно, несоизмеримо с темпами расходования: уголь, нефть, торф, природный газ;
  • Ядерные – энергия, получаемая из процесса ядерного деления клеток.

Чаще всего электроэнергия возникает благодаря работе:

  • Гидроэлектростанций (ГЭС) – строятся на реках и используют силу водного потока;
  • Тепловых электростанций (ТЭС) – работают на тепловой энергии от сжигания топлива;
  • Атомные электростанции (АЭС) – работают на тепловой энергии, получаемой от процесса ядерной реакции.

Преобразованная энергия по проводам поступает в трансформаторные подстанции и распределительные устройства и уже потом доходит до конечного потребителя.

Сейчас активно развиваются так называемые альтернативные виды энергии. К ним относят ветрогенераторы, солнечные батареи, использование геотермальных источников и любые другие способы получить электроэнергию через необычные явления. Альтернативная энергетика сильно уступает по производительности и окупаемости традиционным источникам, но в определённых ситуациях помогают сэкономить и снизить нагрузку на основные электросети.

Также есть миф о существовании БТГ — бестопливных генераторов. В интернете есть ролики демонстрирующие их работу и предлагается их продажа. Но о достоверности этой информации идут большие споры.

Виды электричества в природе

Самый простой пример электричества, возникающего естественным путём – это молнии. Частицы воды в облаках постоянно сталкиваются друг с другом, приобретая положительный или отрицательный заряд. Более лёгкие, положительно заряженные частицы оказываются в верхней части облака, а тяжёлые отрицательные перемещаются вниз. Когда два подобных облака оказываются на достаточно близком расстоянии, но на разной высоте, положительные заряды одного начинают взаимно притягиваться отрицательными частицами другого. В этот момент и возникает молния. Также это явление возникает между облаками и самой земной поверхностью.

Также электричество проявляется и в работе нервной системы живых организмов. Нервный импульс передаёт информацию от одной клетки к другой, позволяя реагировать на внешние и внутренние раздражители, мыслить и управлять своими движениями.

Кто изобрел лампочку первым?

Что такое статическое электричество и как с ним бороться?

Сила Лоренца и правило левой руки. Движение заряженных частиц в магнитном поле

Что такое ЭДС индукции и когда возникает?

Что такое электрический ток простыми словами

Определение направления вектора магнитной индукции с помощью правила буравчика и правила правой руки

Лампочка светится на желтом фоне

Электричество повсюду: в светильниках и вентиляторах, компьютерах и мобильных телефонах, в бесчисленном множестве других устройств. Современный мир без него представить невозможно, да и природу тоже, ведь оно есть и в разряде молнии, и между нервными клетками человека. Изучением этого явления занимаются несколько тысячелетий.

Что такое электричество и откуда оно берется

Электричеством называют процесс движения заряженных частиц под воздействием электромагнитного поля:

  • в одном направлении (постоянный ток);
  • с периодическими сменами направления (переменный ток).

Когда вставляем вилку в розетку, включаем электрочайник или нажимаем выключатель, между источником и приемником электричества замыкается электрическая цепь, благодаря чему электрический заряд получает путь для движения, например, по спирали чайника. Описать процесс можно так:

  • Источник электричества — розетка.
  • Электрическим током называем электрический заряд, который двигается через проводник (например, спираль чайника).
  • Проводник соединяет розетку с потребителем двумя проводами: по одному из них заряд движется к потребителю, а по второму — к розетке.
  • В случае переменного тока провода по 50 раз в секунду меняются ролями.

Источник энергии для движения зарядов (то есть, источник электричества) в городах — это электростанции. На них происходит выработка электричества с помощью мощных генераторов, ротор которых приводит во вращение ядерная установка или силовая установка (например, гидротурбина).

Линии электропередач на фоне неба

Линии электропередач: Freepick

Трансформаторы электростанций подают сверхвысокое переменное напряжение величиной 110, 220 или 500 киловольт на высоковольтные линии электропередач (ЛЭП). Достигнув понижающих подстанций, оно снижается до уровня бытовой сети — 220 вольт. Это напряжение в наших розетках, которое используем каждый день, не задумываясь о длине того пути, которое оно проходит.

Можно ли накопить электричество для бытовых целей? Да, и мы этим тоже пользуемся. В этом помогает преобразование в химическую энергию, а именно в аккумуляторы. Химические реакции между электродами (веществами и растворами, которые проводят ток) создают ток при замкнутой на потребителя внешней цепи. Чем больше площадь электродов, тем больше тока можно получить.

Используя разный материал электродов и количество соединенных в аккумуляторе ячеек, можно генерировать разное напряжение. Например, в литий-ионном аккумуляторе стандартное напряжение для одной ячейки составляет 3,7 вольта. Работает он так:

  • Ионы лития с положительными зарядами во время разряда движутся в электролите от анода (положительного электрода) из меди и графита к катоду (отрицательному электроду) из алюминия.
  • Во время заряда происходит обратное движение, и образуются соединения графита с литием, то есть накопление энергии в виде химического соединения.

Такой аккумулятор полноценно работает на протяжении около 1000 циклов заряда-разряда.

Батарейка на синем фоне

В современном мире все привыкли к тому, что электричество всегда есть в доме. Тысячи людей ежедневно трудятся для того, чтобы его источники работали бесперебойно.

История изобретения электричества

Было бы неправильно сказать, что кто-то один открыл электричество. Сама идея существовала тысячи лет, а затем началась эра научных и коммерческих исследований. Многие великие умы трудились над вопросом природы электричества.

Фалес Милетский

Около 600 года до н. э. греческий математик Фалес обнаружил, что во время трения меха о янтарь между ними возникает притяжение. Оказалось, что его вызывает дисбаланс электрических зарядов, так называемое статическое электричество.

Уильям Гилберт

Так появилось английское слово electricity. Кроме того, ученый изобрел электроскоп, который обнаруживал присутствие электрических зарядов на теле.

Шарль Франсуа Дюфе

В начале XVII века французский ученый открыл два типа электричества. Он назвал их стекловидным и смолистым (в современной терминологии — положительный и отрицательный заряды). Он обнаружил, что объекты с одинаковыми зарядами притягиваются, а с противоположными — отталкиваются.

Бенджамин Франклин

В середине XVIII века Бенджамин Франклин проводил многочисленные эксперименты, изучая природу электричества. В 1748 году ему удалось построить электрическую батарею из стеклянных листов, сжатых пластинами из свинца. Ученый открыл принцип сохранения заряда. Летом 1752 года Франклин провел знаменитый эксперимент, который доказал, что молния — это электричество.

Луиджи Гальвани

Этому итальянскому физику и биологу принадлежит первенство в открытии явления биоэлектромагнетизма. В 1780 году он проводил эксперименты на лягушках и выяснил, что электричество — та среда, с помощью которой нейроны передают сигналы мышцам.

Алессандро Вольта

Этот итальянский физик выяснил, что некоторые химические реакции — источники постоянного электрического тока. Он построил электрическую батарею из меди и цинка для производства непрерывного потока электрических зарядов.

Вольта ввел понятия электрического потенциала (V) и заряда (Q), выразил закон емкости, позже названный его именем. За эту работу единицу измерения электрического потенциала назвали в его честь.

Ханс Кристиан Эрстед и Андре-Мари Ампер

В начале XIX века датский физик Ханс Кристиан Эрстед обнаружил прямую связь между электричеством и магнетизмом. Он описал, как стрелка компаса отклоняется под воздействием электрического тока.

Вдохновленный этой работой французский физик Андре-Мари Ампер составил формулу для описания магнитных сил, которые возникают между объектами, несущими ток. В его честь назвали единицу измерения электрического тока.

Майкл Фарадей

  • заложил основу концепции электромагнитного поля; , что магнетизм влияет на световые лучи;
  • изобрел электромагнитные вращательные устройства.

В 1831 году Фарадей сконструировал электрическую динамомашину, в которой вращательная механическая энергия непрерывно превращалась в электрическую. Это позволило производить электричество.

Томас Эдисон

В 1879 году ученый изобрел практичную лампочку. Далее он занялся разработкой системы, которая обеспечивала бы людей источником энергии для питания таких ламп. В 1882-м в Лондоне построена первая электростанция, которая вырабатывала электричество и поставляла его в дома людей.

Через несколько месяцев появилась первая электростанция в Нью-Йорке, которая поставляла электричество для освещения нижней части острова Манхэттен (85 потребителей смогли зажечь 5000 ламп). Это был постоянный ток.

Никола Тесла

Никола Тесла за работой

Никола Тесла за работой: Flickr

Тесла известен разработкой нового типа двигателя переменного тока и технологии передачи электроэнергии. Он запатентовал систему с переменным током, чтобы обеспечивать людей электроэнергией высочайшего качества. Энергетические системы Теслы распространилась в США и Европе, так как обеспечивали дальнюю высоковольтную передачу.

Генрих Рудольф Герц и Альберт Эйнштейн

Генрих Герц занимался экспериментами по изучению электромагнитных волн. В 1887 году он описал фотоэлектрический эффект, когда электроны испускаются (отрываются от атома) при попадании на материал электромагнитного излучения (например, света).

В 1905 году Альберт Эйнштейн опубликовал закон фотоэлектрических эффектов и выдвинул гипотезу о квантах световой энергии. Так началось развитие квантовой механики и создание солнечных батарей.

Так как электричество необходимо человечеству, исследования в этой сфере продолжаются и сейчас. Без электрического тока мы не представляем быт, а ученые находятся в поисках его новых источников.

Узнавайте обо всем первыми

Подпишитесь и узнавайте о свежих новостях Казахстана, фото, видео и других эксклюзивах.

Содержание

История



В 1820 году датский физик Эрстед на опыте обнаружил электромагнитное взаимодействие. Замыкая и размыкая цепь с током, он увидел колебания стрелки компаса, расположенной вблизи проводника. Французский физик Ампер в 1821 году установил, что связь электричества и магнетизма наблюдается только в случае электрического тока и отсутствует в случае статического электричества. Работы Джоуля, Ленца, Ома расширяют понимание электричества. Гаусс формулирует основную теорему теории электростатического поля (1830).

В 1880 году Пьер Кюри открывает пьезоэлектричество. В том же году Д. А. Лачинов показал условия передачи электроэнергии на большие расстояния. Герц экспериментально регистрирует электромагнитные волны (1888 год).

В 1897 году Джозеф Томсон открывает материальный носитель электричества — электрон, место которого в структуре атома указал впоследствии Эрнест Резерфорд.

В XX веке была создана теория Квантовой электродинамики. В 1967 году был сделан очередной шаг на пути изучения электричества. С. Вайнберг, А. Салам и Ш. Глэшоу создали объединенную теорию электрослабых взаимодействий.

Теория

Электрический заряд — это свойство тел (количественно характеризуемое физической величиной того же названия), проявляющееся прежде всего в способности создавать вокруг себя электрическое поле и посредством него оказывать воздействие на другие заряженные (то есть обладающие электрическим зарядом) тела [7] . Электрические заряды разделяют на положительные и отрицательные (выбор, какой именно заряд назвать положительным, а какой отрицательным, считается в науке чисто условным, однако этот выбор уже исторически сделан и теперь — хоть и условно — за каждым из зарядов закреплен вполне определенный знак). Тела, заряженные зарядом одного знака, отталкиваются, а противоположно заряженные — притягиваются. При движении заряженных тел (как макроскопических тел, так и микроскопических заряженных частиц, переносящих электрический ток в проводниках) возникает магнитное поле и имеют, таким образом, место явления, позволяющие установить родство электричества и магнетизма (электромагнетизм) (Эрстед, Фарадей, Максвелл). В структуре материи электрический заряд как свойство тел восходит к заряженным элементарным частицам, например, электрон имеет отрицательный заряд, а протон и позитрон — положительный.

Наиболее общая фундаментальная наука, имеющая предметом электрические заряды, их взаимодействие и поля, ими порождаемые и действующие на них (то есть практически полностью покрывающая тему электричества, за исключением таких деталей, как электрические свойства конкретных веществ, как то электропроводность итп) — это электродинамика. Квантовые свойства электромагнитных полей, заряженных частиц итп изучаются наиболее глубоко квантовой электродинамикой, хотя часть из них может быть объяснена более простыми квантовыми теориями.

Электричество в природе



Ярким проявлением электричества в природе служат молнии, электрическая природа которых была установлена в XVIII веке. Молнии издавна вызывали лесные пожары. По одной из версий именно молнии привели к первоначальному синтезу аминокислот и появлению жизни на земле (Эксперимент Миллера — Юри и Теория Опарина — Холдейна).

Для процессов в нервной системе человека и животных решающее значение имеет зависимость пропускной способности клеточной мембраны для ионов натрия от потенциала внутриклеточной среды. После повышения напряжения на клеточной мембране натриевый канал открывается на время порядка 0,1 — 1,0 мс., что приводит к скачкообразному росту напряжения, затем разность потенциалов на мембране снова возвращается к своему первоначальному значению. Описанный процесс кратко называется нервным импульсом. В нервной системе животных и человека информацию от одной клетки к другой передают нервные импульсы возбуждения длительностью около 1 мс. Нервное волокно представляет собой цилиндр, наполненный электролитом. Сигнал возбуждения передается без уменьшения амплитуды вследствие эффекта кратковременного увеличения проницаемости мембраны для ионов натрия.

Многие рыбы используют электричество для защиты и поиска добычи под водой. Разряды напряжения южноамериканского электрического угря могут достигать величины напряжения в 500 Вольт. Мощность разрядов электрического ската может достигать 0,5 кВт. Акулы, миноги, некоторые сомообразные используют электричество для поиска добычи. Электрический орган рыб работает с частотой несколько сотен герц и создает напряжение в несколько вольт. Электрическое поле улавливается электрорецепторами. Находящиеся в воде предметы искажают электрическое поле. По этим искажениям рыбы легко ориентируются в мутной воде [8] .

Образ электричества в культуре

В мифологии существуют боги, способные метать разряды молнии: у греков Зевс, Волгенче из марийского пантеона, Агни — бог индусов, одна из форм которого — молния, Перун — бог-громовержец в древнерусском пантеоне, Тор — бог грома и бури в германо-скандинавской мифологии.

Практическое использование



Начиная с XIX века электричество плотно входит в жизнь современной цивилизации. Электричество используют для освещения [9] (электрическая лампа) и передачи информации (телеграф, телефон, радио, телевидение), а также для приведения механизмов в движение (электродвигатель), что активно используется на транспорте [10] (трамвай, метро, троллейбус, электричка) и в бытовой технике (утюг, кухонный комбайн, стиральная машина, посудомоечная машина).

В целях получения электричества созданы оснащенные электрогенераторами электростанции, а для его хранения — аккумуляторы и электрические батареи.

Сегодня также электричество используют для получения материалов (электролиз), для их обработки (сварка, сверление, резка), умерщвления преступников (электрический стул) и создания музыки (электрогитара).

Хронология основных открытий и изобретений

Примечания

Литература

  • Калашников С. Г. Электричество. — М., Наука, 1985. — 576 с.
  • Максвелл Дж. К. Трактат об электричестве и магнетизме / пер. с англ. — М.: Наука, 1989.
  • Матвеев А. Н. Электричество и магнетизм. — М., Высшая школа, 1983. — 463 с.
  • Поль Р. В. Учение об электричестве / пер. с нем. — М.: ГИФМЛ, 1962.
  • Тамм И. Е. Основы теории электричества. — М.: Наука, 1989. — 504 с.
  • Томилин А. Н. Рассказы об электричестве. — М., ДЛ, 1984.
  • Фарадей М. Экспериментальные исследования по электричеству / пер. с англ. — М.: Издательство АН СССР, 1947
  • Франклин В. Опыты и наблюдения над электричеством / пер. с англ. — М.: Издательство АН СССР, 1956
  • Эйхенвальд А. А. Электричество. — М., Государственное технико-теоретическое издательство, 1933

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Электричество" в других словарях:

ЭЛЕКТРИЧЕСТВО — (от греч. elektron янтарь, так как янтарь притягивает легкие тела). Особенное свойство некоторых тел, проявляющееся только при известных условиях, напр. при трении, теплоте, или химических реакциях, и обнаруживающееся притягиванием более легких… … Словарь иностранных слов русского языка

ЭЛЕКТРИЧЕСТВО — ЭЛЕКТРИЧЕСТВО, электричества, мн. нет, ср. (греч. elektron). 1. Субстанция, лежащая в основе строения материи (физ.). || Своеобразные явления, сопровождающие движение и перемещение частиц этой субстанции, форма энергии (электрический ток и т.п.) … Толковый словарь Ушакова

ЭЛЕКТРИЧЕСТВО — совокупность явлений, обусловленных существованием, движением и взаимодействием заряженных тел или частиц носителей электрических зарядов. Связь электричества и магнетизма взаимодействие неподвижных электрических зарядов осуществляется… … Большой Энциклопедический словарь

ЭЛЕКТРИЧЕСТВО — (от греч. elektron янтарь) совокупность явлений, в которых обнаруживается существование, движение и взаимодействие (посредством электромагнитного поля) заряженных частиц. Учение об электричестве один из основных разделов физики. Часто под… … Большой Энциклопедический словарь

ЭЛЕКТРИЧЕСТВО — ЭЛЕКТРИЧЕСТВО, форма энергии, существующая в виде статических или подвижных ЭЛЕКТРИЧЕСКИХ ЗАРЯДОВ. Заряды могут быть положительными или отрицательными. Одинаковые заряды отталкиваются, противоположные притягиваются. Силы взаимодействия между… … Научно-технический энциклопедический словарь

электричество — лепиздричество, электроток, лепестричество, лепистричество, ток, электроэнергия, освещение Словарь русских синонимов. электричество сущ., кол во синонимов: 13 • актиноэлектричество … Словарь синонимов

ЭЛЕКТРИЧЕСТВО — в самом общем смысле представляет одну из форм движения материи. Обычно же под этим словом понимают или электрический заряд как таковой или самое учение об электрических зарядах, их движении и взаимодействии. Слово Э. происходит от греч. электрон … Большая медицинская энциклопедия

электричество — (1) [IEV number 151 11 01] EN electricity (1) set of phenomena associated with electric charges and electric currents NOTE 1 – Examples of usage of this concept: static electricity, biological effects of electricity. NOTE 2 – In… … Справочник технического переводчика

ЭЛЕКТРИЧЕСТВО — ЭЛЕКТРИЧЕСТВО, а, ср. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

Электричество — – 1. Проявление одной из форм энергии, присущая электрическим зарядам как движущимися, так и находящимися в статическом состоянии. 2. Область науки и техники, связанная с электрическими явлениями. [СТ МЭК 50(151) 78] Рубрика термина:… … Энциклопедия терминов, определений и пояснений строительных материалов

ЭЛЕКТРИЧЕСТВО — совокупность явлений, в которых обнаруживаются существование, движение и взаимодействие (посредством электромагнитного поля) электрических зарядов (см. (4)). Учение об электричестве один из основных разделов физики … Большая политехническая энциклопедия

Читайте также: