Осмос и осмотическое давление химия кратко

Обновлено: 08.07.2024

Самопроизвольный переход растворителя через полупроницаемую мембрану, разделяющую раствор и растворитель или два раствора с различной концентрацией растворенного вещества, называется осмосом. Осмос обусловлен диффузией молекул растворителя через полупроницаемую перегородку, которая пропускает только молекулы растворителя. Молекулы растворителя диффундируют из растворителя в раствор или из менее концентрированного раствора в более концентрированный, поэтому концентрированный раствор разбавляется, при этом увеличивается и высота его столба.

Количественно осмос характеризуется осмотическим давлением, равным силе, приходящейся на единицу площади поверхности и заставляющей молекулы растворителя проникать через полупроницаемую перегородку.

где π – осмотическое давление;

С – молярная концентрация раствора;

R – универсальная газовая постоянная;

T – абсолютная температура.

Осмотическое давление измеряется либо в килопаскалях (кПа), тогда R=8,31Дж/(моль∙К); либо в атмосферах, тогда R = 0,082 .

Для растворов электролитов осмотическое давление (π), ∆tкип, ∆tзам превышают значения, рассчитанные по законам Рауля и Вант-Гоффа. Причиной отклонения растворов электролитов от идеальных растворов является распад молекул электролита на ионы. Процесс распада молекул электролита на ионы называется диссоциацией.

Для применения законов идеальных растворов к растворам электролитов Вант-Гофф ввёл в соответствующее уравнение поправочный коэффициент i, называемый изотоническим, который показывает, во сколько раз возрастает число частиц в растворе в результате диссоциации:

i = .

Для растворов электролитов формулы, выведенные ранее, принимают вид:

Для растворов электролитов значение изотонического коэффициента i>1; для неэлектролитов i=1.

Количественно электролитическую диссоциацию как равновесный процесс можно охарактеризовать константой диссоциации, определяемой законом действующих масс. Закон действующих масс применим к обратимым реакциям, т.е. к растворам слабых электролитов. Например, для диссоциации уксусной кислоты СН3СООН:

Константа диссоциации КД = .

Константа диссоциации зависит от природы растворителя, электролита и температуры, но не зависит от концентрации раствора. Константа диссоциации и степень диссоциации являются количественными характеристиками диссоциации, они связаны между собой соотношением:

где С – молярная концентрация электролита. Это соотношение называют законом разведения Оствальда. Если электролит очень слабый, α 2 С или α = .

В водных растворах сильные электролиты практически полностью диссоциированы (α ~ 100%). Это подтверждено физическими и физико-химическими методами исследования. В отличие от растворов слабых электролитов их растворы содержат значительно большее число ионов. Это приводит к сильному межионному взаимодействию. Как следствие, возникает эффект уменьшения числа ионов, участвующих в химических процессах. Именно поэтому определяемая степень диссоциации сильных электролитов является кажущейся степенью диссоциации, так как она не соответствует реальной степени распада электролита на ионы. Степень диссоциации для сильных электролитов рассчитывается по формуле

где α – степень диссоциации растворенного вещества;

i − изотонический коэффициент;

n − число ионов, на которые распадается электролит.

Например, для сульфата алюминия:

Водородный показатель (рН)

В чистой воде или любом водном растворе при постоянной температуре произведение концентраций (активностей) водород- и гидроксид-ионов − величина постоянная, называемая ионным произведением воды.

К(H2O) = [H + ][OH − ] = 10 −14 моль 2 /л 2 при 298 К.

Растворы, в которых концентрации водород- и гидроксид-ионов равны, называют нейтральными.

Концентрации гидроксид- и водород-ионов взаимозависимы: зная концентрацию одного из этих ионов, можно рассчитать концентрацию другого иона. В качестве характеристики реакции среды часто используют концентрацию ионов водорода. На практике использование концентраций ионов не очень удобно, поэтому для характеристики среды используют отрицательный десятичный логарифм концентрации (активности) ионов водорода, называемый водородным показателем рН среды: pH = –lg[H + ].

Например, если [H + ] = 10 −3 моль/л (кислая среда), то рН = 3; а когда [H + ] = 10 −9 моль/л (щелочная среда), то рН=9. В нейтральной среде [H + ] = 10 −7 моль/л и рН=7.

Из этих примеров следует:

- в нейтральной среде [H + ] = [OH − ] = 10 −7 моль/л, рН=7;

- в кислой среде [H + ] > 10 −7 моль/л, рН + ] −7 моль/л, рН>7.

Если взять отрицательный десятичный логарифм выражения ионного произведения воды, получаем:

Осмос – явление селективной диффузии определенного сорта частиц через полупроницаемую перегородку. Это явление впервые описал аббат Нолле в 1748 г. Перегородки, проницаемые только для воды или другого растворителя и непроницаемые для растворенных веществ, как низкомолекулярных, так и высокомолекулярных, могут быть изготовлены из полимерных пленок (коллодия) или гелеобразных осадков, например, ферроцианида меди Cu2[Fe(CN)6]; этот осадок образуется в порах перегородки стеклянного фильтра при погружении пористого материала сначала в раствор медного купороса (CuSO4 x 5H2O), а затем желтой кровяной соли K2[Fе(CN)6] . Вещества диффундируют через такую перегородку, что является важным случаем осмоса, позволяющим измерять осмотическое дав-ление, т. е. осмотическое давление – мера стремления растворенного вещества перейти вследствие теплового движения в процессе диффузии из раствора в чистый растворитель; распределяется равномерно по всему объему растворителя, понизив первоначальную концентрацию раствора.

За счет осмотического давления сила заставляет жидкость подниматься вверх, это осмотическое давление уравновешивается гидростатическим давлением. Когда скорости диффундирующих веществ станут равны, тогда осмос прекратится.

Закономерности:

1. При постоянной температуре осмотическое давление раствора прямо пропорционально концентрации растворенного вещества.

2. Осмотическое давление пропорционально абсолютной температуре.

В 1886 г. Я. Г. Вант-Гофф показал, что величина осмотического давления может быть выражена через состояние газа

Закон Авогадро применим к разбавленным растворам: в равных объемах различных газов при одинаковой температуре и одинаковом осмотическом давлении содержится одинаковое число растворенных частиц. Растворы различных веществ, имеющие одинаковые молярные концентрации при одинаковой температуре, имеют одинаковое осмотическое давление. Такие растворы называются изотоническими.

Осмотическое давление не зависит от природы растворяемых веществ, а зависит от концентрации. Если объем заменить на концентрацию, получим:


Рассмотрим закон Вант-Гоффа: осмотическое давление раствора численно равно тому давлению, которое производило бы данное количество растворенного вещества, если бы оно в виде идеального газа занимало при данной температуре объем, равный объему раствора.

Все описанные законы относятся к бесконечно разбавленным растворам.

Парциальное давление

Парциальное давление – то давление, которое оказывал бы газ, входящий в газовую смесь, если бы из нее были удалены все остальные газы при условии сохранения постоянными температуры и объема.

Общее давление газовой смеси определяется законом Дальтона: общее давление смеси газов, занимающих определенных объем, равно сумме парциальных давлений, которыми обладал бы каждый отдельно взятый газ, если бы он занимал объем, равный объему смеси газов.

где Р – общее давление;

Рк – парциальное давление компонентов.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Осмос

Осмос Среди животных тканей есть своеобразные пленки, которые обладают способностью пропускать через себя молекулы воды, оставаясь непроницаемыми для молекул растворенных в воде веществ.Свойства этих пленок являются причиной физических явлений, носящих название

Неэлектролиты — вещества, водные растворы и расплавы которых не проводят электрический ток, так как их молекулы не диссоциируют на ионы. К неэлектролитам относятся спирты, углеводы и т.д. Вразбавленном растворе неэлектролита число частиц совпадает с числом молекул. При этом молекулы растворенного вещества практически не взаимодействуют друг с другом из-за большого расстояния между ними. Поведение этих молекул в растворе аналогично поведению молекул идеального газа.Разбавленные растворы неэлектролитов, как идеальных разбавленных растворов обладают рядом свойств ( коллигативные свойства), количественное выражение которых зависит только от числа находящихся в растворе частиц растворенного вещества и от количества растворителя.

К коллигативным свойствам растворов относят:

1) понижение давления насыщенного пара растворителя над раствором,

2) понижение температуры замерзания и повышение температуры кипения растворов по сравнению с температурами замерзания и кипения чистых растворителей.

3) осмотическое давление.

Закон Рауляописывает зависимость между давлением насыщенного пара растворителя над раствором и концентрацией растворенного вещества.Насыщеннымназывают пар, находящийся в равновесии с жидкостью. Давление такого пара над чистым растворителем (p0) называют давлением или упругостью насыщенного пара чистого растворителя.

В 1886 (1887) году Ф. М. Рауль сформулировал закон:

относительное понижение давления насыщенного пара растворителя над раствором нелетучего вещества равно его молярной доле:


, где

Ро – давление насыщенного пара растворителя над растворителем, Р – давление насыщенного пара растворителя над раствором, N – молярная доля растворенного вещества, n – количество растворенного вещества,nо – количество вещества растворителя

2. Следствие из закона Рауля: понижение температуры замерзания растворов, повышение температуры кипения растворов.

Понижение температуры замерзания и повышение температуры кипения растворов по сравнению с таковыми для чистого растворителя пропорциональны моляльной концентрации растворенного вещества:

где Δtкип – повышение температуры кипения раствора, °С;

Δtзам – понижение температуры замерзания раствора, °С;

Кэ – эбуллиоскопическая константы растворителя, (кг×°С)/моль; Кэ2О) = 0,52 кг∙К∙моль -1

Кк – криоскопическая константы растворителя, (кг×°С)/моль; Кк2О) = 1,86 кг∙К∙моль -1

b – моляльная концентрация, моль/кг;

ν(раств. в-ва) – количество растворенного вещества, моль;

m(р-ля) – масса растворителя, кг;

m(раств. в-ва) – масса растворенного вещества, г;

М(раств. в-ва) – молярная масса растворенного вещества, г/моль.

Зная температуры кипения и замерзания чистых растворителей и Δt можно рассчитать температуры кипения и замерзания растворов:

tкип.(р-ра) = tкип.(р-ля) + Δtкип. tзам.(р-ра) = tзам.(р-ля) – Δtзам.

Осмос. Осмотическое давление. Закон Вант-Гоффа для растворов неэлектролитов.

Осмосом называется одностороннее проникновение молекул растворителя (диффузия) через полупроницаемую мембрану из растворителя в раствор или из раствора с меньшей концентрацией в раствор с большей концентрацией. осмос – самопроизвольный процесс.

Пример: Если в закрытый стеклянный сосуд поместить стакан с чистым растворителем и стакан с раствором какого-либо нелетучего вещества (уровни жидкостей в сосудах одинаковы), то через некоторое время уровень жидкости в первом стакане понизится, а уровень раствора во втором стакане повысится. В этом случае происходит переход растворителя из первого стакана во второй стакан, что обусловлено (по закону Рауля) более низким давлением пара рас–творителя над раствором, чем над чистым раствори–телем. При этом воздушное пространство между растворителем и раствором выполняет роль полупроницаемой мембраны.

Осмотическое давление – сила, обуславливающая осмос. Оно равно внешнему давлению, при котором осмос видимо прекращается.

Закон Вант-Гоффа. Осмотическое давление раствора равно газовому давлению, которое производило бы растворенное вещество, находясь в газообразном состоянии и занимая объем, равный объему раствора. Осмотическое давление раствора прямо пропорционально молярной концентрации растворенного вещества.

где Росм – осмотическое давление, кПа;

с – молярная концентрация растворенного вещества, моль/л;

R – универсальная газовая постоянная, 8,314 Дж/(моль×К);

Т – абсолютная температура, К;

V(р-ра) – объем раствора, л.

Что несет в себе данное определение? От чего зависит осмотическое давление воды – об этом данная статья.

Что это такое?

Осмотическое давление – это величина, при которой процесс осмоса завершается. Осмос, в свою очередь, это переход молекул веществ из одного раствора в другой.

Обычно они перемещаются от менее концентрированного, с небольшим содержанием вещества, к более концентрированному. Движение происходит через тонкую стенку – мембрану.

Простой пример:

Когда оно достигнет определенной отметки, процесс осмоса прекратится. Это и есть осмотическое давление.

Как и когда было открыто?

Данное явление впервые было открыто и описано в 1748 году. Этим занимался французский ученый-физик Жан-Антуан Нолле.

Его эксперимент выглядел следующим образом:

  1. Емкость была заполнена этанолом и закрыта тонкой эластичной пленкой.
  2. Сосуд опустили в другой, предварительно заполненный водой.
  3. По истечении некоторого времени тонкая пленка начинает набухать, надуваться. Значит, начался процесс перехода молекул из одного сосуда в другой.
  4. Пробуют поменять сосуды местами: поместить воду в этанол. Картина совершенно обратная: тонкая пленка начинает впадать внутрь.

От чего зависит параметр?

Другой ученый Вант-Гофф из Нидерландов в 1886 году выявил зависимость осмотического давления от некоторых параметров.

foto17007-3

Согласно его исследованиям, величина находится в зависимости от:

  • содержания частиц вещества;
  • от температуры.

При этом параметр не зависит от происхождения вещества и жидкости.

Полученные выводы Вант-Гофф описал уравнением: π = RCT. Оно описывает зависимость осмотического давления от температуры и содержания частиц вещества.

Получается, что для возникновения осмотического давления необходимо наличие двух смесей различной концентрации, а также полупроницаемая пленка — мембрана.

Как измеряют?

Измерения в лабораторных условиях проводят при помощи специального прибора – осмометра. При этом определение осуществляется двумя методами:

Как проходит измерение?Статический методДинамический метод
Измерения проводятся, когда смесь достигает равновесия: частицы прекращают движение.Базируется на измерении скорости движения молекул сквозь подвижную мембрану.
Как определяется величина осмотического давления?Определяется по высоте столба раствора в приборе – осмометре.Вычисляется математически по значениям, полученным от прибора.
Отличительная особенностьОсновные недостатки: сложность выявления момента равновесия, большие временные затраты.Основные преимущества: малые затраты времени, высокая точность результата.

Единственное, важное условие осуществления эксперимента – грамотный подбор мембраны.

В лабораторных условиях чаще всего используют:

  • целлофановую пленку;
  • полимеры синтетического или природного происхождения;
  • перегородки из керамики или стекла;
  • мембраны растительного происхождения.

Осмотическое давление также можно определить теоретически по некоторым показателям и химическим формулам.

Значение

Осмотическое давление играет важную роль в природной среде и жизнедеятельности человека:

  1. Доставляет влагу по стволам растений.
  2. Наполняет клетки человека водой. Как известно, организм в большей степени состоит именно из нее.
  3. Осуществляет движение разных жидкостей по организму.
  4. Применяется на различных производствах и в промышленности.
  5. Растворы, созданные на основании данного метода, используются в медицине. Они вводятся внутривенно в период реабилитации больных после операции, а также для дезинфекции ран, обеззараживания.

Применение знаний для обратного осмоса на практике

Положения, описанные выше, легли в основу другого явления – обратный осмос: подвижная перегородка, наподобие сита, пропускает молекулы определенного размера.

foto17007-4

Такое явление нашло применение в различных областях:

  • для фильтрации воды, получения пресной из соленой;
  • для изготовления различных жидкостей, используемых на производствах и в промышленности;
  • для очищения водоемов.

Полезное видео

Что такое осмос и осмотическое давление, подскажет видео:

Заключение

Таким образом, знание определения осмоса и его законов может быть полезно во многих отраслях человеческой жизни, в частности – в медицине, промышленности, биологии.

О́смос (от греч. ὄσμος — толчок, давление) — процесс односторонней диффузии через полупроницаемую мембрану молекул растворителя в сторону бо́льшей концентрации растворённого вещества (меньшей концентрации растворителя).

Более широкое толкование явления осмоса основано на применении Принципа Ле Шателье — Брауна: если на систему, находящуюся в устойчивом равновесии, воздействовать извне, изменяя какое-либо из условий равновесия (температура, давление, концентрация, внешнее электромагнитное поле), то в системе усиливаются процессы, направленные на компенсацию внешнего воздействия.



Содержание

История

Впервые осмос наблюдал А. Нолле в 1748, однако исследование этого явления было начато спустя столетие.

Суть процесса



Рис. 1. Осмос через полупроницаемую мембрану. Частицы растворителя (синие) способны пересекать мембрану, частицы растворённого вещества (красные) — нет.

Явление осмоса наблюдается в тех средах, где подвижность растворителя больше подвижности растворённых веществ. Важным частным случаем осмоса является осмос через полупроницаемую мембрану. Полупроницаемыми называют мембраны, которые имеют достаточно высокую проницаемость не для всех, а лишь для некоторых веществ, в частности, для растворителя. (Подвижность растворённых веществ в мембране стремится к нулю). Как правило, это связано с размерами и подвижностью молекул, например, молекула воды меньше большинства молекул растворённых веществ. Если такая мембрана разделяет раствор и чистый растворитель, то концентрация растворителя в растворе оказывается менее высокой, поскольку там часть его молекул замещена на молекулы растворённого вещества (см. Рис. 1). Вследствие этого, переходы частиц растворителя из отдела, содержащего чистый растворитель, в раствор будут происходить чаще, чем в противоположном направлении. Соответственно, объём раствора будет увеличиваться (а концентрация вещества уменьшаться), тогда как объём растворителя будет соответственно уменьшаться.

Например, к яичной скорлупе с внутренней стороны прилегает полупроницаемая мембрана: она пропускает молекулы воды и задерживает молекулы сахара. Если такой мембраной разделить растворы сахара с концентрацией 5 и 10 % соответственно, то через нее в обоих направлениях будут проходить только молекулы воды. В результате в более разбавленном растворе концентрация сахара повысится, а в более концентрированном, наоборот, понизится. Когда концентрация сахара в обоих растворах станет одинаковой, наступит равновесие. Растворы, достигшие равновесия, называются изотоническими. Если принять меры, чтобы концентрации не менялись, осмотическое давление достигнет постоянной величины, когда обратный поток молекул воды сравняется с прямым.

Осмос, направленный внутрь ограниченного объёма жидкости, называется эндосмосом, наружу — экзосмосом. Перенос растворителя через мембрану обусловлен осмотическим давлением. Это осмотическое давление возникает соответственно Принципу Ле Шателье из-за того, что система пытается выравнять концентрацию раствора в обоих средах, разделенных мембраной, и описывается вторым законом термодинамики. Оно равно избыточному внешнему давлению, которое следует приложить со стороны раствора, чтобы прекратить процесс, то есть создать условия осмотического равновесия. Превышение избыточного давления над осмотическим может привести к обращению осмоса — обратной диффузии растворителя.

В случаях, когда мембрана проницаема не только для растворителя, но и для некоторых растворённых веществ, перенос последних из раствора в растворитель позволяет осуществить диализ, применяемый как способ очистки полимеров и коллоидных систем от низкомолекулярных примесей, например электролитов.

Значение осмоса

Осмос играет важную роль во многих биологических процессах. Мембрана, окружающая нормальную клетку крови, проницаема лишь для молекул воды, кислорода, некоторых из растворённых в крови питательных веществ и продуктов клеточной жизнедеятельности; для больших белковых молекул, находящихся в растворённом состоянии внутри клетки, она непроницаема. Поэтому белки, столь важные для биологических процессов, остаются внутри клетки.

Осмос участвует в переносе питательных веществ в стволах высоких деревьев, где капиллярный перенос не способен выполнить эту функцию.

Осмос широко используют в лабораторной технике: при определении молярных характеристик полимеров, концентрировании растворов, исследовании разнообразных биологических структур. Осмотические явления иногда используются в промышленности, например при получении некоторых полимерных материалов, очистке высоко-минерализованной воды методом обратного осмоса жидкостей.

Клетки растений используют осмос также для увеличения объёма вакуоли, чтобы она распирала стенки клетки (тургорное давление). Клетки растений делают это путём запасания сахарозы. Увеличивая или уменьшая концентрацию сахарозы в цитоплазме, клетки могут регулировать осмос. За счёт этого повышается упругость растения в целом. С изменениями тургорного давления связаны многие движения растений (например, движения усов гороха и других лазающих растений). Пресноводные простейшие также имеют вакуоль, но задача вакуолей простейших заключается лишь в откачивании лишней воды из цитоплазмы для поддержания постоянной концентрации растворённых в ней веществ.

Осмос также играет большую роль в экологии водоёмов. Если концентрация соли и других веществ в воде поднимется или упадёт, то обитатели этих вод погибнут из-за пагубного воздействия осмоса.

Использование в промышленности

Первая в мире электростанция — прототип, использующая для выработки электричества явление осмоса, запущена компанией Statkraft 24 ноября 2009 года в Норвегии вблизи города Тофте. Солёная морская и пресная вода на электростанции разделены мембраной; так как концентрация солей в морской воде выше, между солёной водой моря и пресной водой фьорда развивается явление осмоса, — постоянный поток молекул воды через мембрану в сторону солёной воды. В результате чего давление солёной воды возрастает. [1] Это давление соответствует давлению столба воды в 120 метров высотой, то есть достаточно высокому водопаду. Поток воды достаточен, чтобы приводить в действие гидротурбину, вырабатывающую энергию. [2] Производство носит ограниченный характер, основная цель — тестирование оборудования. Самый проблематичный компонент электростанции — мембраны. По оценкам специалистов Statkraft мировое производство может составить от 1 600 до 1 700 TWh, что сравнимо с потреблением Китая в 2002. Ограничение связано с принципом действия — подобные электростанции могут быть построены только на морском побережье. [3] Это не вечный двигатель, источником энергии является энергия солнца. Солнечное тепло отделяет воду от моря при испарении и посредством ветра переносит на сушу. Потенциальная энергия используется на гидроэлектростанциях, а химическая энергия долго оставалась без внимания.

Читайте также: