Открытие генетического кода кратко

Обновлено: 05.07.2024

Введение

В качестве объекта анализа выбран генетический код (ГК). С любопытным примером использования ГК в области информационной защиты (по-видимому непрофессиональной и потому не успешной) можно познакомиться здесь.

В этой работе займемся подробно анализом очень важного Генетического кода, который создан не разумом человека, а самой природой (редкий случай).

История одного открытия и Нобелевская премия

Зададимся вопросом, как природой на уровне генетики и метаболизма организмов (клеток) реализованы такие положения информационного обмена в жизнедеятельности видов и их отдельных представителей?

Научному миру еще до Второй мировой войны было известно, что у живых организмов передача от поколения к поколению наследственных признаков осуществляется через относительно простые химические единицы (гены), включающие огромное количество информации, необходимой для продолжения и воспроизводства жизни.

Все гены (не являются белками) связываются в цепочки (хромосомы) и материализуются в дезоксирибонуклеиновой кислоте (ДНК). У специалистов не было ясности в том, как все происходит и как устроена сама ДНК.

Эта спираль ДНК – носитель генетического кода – кода наследственности признаков организмов животных и растений. Это была совершенно необычная новая работа о строении и свойствах молекулы дезоксирибонуклеиновой кислоты.

Модель ДНК молодых авторов получила подтверждение при сопоставлении ее с рентгеновской дифракционной картиной кристаллической структуры ДНК английского биофизика Мориса Уилкинса. Позднее был открыт генетический код, содержащий и передающий информацию о синтезе структуры и состава белков – основных составляющих каждой клетки живых организмов, реализующей клеточный цикл.

Определение. Клеточный цикл — правильное чередование периодов относительного покоя с периодами деления клетки.

Они располагали информацией о следующих фактах:

Действительно, после 1960 года было показано, что кодоны, считавшиеся Криком бессмысленными, в пробирке реализовывали белковый синтез, а к 1965 году был установлен смысл всех 64 кодонов-триплетов. Выяснилось также, что ряд аминокислот кодируется двумя, тремя, четырьмя и даже шестью разными триплетами, т. е. имеет место определенная избыточность, назначение которой еще предстоит определить.

Генетический код жизни. Наследственная информация

Определение. Генетический код – множество слов, задающих способ кодирования цепочками нуклеотидов (букв алфавита А, G, C, T), последовательности аминокислот синтеза белков, свойственных всем живым организмам. Цепочки триплетов (кодовых слов) образуют хромосомы – носители наследственной информации. Каждому виду живых организмов соответствует свой хромосомный набор. Этот способ кодирования универсален и реализуется в каждой клетке растительного и животного организма при ее делении.

Классическое представление информации (линейность ее записи) – это тексты в широком понимании (речь, письма, книги, изображения, фильмы, музыка и т. п.) этого слова в некотором естественном языке (ЕЯ). Язык включает обширный словарь (лексику), а если ЕЯ кроме устной речи имеет письменность, то и алфавит с грамматикой.

Процессы и пути переноса информации, записанной на естественных её носителях-молекулах, сформулированы Ф. Криком (1958 г.) в форме центральной догмы молекулярной биологии. Три основных процесса обеспечивают управление всеми остальными процессами функционирования клетки и жизни организмов в целом.

Эти процессы: репликация, транскрипция и трансляция. Далее о них будет сказано более подробно. Информация в организмах передается только в одном направлении от нуклеиновых кислот (ДНК → РНК →белок) к белку, обратной передачи не существует. Возможны особые случаи ДНК → белок, РНК→ РНК, РНК → ДНК.

Определение. Рамкой считывания (открытой) называется последовательность неперекрывающихся кодонов, способная синтезировать белок, начинающаяся со старт-кодона и завершающаяся стоп-кодоном. Рамка определяется самым первым триплетом, с которого начинается трансляция.

Для начала трансляции старт-кодона недостаточно, необходим ещё инициационный кодон (их три: AUG, GUG, UUG). После его считывания трансляция идет путем последовательного считывания кодонов рибосомальной рРНК и присоединения аминокислот друг к другу рибосомой до достижения стоп-кодона.

Эти факты обобщаются в таблице способов передачи генетической информации.


Таблица 1 – Центральная догма молекулярной биологии

История изучения текстов наследственности организмов, их осмысления, длительная, богатая открытиями, достижениями, заблуждениями и разочарованиями. Перечень событий истории постижения (познания) текстов природы представляет несомненный интерес, как для науки, так и для каждого отдельного человека.

Биологами установлено, что каждое слово текста наследственности образовано полимерной молекулой ДНК (дезоксирибонуклеиновой кислоты, открытой в 1868 г. врачом И. Ф. Мишером), построенной из 4-х оснований (нуклеотидов – от nuclear — ядерный).

Основания скрепляются (соединяются) между собой в пары, А ←→ Т, Т←→ А, G ←→ C, С ←→ G особыми водородными связями, реализующими принцип дополнительности (комплементарности). Эти факты устанавливались в разное время, разными учеными и методами многих наук (физики, химии, биологии, цитологии, генетики и др.). Сложности на пути познания этого ЕЯ встречались постоянно.

Молекулы ДНК не кристаллизовались, но когда это удалось сделать, то задача установления структуры ДНК свелась к решению обратной задачи рентгеноструктурного анализа (преобразованием Фурье дифракционной картины кристалла, созданной на экране рентгеновскими лучами).

Эта модель практически подтвердила многообразные гипотезы теоретиков и убедительно доказала отсутствие расхождений с практическими экспериментами и результатами рентгеноструктурного анализа кристаллической ДНК.


С позиций математики четырем буквам алфавита можно приписать четыре элемента конечного расширенного поля Галуа GF(2 2 ) = (0, 1, α, β), операции с которыми выполняются по модулю неприводимого многочлена р(х) = х 2 + х + 1. Тогда α + β = 1, α∙β = 1 и сопоставление элементов поля буквам принимает вид

, а дополнительный (комплементарный) нуклеотид вычисляется по правилу ¬х → х + 1, откуда Т → А + 1, С → G + 1.

Т А G G T T C G Т …
A T C C A A G C A …

Две цепи повторяют последовательность букв, но начало одной расположено напротив конца другой. Информация в молекулах ДНК записывается с большой степенью избыточности, что, конечно, обеспечивает высокий уровень надежности при считывании информации и ее копировании (репликации: ДНК → ДНК). К исходному слову приписывается еще одно, но в дополнительном коде.

Определение. Ген (греч.γενοζ – род). Структурная и функциональная единица наследственности живых организмов. Гены (точнее аллели) определяют наследственные признаки организмов, передающиеся от родителей потомству при размножении.

В словах ДНК можно выделить и рассматривать отдельные части-подслова (гены), которые несут целостную информацию о строении одной молекулы белка или одной молекулы РНК. Кроме того, гены характеризуются регуляторными последовательностями (промоторами).

Каждый ген предназначен и отвечает за создание определенного белка, необходимого для жизнедеятельности организма. Понятием генотип обозначается наследственная конституция гамет (половых клеток) и зигот (соматических клеток) в отличие от фенотипа, описывающего благоприобретенные признаки, которые по наследству не передаются.

Блоковые коды

При формировании кодовых слов используется однозначное отображение конечного упорядоченного множества символов, принадлежащих некоторому конечному алфавиту, на иное, не обязательно упорядоченное, как правило, более обширное множество символов для кодирования передачи, хранения или преобразования информации

Перечислим свойства рассматриваемого генетического кода (ГК):

  • Универсальность. Общность кода для всего живого мира. Универсальность подтверждена экспериментами по синтезу белков in Vitro (в пробирке). В бесклеточную систему одного организма (животного) помещали мРНК другого (растительного) и при этом реализовывался белковый синтез.
  • Полярность. Однонаправленность считывания генов ДНК, РНК.
  • Триплетность. Значащей единицей ГК является триплет или кодон. Три нуклеотида (буквы алфавита) – кодон, триплет, кодовое слово.

Г. Гамовым было высказано предположение о триплетности кода. Поскольку речь идет о 4-х нуклеотидах, образующих алфавит, и о 20 аминокислотах, используемых при синтезе белков, каждая из них должна в качестве прообраза иметь одно (или более) синтезирующее ее слово.

Свойство связано с избыточностью. Состав каждого слова из 64 возможных был установлен лишь в 1965 году на основе многочисленных опытов. Выяснилось, что избыточность числа слов при синтезе некоторых белков используется природой для надежности правильности считывания информации. В итоге получилось, что каждая аминокислота кодируется разным числом триплетов (кодонов). Свойство кода назвали вырожденностью.


Таблица 2 — Количественные соотношения триплетов и аминокислот

Формирование кода предполагает выбор алфавита, определение регулярности, а при выборе регулярного кода, определение длины кодового слова, определение количества кодовых слов, определение побуквенного состава каждого слова.


Таблица 3 — Генетический код состоит из 64 кодовых слов из 3-х букв каждое


Таблица 4 — Обратные значения кодовой последовательности триплетов РНК

Дополнительные свойства кода, например, код не должен иметь запятой, определяются более жесткими требованиями к названным параметрам кода. Код без запятой должен иметь слова с максимальным периодом. Такие требования ориентированы на удобство последующего синтеза кодека. С этими положениями синтеза кода тесно связаны вопросы кодирования информации и ее декодирования.

Анализ кода

Собственно, сама система кодирования также доступна для наблюдения и изучения, но уровень сложности ее построения и функционирования не позволяет получить полное качественное и достоверное описание.

Определение. Процесс установления позиции, содержащей стартовый (начальный) символ кодового слова, называется синхронизацией.
Задача синхронизации просто решается, если в алфавите используется специальный символ-разделитель слов, например, запятая. Рамка считывания очередного кодового слова устанавливается непосредственно за разделителем.

Такой разделитель удобен, но нежелателен по нескольким причинам.

Для лучшей различимости слов кода они в полном списке возможных слов должны быть удалены одно от другого на некоторое расстояние, т.е. различаться составом значений символов, как векторы векторного пространства компонентами.

Следовательно, кодовыми словами могут быть не все и не любые слова множества Х n , а только лишь некоторое их подмножество D є Х n . Выбор символьного состава слов кода и представляет основную задачу его формирования, так как именно состав слов кода должен обеспечивать удовлетворение сформулированным требованиям к коду. Таким образом, будем далее рассматривать код без запятой.

Синхронизация кода без запятой. Покажем здесь, как может быть обеспечена однозначность синхронизации кода без запятой. Выберем два триплета кодовых слова вида х = (х1, х2, …, хn) и у = (у1, у2, …, уn). Образуем их конкатенацию х||у = (х1, х2, …, хn, у1, у2, …, уn). Эта конкатенация из двух слов позволяет породить еще n – 1 слово множества Х n путем многократных циклических сдвигов на одну позицию влево и выделения первых n символов сдвинутой последовательности. Введем важное понятие перекрытия пары слов.

Определение. При циклических сдвигах символов на шаг получаются слова вида (х2, …, хn, у1), (х3, …, хn, у1, у2)…( хn, у1,…, уn-2, уn-1), которые называются перекрытиями пары слов х и у.

Покажем, как это осуществляется. Пусть в принятой последовательности символов выбран и зафиксирован некоторый символ. Отсчитав n символов от фиксированного, декодер сопоставляет слово, которое получилось, со словами кодового списка. Если имеет место совпадение с одним из слов кодового списка, то синхронизация установлена. Фиксированный символ и его позиция стартовые.

Если совпадения нет ни с одним из слов списка кода, т. е. попали на слово-перекрытие, то это означает, что стартовая позиция расположена левее фиксированной позиции.
Сдвигаемся влево на одну позицию от фиксированной и повторяем действия предыдущего шага до тех пор, пока не получим на некотором шаге совпадения с одним из кодовых слов. Этот процесс обязательно имеет успешное завершение в правильной стартовой позиции, т. е. синхронизация в среднем устанавливается за число n/2 шагов.

Определение. Блоковым кодом без разделителя (запятой) называется подмножество D є Х n слов длины n в алфавите Х таких, что для любых двух кодовых слов х, у єD все перекрытия для них не являются кодовыми словами.

Мы уже установили, что такой код обеспечивает правильную синхронизацию в длинных цепочках кодовых слов без разделителей между ними. Какие же слова из множества Х n включаются в подмножество D є Х n ? Если мощность множества Х n делится на целые числа, то мощность D может быть одним из таких делителей (теорема Лагранжа о группах) и код при этом называется групповым блоковым кодом без запятой.

Состав символов в словах кода пока остается не установленным, так же, как и количество слов в D. Очевидно, что выбор конкретного подмножества D из Х n имеет много вариантов (сочетаний из Х n по D), из которых только немногие или возможно единственный удовлетворяет всем требованиям к коду без запятой. Нами рассмотрено одно из важных требований о перекрытиях, и это свойство слов кода может быть использовано в качестве фильтра для отсеивания непригодных вариантов при выборе D.


Перейдем к решению вопроса о числе слов в формируемом коде.

Мощность кода без запятой. Будем отыскивать наибольшее из возможных число слов в коде D, которое обозначим символом |D| = Wn(q). Точное значение получить не удается, но оценку сверху для количества слов получить возможно, используя понятие периода слова. Обозначим символом Т k х циклический сдвиг слова длиной n на k шагов, k k х = х и d ≤ n, d | n. Слова максимального периода d = n называются полноцикловыми (основными). Код без запятой включает в свой состав только полноцикловые слова.


Действительно, пусть кодовое слово х = (х1, х2, х3, х1, х2, х3 ) имеет период d

Каждый живой организм обладает особым набором белков. Определенные соединения нуклеотидов и их последовательность в молекуле ДНК образуют генетический код. Он передает информацию о строении белка. В генетике была принята определенная концепция. Согласно ей, одному гену соответствовал один фермент (полипептид). Следует сказать, что исследования о нуклеиновых кислотах и белках проводились в течение достаточно продолжительного периода. Далее в статье подробнее рассмотрим генетический код и его свойства. Будет также приведена краткая хронология исследований.

генетический код

Терминология

Генетический код – это способ зашифровки последовательности белков аминокислот с участием нуклеотидной последовательности. Этот метод формирования сведений характерен для всех живых организмов. Белки – природные органические вещества с высокой молекулярностью. Эти соединения также присутствуют в живых организмах. Они состоят из 20 видов аминокислот, которые называются каноническими. Аминокислоты выстроены в цепочку и соединены в строго установленной последовательности. Она определяет структуру белка и его биологические свойства. Встречается также несколько цепочек аминокислот в белке.

генетический код и его свойства

ДНК и РНК

Дезоксирибонуклеиновая кислота – это макромолекула. Она отвечает за передачу, хранение и реализацию наследственной информации. ДНК использует четыре азотистых основания. К ним относятся аденин, гуанин, цитозин, тимин. РНК состоит из тех же нуклеотидов, кроме того из них, в составе которого находится тимин. Вместо него присутствует нуклеотид, содержащий урацил (U). Молекулы РНК и ДНК представляют собой нуклеотидные цепочки. Благодаря такой структуре образовываются последовательности – "генетический алфавит".

Реализация информации

Синтез белка, который кодируется геном, реализовывается при помощи объединения мРНК на матрице ДНК (транскрипции). Также происходит передача генетического кода в последовательность аминокислот. То есть имеет место синтез полипептидной цепи на мРНК. Для зашифровки всех аминокислот и сигнала окончания белковой последовательности достаточно 3-х нуклеотидов. Эта цепь называется триплетом.

генетический код это

История исследования

Изучение белка и нуклеиновых кислот проводилось длительное время. В середине 20 века, наконец, появились первые идеи о том, какую природу имеет генетический код. В 1953 году выяснили, что некоторые белки состоят из последовательностей аминокислот. Правда, тогда еще не могли определить их точное количество, и по этому поводу велись многочисленные споры. В 1953 году авторами Уотсоном и Криком было опубликовано две работы. Первая заявляла о вторичной структуре ДНК, вторая говорила о ее допустимом копировании при помощи матричного синтеза. Кроме того, был сделан акцент на то, что конкретная последовательность оснований – это код, несущий наследственную информацию. Американский и советский физик Георгий Гамов допустил гипотезу кодирования и нашел метод ее проверки. В 1954 году была опубликована его работа, в ходе которой он выдвинул предложение установить соответствия между боковыми аминокислотными цепями и "дырами", имеющими ромбообразную форму, и использовать это как механизм кодирования. Потом его назвали ромбическим. Разъясняя свою работу, Гамов допустил, что генетический код может являться триплетным. Труд физика стал одним из первых среди тех, которые считались близкими к истине.

генетический код

Классификация

По истечении нескольких лет предлагались различные модели генетических кодов, представляющие собой два вида: перекрывающиеся и неперекрывающиеся. В основе первой было вхождение одного нуклеотида в состав нескольких кодонов. К ней принадлежит треугольный, последовательный и мажорно-минорный генетический код. Вторая модель предполагает два вида. К неперекрывающимся относятся комбинационный и "код без запятых". В основе первого варианта лежит кодировка аминокислоты триплетами нуклеотидов, и главным является его состав. Согласно "коду без запятых", определенные триплеты соответствуют аминокислотам, а остальные нет. В этом случае считалось, что при расположении любых значащих триплетов последовательно другие, находящиеся в иной рамке считывания, получатся ненужными. Ученые полагали, что существует возможность подбора нуклеотидной последовательности, которая будет удовлетворять этим требованиям, и что триплетов ровно 20.

генетический код и его свойства

Хотя Гамов с соавторами ставили под сомнение такую модель, она считалась наиболее правильной на протяжении следующих пяти лет. В начале второй половины 20-го века появились новые данные, которые позволили обнаружить некоторые недочеты в "коде без запятых". Было выявлено, что кодоны способны провоцировать синтез белка в пробирке. Ближе к 1965 году осмыслили принцип всех 64 триплетов. В результате обнаружили избыточность некоторых кодонов. Другими словами, последовательность аминокислот кодируется несколькими триплетами.

Отличительные особенности

К свойствам генетического кода относятся:

  1. Триплетность. Последовательность трех нуклеотидов является значащей единицей кода.
  2. Непрерывность. Триплеты не имеют знаков препинания, наблюдается непрерывное считывание информации.
  3. Неперекрываемость. Нуклеотид входит в состав только одного триплета. У некоторых генов вирусов, бактерий и митохондрий кодируется несколько белков, и происходит считывание со сдвигом рамки.
  4. Однозначность. Конкретный кодон соответствует не больше чем одной аминокислоте. Правда, UGA у Euplotescrassus может кодировать цистеин и силеноцистеин.
  5. Вырожденность. Конкретной аминокислоте соответствует несколько кодонов.
  6. Универсальность. Генетический код действует по одному принципу в организмах различной сложности. В этом заключается суть генной инженерии. Однако существуют некоторые исключения.
  7. Помехоустойчивость. Мутационные замены нуклеотидов бывают консервативными и радикальными. Первые не приводят к смене класса кодируемой аминокислоты. Радикальные мутации изменяют класс кодируемой аминокислоты.

генетический код это

Вариации

Впервые отклонение генетического кода от стандартного было обнаружено в 1979 году во время изучения генов митохондрий в организме человека. Далее выявили еще подобные варианты, в том числе множество альтернативных митохондриальных кодов. К ним относятся расшифровка стоп-кодона УГА, используемого в качестве определения триптофана у микоплазм. ГУГ и УУГ у архей и бактерий нередко применяются в роли стартовых вариантов. Иногда гены кодируют белок со старт-кодона, отличающийся от стандартно используемого этим видом. Кроме того, в некоторых белках селеноцистеин и пирролизин, которые являются нестандартными аминокислотами, вставляются рибосомой. Она прочитывает стоп-кодон. Это зависит от последовательностей, находящихся в мРНК. В настоящее время селеноцистеин считается 21-ой, пирролизан – 22-ой аминокислотой, присутствующей в составе белков.

Общие черты генетического кода

Однако все исключения являются редкостью. У живых организмов в основном генетический код имеет ряд общих признаков. К ним относятся состав кодона, в который входят три нуклеотида (два первых принадлежат к определяющим), передача кодонов тРНК и рибосомами в аминокислотную последовательность.

Три пары оснований молекулы ДНК кодируют одну аминокислоту в белке.

Строгое соответствие между последовательностью пар оснований в молекуле ДНК и последовательностью аминокислот, составляющих белковые ферменты, называется генетическим кодом. Генетический код был расшифрован вскоре после открытия двуспиральной структуры ДНК. Было известно, что недавно открытая молекула информационной, или матричной РНК (иРНК, или мРНК), несет информацию, записанную на ДНК. Биохимики Маршалл Уоррен Ниренберг (Marshall W. Nirenberg) и Дж. Генрих Маттеи (J. Heinrich Matthaei) из Национального института здравоохранения в городке Бетезда под Вашингтоном, округ Колумбия, поставили первые эксперименты, которые привели к разгадке генетического кода.

Сегодня известно, что три пары оснований молекулы ДНК (такой триплет получил название кодон) кодируют одну аминокислоту в белке. Выполняя эксперименты, аналогичные описанному выше, генетики в конце концов расшифровали весь генетический код, в котором каждому из 64 возможных кодонов соответствует определенная аминокислота.

armazda 21.10.2008 01:30 Ответить

Подскажите кто нибудь, что могло послужить созданию матрицы такой, как человеческого ДНК, ведь код её настолько сложен, что теорию возникновения путем сложных эволюционных как физических так и биологических процессов просто неможет никак вписаться в мое сознание.
Кто знает поймет меня к чему я клоню, всем так же известно, что программа кода настолько сложна, что от крысы нас различает всего один элемент в коде. Как природа могла и может до сих пор угадывать тот самый один элемент из всей матрицы?

evolucionism2021 armazda 17.04.2021 12:21 Ответить

Природа 04.01.2009 00:01 Ответить

Хочу обратить внимание, что определение элементарной единицы наследственности в энциклопедии "Элементов" лет на 60 уже не соответствует уровню РЕАЛЬНЫХ знаний о механизмах наслдственности. Сожалею, что до сих пор н только редакция этого полезного в целом интернет-ресурса, но и коллеги по науке игнорируют хотя бы то, что я писал в своей книге "За семью замками наследственности", опубликованной в весьма уважаемом издат. "Агропромиздат" ещё в 1992 году. Основной вывод - имеет место равноценность двух факторов наследственности - ДНК и ДекОрга (декодирующей организации - термин, кстати, не мой, а проф. М.Камшилова). А понять суть явлений наследования можно исключительно в том случае, если учитывается история развития системы ДНК - ДекОрг, свойственной тем или иным видам организмов. Современная же общепринятая наука о наследственности (генетика)- это абсолютно не историческая дисциплина, это по-сути монополия однобокого взгляда на суть явления наследственного осуществления. И здесь генетика мало в чем отличается от агробиологии Лысенко, тоже абсолютизировавшей один реальный, но частный феномен наследственности - стадийность развития с наличием критических периодов в детерминации формообразовательных процессов.
Будущее - за двухфакторной концепцией наследственности и я надеюсь, что Нобелевской премии за это открытие (да не позавидуют коллеги. ) будет со временем удостоен именно автор этих строк. Хотелось бы получить ее при жизни, правда.

rod1gin Природа 11.01.2009 19:36 Ответить

За что Нобелевскую то?
Вот передо мной лежит книжка М.М. Камшилов, Эволюция биосферы, "Наука", 1979. И в ней про этот самый декорг всё подробно написано.
Насколько я понимаю, никто его наличие и не пытался отрицать.

slipshod Природа 19.11.2011 21:22 Ответить

Итак для начала, рассмотрим ДекОрг, как с его точки зрения трактуются размеры геномов, кол-ва хромосом, и тп., если подразумевается наличие "базовой ДНК", одинаковой у миллионов организмов?

А также что скрывается за формулировками "это биохимия и даже - биофизика жидкой плазмы и иных компонентов, окружающих базовую молекулу ДНК. Вслед за М.М.Камшиловым я называю этот компонент "декодирующей организацией" (декоргом). "
Каких-каких компонентов?

Вопросов много, не хотелось бы сразу загромождать эфир ;)

СОЛЮС 23.02.2009 08:35 Ответить

Процесс всей (очередной!) жизнедеятельности записан в программе ДНК действительно , но не в тех ДНК клетов , что уже открыли .

Настоящую ДНК - единственную настоящую и полновесную - с ПОЛНОЙ программой - ЕЩЕ НЕ ОТКРЫЛИ , открыв всего лищь ДНК-клише - полуДНК для СМЕРТИ такой-то клетки такой-то особи (все именное) .

Запомните - ДНК-клише уже только ДЛЯ СМЕРТИ - программа "жизнь - только "начало" - новое биения земной клеточки" конкретного вида - полностью истрачена СРАЗУ на ЗАПУСК . Запуск есть не всегда и тогда - рождается калека .После ЗАПУСКА - ВСЕ ! - только СМЕРТЬ растет для клетки-недолгожительницы !

Сколько клеток в нашем теле ? Вот столько и ДНК - они различны и всегда для определенного чего-то . Они очень сдаты и выпускают нити - развиваясь - выбрасывая их . Поняли ? НЕТ никаких выдуманных соединений нитей .

А теперь вспомните все "достижения" науки о человеке или выйдите на сайты . На что они делают ставки в своих терапевтических клонированиях и иначе ? С ума сойти на что . Клетка кожи . клетка волоса , клетка слюны и т д. Какой срок жизни таких клеток ? Будет ли долговечным то , что вырастят , из стволовых клеток взломанного клоника (вобще негодного)?

Прочтите мнения ученых , работающих по "установленной методике познания мира" - отступать от Утвержденной методики нельзя ! Правда абсурд познавать мироздание по особой методике - разработанной и УТВЕРЖДЕННОЙ незнающими ?

Не так давно читала сетование директора Института мозга человека С. Медведева :"Наука консервативна . Методики утверждены . Да попроси я средства на исследование выхода души человека после смерти , в ФФИ радостно закричат - ЭТО ЛЖЕНАУКА !" . СПЕЦЫ ?

Исследовать наше СОВЕРШЕНСТВО - главнейшее наше , методикой познания мира наукой и учеными в целом - НЕ ПРЕДУСМОТРЕНО . Не дали никому ПРОВЕРИТЬ !

Печально . Плох методист познания мира ! Еще хуже эксперты .

Природа СОЛЮС 08.06.2009 22:22 Ответить

Ну и каша у Вас понаписана, дорогой друг. А "жизнь - она много проще", как сказал в своё время профессор Тихомиров, прочитав реферат одного студента.
Вот вкратце суть правильного понимания места и роли ДНК в живой плоти. Пра-клетка содержала молекулу ДНК, (прамолекулу) и пра-Декорг (комплекс веществ в плазме, способных регулировать работу пра-ДНК).
Далее поршла биологическая эволюция. Чего? Не строения этой самой пра-ДНК! Это строение осталось прежним. А строения прежде всего ДЕКОРГА - то есть менялся набор и относительная концентрация элементов цито, а затем и кариоплазмы. А уже эти элементы (так называемые локальные информационные детерминанты)управляли работой молекулы пра-ДНК: активировали то те, то другие участки ее первичной структуры, побуждали копирать разные участки, а то и всю молекулу в целом. Разумеется, здесь имело место взаимодействие по принципу обратной связи.
Но первичным были всё же изменения именно в структуре декорга - то есть он мутировал, а не ДНК. Я для такого рода "мутаций" Декорга предложил термин "эпитации". Поэтому биологическая эволюция есть итог именно процесса эпитаций декорга, а не мутаций молекул ДНК, поскольку т.н. мутации ДНК - это есть следствие изменения структуры декорга.
Подробнее см. на сайте "Архив природы России" в рубрике, посвященной Дням Дарвина в СПб.

qjm 16.03.2009 23:59 Ответить

Да уж. Давно и везде метод *тыка* ("кувалды", "наковальни"). Когда-нибудь кто-то сообразит и опишет КАК должно быть, и только затем будет ставить подтверждающие опыты. Где-то кто-то когда-то утверждал, что люди - создания *мыслящие* (а не молотобойцы).


Обзор

Таблица генетического кода

Автор
Редакторы


Нуклеотиды и аминокислоты

И тут возникает заковыристый лингвобиологический вопрос. Является ли генетический код таким же произвольным, случайно образовавшимся языком, как языки, на которых говорят люди? Можно ли представить, что кодоны в генетическом коде кодируют другие аминокислоты, а аминокислоты кодируются другими кодонами? Может ли кодон UUU кодировать не фенилаланин (как он это сейчас делает), а глицин? А кодон AGG — тирозин? А кодон CUC — пролин? Иными словами, случайно ли подбирались кодоны, обозначающие аминокислоты, — или в этом был какой-то смысл?

Once upon a time.

Разрозненные молекулы, в том числе, РНК и аминокислоты, плававшие в первичном бульоне, могли общаться только одним способом — с помощью физико-химических взаимодействий. Растворимость в воде, электрический заряд, пространственные характеристики, некоторые другие свойства — все это заставляет одни молекулы слипаться друг с другом в растворе, а другие — отплывать друг от друга как можно дальше.

Доказательства

Polar requirement и пиримидиновость

Шероховатые места

Эту красивую гипотезу омрачает одно обстоятельство. Нить мРНК куда длиннее белковой нити, которую она кодирует. Непонятно, как же куцей аминокислотной цепочке удавалось правильно встать напротив длинной цепочки нуклеотидов. Возможны несколько объяснений.

Во-вторых, цепочка — это сильно сказано. Видимо, во время становления генетического кода речь шла о стабильном присоединении к нужному месту всего одной-двух аминокислот. Удлинение же белковых цепочек шло параллельно с возникновением аппарата белкового синтеза, в том числе рибосомы [10], и проблема несоответствия длин цепочек РНК и белка потеряла свою актуальность.

Дела давно минувших дней

Первичные аминокислоты имеют особенно высокое сродство к гуанину и почти не имеют сродства к аденину

Эхо древнего мира

Может быть, и звучит. Вот всего несколько ситуаций, в которых могут иметь значение прямые физико-химические взаимодействия между белком и РНК.

Во-первых, саморегуляция синтеза белка. Возможно, что связывание едва синтезированной белковой цепочки с породившей ее мРНК предотвращает дальнейшее связывание этой мРНК с рибосомой — а соответственно, и дальнейший синтез такой же белковой цепочки на основе этой мРНК. Получается отрицательная обратная связь. Синтез белка регулируется автоматически — само наличие продукта выключает производство этого продукта. (Но, разумеется, этот гипотетический механизм отнюдь не отменяет большого количества хорошо доказанных механизмов регулировки белкового синтеза.)

Во-вторых, вирусы. В ком (или в чём?) еще белок так тесно соседствует с нуклеиновой кислотой, от которой берет начало? Возможно, белки налипают на нужные участки РНК в РНК-содержащих вирусах как минимум частично за счет вышеописанных физико-химических взаимодействий.

Итак, каков же ответ на поставленный в начале статьи вопрос? Случайно или неслучайно подбирались кодоны в генетическом коде?

Мысли в тему

Во всей этой истории есть несколько философских моментов, на которые хочется обратить внимание.

Во-первых, связь между лингвистикой и биологией. При изучении языка можно сделать выводы о происхождении слова, его древности, встречаемости в разные эпохи, изменении значения со временем, не прибегая ни к каким источникам информации, кроме самого языка. Сам язык несет в себе то, что нужно для его изучения. Та же история и с генетическим кодом. И возможно, в исследованиях генетического кода могут пригодиться методы, ныне используемые в лингвистике.

И тогда, во-вторых, всплывает еще один философский вопрос: является ли генетический код цифровым или аналоговым?

С одной-то стороны, он, конечно, цифровой — ведь главную информацию несут именно сочетания нуклеотидов, кодоны. Исключительно от последовательности кодонов зависит, какой белок получится на основе РНК. Прочесть эту информацию в клетке просто так невозможно: для этого нужно протянуть всю нить РНК через рибосому и сделать на ее основе белок. Точно так же, как нельзя узнать о том, что происходит в книге, не прочитав ее страницу за страницей.

Но, помимо цифровой, код несет и аналоговую информацию. И чтобы получить эту информацию, клетке никакая рибосома не нужна — информация определяется сама, на основе физико-химических взаимодействий, в которые вступает молекула РНК. Продолжая аналогию — хотя нельзя узнать, что произойдет в книге, не прочтя ее, но сам вид, размер, обложка книги тоже несут какую-то информацию и могут дать подсказки о ее содержимом.

И может быть, описанные в этой задаче закономерности — это только вершина айсберга. Тогда нам предстоит еще многое узнать об аналоговой информации, которую несет генетический код.

Читайте также: