Органические вещества кратко биология

Обновлено: 05.07.2024

В клетках нашего организма помимо неорганических веществ содержатся органические вещества, которые необходимы клетке для построения ее структур и обеспечения нормальной жизнедеятельности не только отдельно взятой клетки, но и всего организма в целом.

Органические вещества, которые входят в состав живого организма, многообразны, и многие из них имеют очень сложное молекулярное строение.

Каждое сложное органическое вещество построено из повторяющихся единиц- мономеров.

Если полимеры встречаются в природе в естественном виде, то есть входят в состав живых организмов, их называют биополимерами.

Количество мономеров в молекуле полимера может исчисляться от нескольких штук до десятков миллионов.

К примеру, молекула ДНК бактерий построена более чем из 3 млн мономеров (нуклеотидов).

Основные и наиболее важные группы органических веществ клетки:

  • белки
  • жиры
  • углеводы
  • нуклеиновые кислоты

Сегодня мы рассмотрим эти группы органических веществ, узнаем их строение и значение для организма.

Белки

Белки- это биополимеры, мономерами которых являются аминокислоты.

Аминокислоты содержат в своём составе карбоксильную (-СООН) и аминогруппу (-NH2)

Молекулы белка могут содержать сотни и даже тысячи аминокислотных остатков.

А если молекула содержит до 100 аминокислотных остатков, то принято называть эту молекулу пептидом.

Вот более точное определение: белки и пептиды - это соединения, построенные из остатков аминокислот (АК), соединенных пептидной (амидной) связью -С(О)-NH-

Также в состав белков входят углерод, водород, кислород и азот, сера.

Белок характеризуется определенной последовательностью аминокислот. Благодаря этой последовательности формируется химическая формула белка, то есть его структура.

Кроме определенной последовательности аминокислотных остатков, очень важна и трехмерная структура белка, которая формируется в результате сворачивания цепочки из аминокислот.

Аминокислотные остатки в белке связаны пептидной связью:


Выделяют четыре структуры белка:

Структуры белка

Строение

Типы химических взаимодействий(связи)

Примеры белков и графическое изображение

Первичная структура

(линейная)

Последовательность аминокислотных остатков в полипептидной цепи

Альбумин, яичный белок, состоит из аминокислот. Мономеры связаны пептидными связями, молекула образует первичную, вторичную и третичную структуры

44

Скручивание в спираль первичной структуры белка, стабилизировано водородными связями и гидрофобными взаимодействиями

Водородные между пептидными группами (C=O…H–N) и гидрофобные связи

Альбумин- вареный яичный белок, кератин (в сухожилиях человека), коллаген (в волосах, ногтях)

Упаковка вторичной спирали в клубок- глобулу (в виде шарика), также встречается фибриллярная структура (в виде волокон)

Ковалентные связи, ионные (электростатические) взаимодействия (между противоположно заряженными аминокислотными остатками);

Объединение нескольких глобул в сложный комплекс

Фибриллярные и глобулярные белки:

Фибриллярные белки

Глобулярные белки

Представляет собой длинные, узкие закрученные нити

Имеет округлую, сферическую форму

Отчасти растворимы (образуют коллоидные растворы)

Коллаген (кожа, кости, зубы, сухожилия), кератин (волосы, ногти)

Гемоглобин (в эритроцитах), инсулин (гормон поджелудочной железы), каталаза (обеспечивает распад пероксида водорода в живых клетках)

Структура и функции

Коллаген существует в виде тройной спирали, механически стойкой и прочной.

Много в сухожилиях, связках, соединительной ткани, мышцах, коже и других тканях, испытывающих на себе сильное механическое воздействие, выполняют структурную и сократительную функцию

Выполняют различные функции в клетках.

У меня есть дополнительная информация к этой части урока!


Гемоглобин- белок содержащийся в кровяных клетках, эритроцитах, который переносит кислород и углекислый газ, обладает четвертичной структурой.

В связывании кислорода принимает участие непосредственно ион железа, который содержится в молекуле гемоглобина.

Оксид углерода СО (угарный газ) связывается с железом в сотни раз прочнее кислорода, поэтому угарный газ смертельно опасен для человека, поскольку лишает гемоглобин возможности присоединять кислород

Денатурация и ренатурация белков

Белки могут быть активны в организме и выполнять свою функцию только при определенных физических показателях.

Например, при повышении или понижении температуры, радиации, воздействии кислот естественная структура белка может нарушаться, что, в свою очередь, может привести к гибели всей клетки.

Процесс разрушения характерной для данного белка естественной структуры (вторичной, третичной, четвертичной), носит название денатурация.

Причиной денатурации является разрыв связей, стабилизирующих определенную структуру белка.

Как правило, при этом первичная структура белка не разрушается.

Пример денатурации является свертывание яичного белка при его варке.

Денатурация бывает обратимой и необратимой.

При варке яйца происходит необратимая денатурация, так как исходную структуру восстановить уже практически невозможно и происходит разрыв большого количества связей.

Обратимая денатурация происходит если возможно восстановление свойственной белку структуры.

Если белок подвергся обратимой денатурации, то при восстановлении нормальных условий среды он способен полностью восстановить свою структуру и, соответственно, свои свойства и функции.

Процесс восстановления структуры белка после денатурации называется ренатурацией.

Функции белков в организме связаны с пространственной структурой белка и зависят от последовательности аминокислот в белке.

Основные функции белков:

  • Каталитическая (ферментативная): увеличение скорости химических реакций в клетке и организме, достигается за счет функционирования биологических катализаторов, ферментов, специализированных белков, которые обеспечивают нормальное протекание обмена веществ. Ферменты эффективны, так как способны ускорять химические реакции в 106-108 раз; специфичны, регулируются различными химическими соединениями клетки
  • Структурная функция: из структурных белков формируется части цитоскелета клетки, структурные белки входят в состав волос, когтей, рогов и копыт млекопитающих, компонент костной ткани. Примеры структурных белков: кератин, коллаген
  • Двигательная функция: актин и миозин белковые нити, которые могут изменять форму клеток, входят в состав сократимых мышечных волокон
  • Транспортная функция: белки мембран, осуществляющие активный перенос веществ из окружающей среды в клетку и обратно; белки крови, которые связывают и переносят различные вещества (например, гемоглобин, осуществляющий перенос кислорода из легких в ткани)
  • Защитная функция: при попадании вирусов бактерий, чужеродных белков в организм животных, человека происходит образование белков, которые называют антителами. Антитела связываются с чужеродными веществами, которые называют антигенами. Выделение токсинов (ядовитых веществ белковой природы) живыми существами (змеи, амфибии, беспозвоночные) для обеспечения защиты и нападения. Белки крови: протромбин, тромбин, фибрин, фибриноген участвуют в свёртывании крови, тем самым прекращая кровотечение
  • Регуляторная функция: регуляция активности ферментов, которые также активируют или подавляют активность других белков. Гормоны способны в очень малых концентрациях обеспечивать регуляцию метаболизма. Наиболее известным из белковых гормонов является инсулин- гормон, вырабатываемый в поджелудочной железе и регулирующий уровень глюкозы в клетках организма. При недостатке инсулина в организме возникает заболевание сахарный диабет
  • Энергетическая функция: белки источник незаменимых аминокислот, при их расщеплении образуется энергия, которая необходима клетке
  • Запасающая функция: запас питательных веществ в виде белковых веществ в семенах (алейроновые зерна, от греческого "мука"), в яйцах животных (овальбумин)
  • Сигнальная функция белков: способность белков служить сигнальными веществами, передавая сигналы между тканями, клетками или организмами

Пройти тест и получить оценку можно после входа или регистрации

Липиды (жиры)

Липиды- сборная группа биологических соединений, полностью или почти полностью нерастворимых в воде, но растворимых в органических растворителях и друг в друге.


Липиды широко распространены в природе и являются обязательным компонентом каждой живой клетки и ее мембран.

Липиды в клетке образуются на гладкой эндоплазматической мембране.

Они образуют энергетический резерв организма и участвуют в передаче нервного импульса, в создании водоотталкивающих и термоизоляционных покровов и др.

Многие липиды - продукты питания, используются в промышленности и медицине.


  • структурная: формирование биологических мембран
  • энергетическая: при окислении жиров до углекислого газа и воды выделяется большое количество энергии (38,9 кДж/г)
  • запасающая: накопление жиров в клетках и органах живых организмов

В растениях жиры накапливаются главным образом в плодах и семенах, у животных - в подкожных жировых тканях, окружающих внутренние органы, а также печени, мозговой и нервной тканях

  • регуляторная: обеспечивается за счет действия гормонов
  • образование воды: при окислении жира образуется вода (при сжигании 1 г жира образуется 1,1 г воды); используется животными пустынь (верблюды) или впадающими в зимнюю спячку (сурки, суслики) для нужд метаболизма, поэтому эти животные могут длительное время обходиться без воды, используя свои жировые запасы
  • теплоизоляционная: у животных жиры откладываются в подкожной клетчатке, где создают хороший теплоизоляционный слой, особенно развитый у морских млекопитающих: китообразных и ластоногих
  • защитная: жировая подушка вокруг внутренних органов защищает от механических повреждений при движении, прыжках, ударах; у растений воск создает защитный налет на листьях и плодах

У меня есть дополнительная информация к этой части урока!


Особое место среди липидов занимают стероиды: полициклический спирт холестерол (чаще называемый холестерин) и его производные.

У растений и грибов холестерин не встречается, его место у растений занимает стероид стигмастерол, а у грибов- эргостерол.

У животных из холестерина образуются гормоны

Пройти тест и получить оценку можно после входа или регистрации

Углеводы


Например, формула глюкозы С6Н12О6 = (С Н2О)6 , и большинство из распространенных углеводов можно охарактеризовать общей формулой (СН2О)n

Углеводы- органические вещества, молекулы которых состоят из атомов углерода, водорода и кислорода, причём водород и кислород находятся в них, как правило, в таком же соотношении, как и в молекуле воды (2:1).

В растениях содержание углеводов может составлять до 70%, так как в ходе процесса фотосинтеза идет образование углеводов и последующее их накопление в растении (например, в клубнях картофеля).

Избыток углеводов приводит к образованию жиров в организме животных и человека.

Выделяют следующие группы углеводов:

  • простые углеводы, или моносахариды
  • сложные углеводы, которые, в свою очередь, включают в себя дисахариды, олигосахариды, полисахариды- способны расщепляться до простых углеводов, мономеров


Простые углеводы.

Наиболее распространенными моносахаридами являются глюкоза (виноградный сахар) и фруктоза (фруктовый сахар). Формула общая и для фруктозы, и для глюкозы- C6H12O6


Длина углеродной цепи в моносахаридах, встречающихся в живых организмах, колеблется от 3 до 8 атомов, хотя большинство из них содержит 3, 5 или 6 атомов углерода.

В зависимости от количества атомов углерода моносахариды разделяют на:

  • триозы- 3 атома углерода в молекуле
  • тетрозы- 4 атома углерода
  • пентозы- 5 атомов углерода
  • гексозы- 6 атомов углерода
  • хорошо растворимы в воде
  • образуют кристаллы
  • имеют сладкий вкус
  • окисляются при гликолизе

Большое биологическое значение имеют пентозы: рибоза (входит в состав молекул РНК) и дезоксирибоза (входит в состав молекул ДНК).

Дисахариды

  • сахароза (свекловичный, тростниковый сахар), соединение глюкозы и фруктозы:


  • лактоза (молочный сахар, содержится в молоке млекопитающих.) состоит из остатков глюкозы и галактозы
  • мальтоза (солодовый сахар)- соединение двух остатков глюкозы

Образуется при расщеплении крахмала и гликогена в пищеварительном тракте животных или при прорастании семян растений. Свойства такие же, как и у моносахаридов.

Полисахариды

  • крахмал состоит только из остатков глюкозы. Крахмал служит основным запасным веществом у растений
  • гликоген выполняет запасающую функцию у грибов и животных
  • целлюлоза - неветвящийся полимер, содержащий примерно 10 000 остатков глюкозы; встречается в основном у растений, где составляет основу клеточных стенок
  • хитин близок по строению с целлюлозой. Хитин служит основой клеточных стенок грибов и образует наружный скелет у членистоногих
  • муреин образует клеточную стенку бактерий
  • нерастворимы в воде (обладают гидрофобностью)
  • не имеют сладкого вкуса

Функции углеводов в живых организмах многообразны:

  • Энергетическая: углеводы являются наиболее удобным источником энергии. Углеводы обеспечивают около 50-60% суточного энергопотребления организма. При окислении 1 г углеводов выделяется 17кДж энергии (4,1ккал). В качестве основного энергетического источника используется свободная глюкоза или запасы углеводов в виде гликогена
  • Структурная: целлюлоза и хитин входят в состав клеточных стенок, хитинового панциря членистоногих, образуют гликокаликс в плазмалемме клетки. Также полисахариды являются неотъемлемыми компонентами соединительной ткани животных (хрящи, сухожилия и др.).
  • Пластическая: рибоза и дезоксирибоза используются для построения ДНК, РНК, АТФ, АДФ. Они входят в состав некоторых ферментов. Отдельные углеводы являются компонентами клеточных мембран
  • Запасающая (резервная): в виде гликогена запасаются в скелетных мышцах, печени и других тканях, у растений запасное вещество- крахмал
  • Транспортная: в форме углеводов осуществляется основной транспорт веществ в многоклеточных организмах, например, в крови животных (глюкоза) или в флоэме высших растений (сахароза)
  • Защитная: сложные углеводы входят в состав компонентов иммунной системы. Мукополисахариды находятся в слизистых веществах, покрывающих поверхность сосудов, бронхов, пищеварительного тракта, мочеполовых путей и защищают от проникновения бактерий, вирусов, а также от механических повреждений
  • Регуляторная: клетчатка пищи не расщепляется в кишечнике, но активирует перистальтику кишечника

У меня есть дополнительная информация к этой части урока!


Некоторые лягушки нашли применение глюкозе в своём организме. Так при наступлении холодов они просто вмерзают в лед, но с приходом весны земноводные оттаивают и оживают.

Оказывается, с наступлением холодов в крови лягушки в 60 раз увеличивается количество глюкозы.

Это мешает образованию внутри клеток кристалликов льда, поэтому лягушки не погибают при такой экстремальной зимовке

44

Пройти тест и получить оценку можно после входа или регистрации

Интересная информация

Как же возникли живые организмы на Земле?

Дать однозначный правильный ответ достаточно сложно, но существуют гипотезы, которые пытаются объяснить этот сложный вопрос.

Ученые предполагают, что происхождение жизни на Земле связано с химической эволюцией, то есть сначала на Земле шел процесс формирования первых органических соединений. Дальнейший переход от химической эволюции к биологической связан с возникновением простейших органических систем.

Его гипотеза подтвердилась.

Важно отметить, что американский биолог Ж. Лёб еще в 1912 г. первым получил под действием электрического разряда из смеси газов простейший компонент белков- аминокислоту глицин. Но открытие Лёба прошло незамеченным, поэтому первый абиогенный синтез органических веществ из случайной смеси газов приписывают американским ученым С. Миллеру и Г. Юри.

В 1953 г. они получили в стеклянной колбе под действием электрического разряда, имитирующего молнию, из водорода, воды, метана и аммиака сложную смесь из многих десятков органических веществ. Среди них преобладали органические (карбоновые) кислоты: муравьиная, уксусная и яблочная, их альдегиды, а также аминокислоты.

Опыты Миллера и Юри были многократно проверены на смесях разных газов и при разных источниках энергии (солнечный свет, ультрафиолетовое и радиоактивное излучение и просто тепло).

Предполагают, что из смеси таких органических веществ в последующем на Земле и смогли сформироваться простейшие клетки.

Органические вещества – важные и необходимые компоненты клетки, они являются поставщиками энергии, без которой невозможно проявление любой формы жизнедеятельности; они образуют структуры клетки.

Белки - полимеры аминокислот.

Существует 20 независимых аминокислот, входящих в белки.

Белки — обязательная составная часть всех клеток. В жизни всех организмов белки имеют первостепенное значение. В состав белка входят углерод, водород, азот, некоторые белки содержат еще и серу. Роль мономеров в белках играют аминокислоты. У каждой аминокислоты имеется карбоксильная группа (-СООН) и аминогруппа (-NH2). Наличие в одной молекуле кислотной и основной групп обусловливает их высокую реактивность. Между соединившимися аминокислотами возникает связь называемая пептидной, а образовавшееся соединение нескольких аминокислот называют пептидом. Соединение из большого числа аминокислот называют полипептидом. В белках встречаются 20 аминокислот, отличающихся друг от друга своим строением. Разные белки образуются в результате соединения аминокислот в разной последовательности. Огромное разнообразие живых существ в значительной степени определяется различиями в составе имеющихся у них белков.

В строении молекул белков различают четыре уровня организации:

Первичная структура — полипептидная цепь из аминокислот, связанных в определенной последовательности ковалентными (прочными) пептидными связями.

Вторичная структура — полипептидная цепь, закрученная в виде спирали. В ней между соседними витками возникают мало прочные водородные связи. В комплексе они обеспечивают довольно прочную структуру.

Третичная структура представляет собой причудливую, но для каждого белка специфическую конфигурацию — глобулу. Она удерживается мало прочными гидрофобными связями или силами сцепления между неполярными радикалами, которые встречаются у многих аминокислот. Благодаря их многочисленности они обеспечивают достаточную устойчивость белковой макромолекулы и ее подвижность. Третичная структура белков поддерживается также ковалентными S-S-связями возникающими между удаленными друг от друга радикалами серосодержащей аминокислоты — цистеина.

Благодаря соединению нескольких молекул белков между собой образуется четвертичная структура. Если пептидные цепи уложены в виде клубка, то такие белки называются глобулярными. Если полипептидные цепи уложены в пучки нитей, они носят название фибриллярных белков.

Нарушение природной структуры белка называют денатурацией. Она может возникать под действием высокой температуры, химических веществ, радиации и т.д. Денатурация может быть обратимой (частичное нарушение четвертичной структуры) и необратимой (разрушение всех структур).

1. каталитическая (ферментативная) — расщепление питательных веществ в пищеварительном тракте, фиксация углерода при фотосинтезе, участие в реакциях матричного синтеза;

2. транспортная — транспорт ионов через клеточные мембраны, транспорт кислорода и углекислого газа гемоглобином, транспорт жирных кислот сывороточным альбумином;

3. защитная — антитела, обеспечивающие иммунную защиту организма; фибриноген и фибрин защищают организм от кровопотерь;

4. структурная — кератин волос и ногтей, коллаген хрящей, сухожилий, соединительных тканей;

5. сократительная— сократимые белки мышц: актин и миозин;

6. рецепторная — примером могут служить фитохром — светочувствительный белок, регулирующий фотопериодическую реакцию в растениях, и опсин — составная часть родопсина — пигмента, находящегося в клетках сетчатки глаза.

Органические вещества — это вещества, которые входят в состав живых организмов и образуются только при их участии. Как правило, все живые существа содержат органические вещества.

К органическим веществам относятся белки, жиры и углеводы, которых насчитывается около 10 миллионов.

Виды органических веществ, классификация

Белки

Белки — это строительные блоки жизни. Они жизненно важны для нашего существования и присутствуют в каждом организме на Земле. Белки — наиболее распространенные молекулы, встречающиеся в клетках. На самом деле они составляют больше сухого вещества клетки, чем жиры, углеводы и все другие молекулы вместе взятые.

Белки являются наиболее распространенными органическими компонентами человеческого организма и во многих отношениях наиболее важными. Они составляют от 10 до 30 % клеточной массы и являются основными структурными материалами организма.

Белки жизненно важны для многих функций организма. На поверхности клеток некоторые белки соединяются с углеводами, превращаясь в гликопротеины. Они позволяют клеткам реагировать на определенные молекулы, которые связываются с ними.

Белки включают биологические катализаторы (ферменты), сократительные белки мышц и гемоглобин крови. В человеческом организме насчитывается более 200 000 типов белков, полный набор которых известен как протеом.

Антитела — это белки, которые обнаруживают и уничтожают чужеродные вещества.

Все белки содержат атомы углерода, водорода, кислорода и азота, а также небольшое количество серы. Двадцать распространенных аминокислот, как незаменимых, так и несущественных, составляют белки, существующие в организме человека и большинства других живых организмов.

Аминокислоты являются строительными блоками белков, состоящими из двух основных групп: аминов и органических кислот. Все аминокислоты абсолютно одинаковы, за исключением одной группы атомов, известной как группа SR аминокислоты.

Белки бывают самых разнообразных форм и выполняют широкий спектр функций. Примеры белков включают ферменты, антитела и некоторые гормоны, помогающие ускорить химические реакции, защищающие от болезней и регулирующие активность клеток. Белки также играют важную роль в движении, структурной поддержке, хранении, коммуникации между клетками, пищеварении и транспортировке веществ по организму.

Существуют моторные белки, такие как миозин и динеины. Они обладают способностью преобразовывать химическую энергию в движение.

Миозин — это белок, содержащийся в мышцах и вызывающий сокращение мышечных волокон в них. Динеины обеспечивают энергию, приводящую в движение жгутики. Жгутики — это длинные тонкие структуры, прикрепленные снаружи к определенным клеткам (таким, как сперматозоиды), и отвечающие за их подвижность.

Многие белки обеспечивают структурную поддержку определенным частям организма. Кератин, например, является белком, содержащимся во внешних слоях кожи, и делает кожу прочным защитным слоем от внешнего мира. Кератин также является структурным белком, из которого состоят волосы, рога и ногти.

Как только сигнал попадает внутрь клетки, он обычно передается между несколькими белками, прежде чем достигнет конечного пункта назначения (чаще всего тоже это белок).

Пищеварение также управляется белками. Ферменты — это белки, которые стимулируют пищеварение, ускоряя химические реакции. Пищеварение — это расщепление пищи из крупных нерастворимых молекул на более мелкие молекулы, которые могут растворяться в воде. Поскольку более мелкие молекулы растворимы в воде, они могут попадать в кровь и транспортироваться по всему организму.

Пищеварительные ферменты — это ферменты, ответственные за расщепление молекул пищи на более мелкие, растворимые в воде молекулы. Некоторые примеры пищеварительных белков включают:

  • амилазу — фермент в слюне, расщепляющий крахмал на растворимые сахара;
  • липазу — расщепляет жиры и другие липиды;
  • пепсин — расщепляет белки в пище.

Жиры нерастворимы в воде, но могут растворяться в других липидах, маслах, эфире, хлороформе или спирте. Липиды включают в себя множество соединений, таких как триглицериды, фосфолипиды и стероиды, выполняющие жизненно важные клеточные функции.

Жиры являются наиболее распространенным типом липидов. Они обеспечивают примерно в два раза больше энергии, чем углеводы. Липиды помогают поддерживать температуру тела. Подобно углеводам, молекулы жира также содержат углерод, водород и кислород, но имеют гораздо меньше атомов кислорода, чем углеводы. Некоторые сложные липиды также содержат фосфор.

Жиры — это триглицерид (тип липида), который обычно является твердым при комнатной температуре. Другими типами липидов являются жирные кислоты, глицерин, глицерофосфолипид, сфинголипид, стерол-липид.

По определению, липид представляет собой жирное или воскообразное органическое соединение, которое легко растворимо в неполярном растворителе (например, эфире), но не в полярном растворителе (воде).

В пищевой науке жир и липид считаются одним и тем же веществом. Однако не все липиды являются жирами. Масло также отличается от жира, оно является одним из видов липидов. В отличие от жира, масло не затвердевает при комнатной температуре. Это происходит потому, что масло состоит из коротких или ненасыщенных цепей жирных кислот, которые при комнатной температуре остаются жидкими.

Жиры служат средством накопления энергии для большинства эукариот, а также служат источником пищи. Они обладают самым высоким потенциалом накопления энергии среди макроэлементов и очень химически стабильны, что делает их идеальными для хранения энергии для последующего использования.

Макроэлементы относятся не к размеру молекулы, а к количеству, необходимому для поддержания жизни. Витамины и минералы считаются микроэлементами.

Углеводы

Углеводы — это природные органические соединения, содержащиеся во всех клетках живых организмов и выполняющие важные функции.

Они жизненно важны для жизни на Земле и выполняют целый ряд функций, таких как обеспечение энергией и структурная поддержка. Углевод — это либо сахар, либо полимер сахаров. Полимер — это два или более простых сахара, соединенных вместе.

Углеводы — это молекулы на основе углерода, в которых водород и кислород связаны цепочкой атомов углерода.

Некоторые из более сложных углеводов обеспечивают структурную поддержку и защиту. Клетки растений и грибов имеют клеточные стенки, состоящие из углеводов. Эти клеточные стенки обеспечивают защиту и поддержку клетки и всего организма.

Углеводы также участвуют в межклеточном распознавании. Клетки имеют углеводы на внешней поверхности своих клеточных мембран, которые действуют как рецепторы. Рецепторы могут взаимодействовать с углеводами на мембранах других клеток и помогать клеткам идентифицировать друг друга.

Углеводы обеспечивают большую часть энергии, необходимой клеткам организма, и помогают строить клеточные структуры.

Нуклеиновые кислоты

Нуклеиновые кислоты — это биомолекулы, которые необходимы для каждой формы жизни, присутствующей на земле. Они присутствуют во всех организмах, от мелких вирусов и бактерий до крупных и сложных животных, таких как люди и киты.

Две нуклеиновые кислоты различаются по своей структуре, функциям, свойствам и расположению внутри клетки:

1. ДНК, также известная как дезоксирибонуклеиновая кислота, является наиболее важной биологической молекулой, присутствующей в живых клетках. Вся генетическая информация хранится в клетке в виде ДНК. Происшествие ДНК присутствует во всех живых клетках в той или иной форме.

Биологические функции ДНК заключаются в следующем:

  1. Генетическая информация упакована в клетках в виде ДНК.
  2. Вся структурная и функциональная информация организма присутствует в форме ДНК.
  3. ДНК кодирует синтез всех типов белков.
  4. Генетическая информация передается следующему поколению клеток в виде ДНК.

2. РНК, также известная как рибонуклеиновая кислота, является второй по значимости нуклеиновой кислотой, присутствующей в живых организмах. Это полимер рибонуклеотидов, содержащий рибозу в качестве пентозного сахара.

В большинстве живых клеток ДНК и РНК работают сообща, выполняя свои функции.

РНК также присутствует почти во всех живых клетках. У бактерий он присутствует в цитоплазме клетки, а также в бактериальных рибосомах. Эта кислота в изобилии присутствует в цитоплазме в свободной форме и в составе рибосом. Она синтезируется в ядре из ДНК в процессе транскрипции. Три типа РНК полностью отличаются друг от друга по структуре и функциям:

Задумайтесь! Мы с вами состоит из миллиардов атомов. Все атомы находятся в круговороте, и все атомы, которыми мы обладаем, в ком-то и где-то находились те 4,5 млрд. лет, которые существует Земля. Они были частями животных, растений, грибов и бактерий - а сейчас принадлежат нам на короткое время.

Круговорот атомов

С химической точки зрения ответ на вопрос "Жив ли изучаемый объект?" - не представляется возможным. Понятию "жизнь" дано колоссальное количество определений. Жизнь - это самовоспроизведение с изменением, способ существования белковых тел, постоянный обмен веществ с внешней средой.

Мы приступаем к изучению неорганических и органических веществ клетки. Начнем с неотъемлемого компонента клетки, благодаря которому жизнь на Земле в принципе стала возможна - вода.

Составляет 60-80% массы клетки. Молекула воды обладает уникальным свойством - полярностью, которое возникает из-за разницы в электроотрицательности (ЭО) между атомами кислорода и водорода (у кислорода ЭО больше).

Вода полярная молекула

Поскольку молекула воды полярна, ее называют диполь. Между молекулами воды возникают непрочные водородные связи: водородная связь начинается от отрицательно заряженного атома кислорода (2δ - ) одной молекулы воды и тянется до положительно заряженного атома водорода другой молекулы воды (δ + )

  • Гидрофильные (греч. hydro - вода и philéo - люблю) - вещества, которые хорошо растворяются в воде. Гидрофильными веществами являются сахара, соли, альдегиды, спирты, аминокислоты.
  • Гидрофобные (греч. hydro - вода и phobos — страх) - вещества, которые не растворяются в воде. Гидрофобными веществами являются жиры.

    Вода - универсальный растворитель

Большинство реакций, которые протекают в клетке, идут в растворе (водной среде). Полярность молекулы воды позволяет ей быть отличным растворителем для других гидрофильных (полярных) веществ.

Вода может поглощать теплоту при минимальном изменении температуры. Это настоящее "спасение" для клеток: чуть только температура меняется, вода начинает поглощать избыток тепла, защищая клетку от перегревания. Выделяясь на поверхность кожи с потом, вода испаряется, поверхность кожи при этом охлаждается.

Она не только создает среду для реакций в клетке, но и сама активно участвует во многих из них. Расщепление питательных веществ, попавших в клетку, происходит за счет реакции гидролиза (греч. hydro - вода и lysis - расщепление).

Питательные вещества, газы перемещаются по организму с током крови. Вода составляет 90-92% плазмы крови, является ее основным компонентом. С помощью воды происходит не только доставка веществ к клеткам, но и удаление из организма побочных продуктов обмена веществ.

Транспортная функция воды

Вода придает тканям тургор (лат. turgor — наполнение) - внутреннее осмотическое давление в живой клетке, создающее напряжение оболочек клеток. Вода составляет от 60 до 95% цитоплазмы, придает клеткам форму. Изменение тургора клеток растений приводит к перемещениям их частей, раскрытию устьиц, цветков.

Осмотическое давление - избыточное гидростатическое давление на раствор, отделенный от чистого растворителя с помощью полупроницаемой мембраны.

Главное - понимать суть: если мы поместим живую клетку в гипертонический раствор, то вода (растворитель) устремится из клетки в раствор (в сторону большей концентрации соли) - это приведет к сморщиванию клеток.

Если же клетка окажется в гипотоническом растворе, то вода извне устремится внутрь клетки (опять-таки в сторону большей концентрации солей), приводя при этом к разбуханию (и возможному разрыву) клетки.

Эритроциты в гипер- и гипотоническом растворе

Элементы

Процентное содержание элемента не коррелирует с его важностью и биологической значимостью. Так, к примеру, микроэлемент I играет важную роль в синтезе гормонов щитовидной железы: тироксина, трийодтиронина. За нормальные рост и развитие организмов отвечают Zn, Mn, Cu.

Благоприятно влияют на сперматозоиды Zn, Ca, Mg, защищая их от оксидативного стресса (окисления). Невозможным становится нормальное образование эритроцитов без должного уровня Fe и Cu.

Микроэлементы

В водной среде клетки соли диссоциируют (распадаются) на положительно заряженные ионы - катионы (Na + , K + , Ca 2+ , Mg 2+ ) и отрицательно заряженные - анионы (Cl - , SO4 2- , HPO4 2- , H2PO4 - ).

Для процессов возбуждения клетки (нейрона, миоцита - мышечной клетки) внутри клетки должна поддерживаться низкая концентрация ионов Na + и высокая концентрация ионов K + . В окружающей клетку среде все наоборот: много Na и мало K. В мембране существует специальный натрий-калиевый насос, который поддерживает необходимое равновесие. Если это соотношение нарушится, то нейрон не сможет сгенерировать нервный импульс, а клетка мышцы - сократиться.

Натрий-калиевый насос

  • Участвуют в активации ферментов
  • Создают буферные системы (бикарбонтаную, фосфатную, белковую)
  • Поддерживают кислотно-щелочное состояние (КЩС)
  • Создают осмотическое давление клетки
  • Создают мембранный потенциал клеток (натрий-калиевый насос)
  • Являются основным минеральным составляющим скелета внутреннего и наружного (у моллюсков)

Функции солей в клетке

Мы переходим к органическим компонентам клетки, к которым относятся: жиры, углеводы, белки и нуклеиновые кислоты.

Белки, или пептиды (греч. πεπτος - питательный)

Белки - полимеры, мономерами которых являются аминокислоты. Белки представляют линейную структуру, образованную из длинной цепи аминокислот, между которыми возникают пептидные связи. Пептидная связь образуется между карбоксильной группой (COOH) одной аминокислоты и аминогруппой другой аминокислоты (NH2).

Образование пептидной связи

Между понятиями пептиды и белки существует определенная разница. Белки состоят из сотен тысяч аминокислот. Пептидами называют небольшие белки, содержащие до 10 аминокислот. Ими являются некоторые гормоны: окситоцин, вазопрессин, тиреолиберин - эти пептиды выполняют регуляторную функцию.

  • Первичная - полипептидная цепь, в которой аминокислоты расположены линейно
  • Вторичная - полипептидная цепь закручивается в спираль, формируется α или β структура
  • Третичная - спирали скручиваются в глобулу (лат. globulus - шарик)
  • Четвертичная - образуется у сложных белков путем соединения нескольких глобул

Структуры белка

При резком изменении оптимальных для белка условий он подвергается денатурации: при этом происходит переход от высших структур организации к низшим, или "раскручивание белка". Важно заметить, что аминокислотная последовательность (первичная структура белка) при этом не меняется, однако свойства белка меняются кардинально (теряется его гидрофильность).

Осмелюсь сделать заявление: вы часто начинаете свой день с денатурации белка. Простейший способ провести такой эксперимент - пожарить яичницу. Заметьте, что изначально яичный белок прозрачный и текучий, но по итогу жарки эти свойства утрачиваются: он становится непрозрачным и вязким.

Денатурация белка

    Каталитическая (греч. katalysis - разрушение)

Белки - природные катализаторы, ускоряющие реакции в организме в десятки и сотни тысяч раз. Эту роль главным образом выполняют белки-ферменты (энзимы).

Иногда в состав белков входят так называемые ко-факторы - небелковые соединения, которые необходимы ферменту для его биологической активности (в роли ко-факторов могут выступать Zn 2+ , Mg 2+ ).

Белки входят в состав клеточных мембран. Сложные белки: коллаген, эластин - входят в состав соединительных тканей организма, придавая им некоторую прочность и эластичность.

Некоторые гормоны, регулирующие обменные процессы в организме, имеют белковое происхождение: инсулин, глюкагон, адренокортикотропный гормон (АКТГ).

Говоря об этой функции, прежде всего, стоит вспомнить об антителах - иммуноглобулинах, которые синтезируют B-лимфоциты. Антитела нейтрализуют чужеродные организму антигены (разрушают бактерии).

Антитела иммуноглобулины

Помимо антител, защитную функцию выполняют также белки свертывающей системы крови (тромбин и фибриноген): они предохраняют организм от кровопотери.

Фибриноген и фибрин

При недостаточном питании в организме начинают окисляться молекулы белков. При расщеплении 1 г белков выделяется 17,6 кДж энергии.

Некоторые белки крови способны присоединять к себе и переносить различные молекулы. Альбумины участвуют в транспорте жирных кислот, глобулины - гормонов и некоторых ионов (Fe, Cu). Основной белок эритроцитов - гемоглобин - способен переносить кислород, углекислый и угарный газы (угарный конечно нежелательно ему переносить, будет отравление)

Двигательные белки, актин и миозин, на уровне саркомера обеспечивают сокращение мышц. При возбуждении мышечной ткани тонкие нити актина начинают тереться о толстые нити миозина, приводя к сокращению.

Двигательные белки

На поверхности мембраны белки образуют многочисленные рецепторы, которые, соединяясь с гормонами, приводят к изменению обмена веществ в клетке. Таким образом, гормоны реализуют воздействие на клетки органов-мишеней.

Жиры, или липиды (греч. lipos - жир)

С химической точки зрения жиры являются сложными эфирами, образованными трехатомным спиртом глицерином и высшими карбоновыми кислотами (жирными кислотами). Среди их свойств надо выделить то, что они практически нерастворимы в воде. Вспомните, как тяжело смыть жир с рук водой.

Почему именно мыло смывает жир с рук? Дело в том, что молекула мыла повторяет свойства жира: одна часть ее гидрофобна, а другая гидрофильна. Мыло соединяется с молекулой жира гидрофобной частью, и вместе они легко смываются водой.

Моющее действие мыла

При окислении жиров выделяется много энергии: 1 г - 38,9 кДж. Это вдвое больше выделяющейся энергии при расщеплении 1г углеводов.

Жиры имеют способность накапливаться в клетках, расположенных в подкожно-жировой клетчатке, внутренних органах. Эти запасы являются резервом организма на случай голодания или при недостаточном питании.

В жирах также запасается вода: в 100 г жира содержится 107 мл воды. Многим пустынным животным (верблюдам) жировые запасы помогают длительное время обходиться без воды.

Жиры входят в состав биологических мембран клеток человека вместе с белками. Из фосфолипидов построены мембраны всех клеток органов и тканей!

Так, к примеру, холестерин - обязательный компонент мембраны, придает ей определенную жесткость и совершенно необходим для нормальной жизнедеятельности (заболевания возникают только при нарушении липидного обмена).

Строение мембраны

Жиры обладают плохой теплопроводностью. Располагаясь в подкожно-жировой клетчатке, они образуют термоизолирующий слой. Особенно хорошо он развит у ластоногих (моржи и тюлени), китов, защищает их от переохлаждения.

Некоторые гормоны по строению относятся к жирам: половые (андрогены - мужские и эстрогены - женские), гормон беременности (прогестерон), кортикостероиды.

Производное жира - витамин D - принимает важное участие в обмене кальция и фосфора в организме. Он образуется в коже под действием ультрафиолетового излучения (солнечного света). При недостатке витамина D возникает заболевание - рахит.

Рахит

Углеводы

    Моносахариды (греч. monos — единственный)

Простые сахара, легко растворяющиеся в воде и имеющие сладкий вкус. Моносахариды подразделяются на гексозы (имеют 6 атомов углерода) - глюкоза, фруктоза, и пентозы (имеют 5 атомов углерода) - рибоза и дезоксирибоза, входящие в состав нуклеиновых кислот.

При гидролизе олигосахариды распадаются на моносахариды. В состав олигосахаридов может входить от 2 до 10 моносахаридных остатков. Если в состав олигосахарида входят 2 остатка моносахарида, то его называют дисахарид. К дисахаридам относятся сахароза, лактоза, мальтоза. При гидролизе сахароза распадается на глюкозу и фруктозу.

Олигосахариды

Это биополимеры, в состав которых входят сотни тысяч моносахаридов. Они обладают высокой молекулярной массой, нерастворимы в воде, на вкус несладкие.

Крахмал, целлюлоза, гликоген, хитин и муреин - все это биополимеры. Давайте вспомним, где они находятся.

Клеточная стенка образована: у растений - целлюлозой, у грибов - хитином, у бактерий - муреином. Запасным питательным веществом растений является крахмал, животных - гликоген.

Целлюлоза

В результате расщепления 1 г углеводов высвобождается 17,6 кДж энергии.

Запасным питательным веществом растений и животных соответственно являются крахмал и гликоген. Расщепление гликогена позволяет нам оставаться в сознании и быть активными между приемами пищи.

Гликоген представляет собой разветвленную молекулу, состоящую из остатков глюкозы. За счет больших размеров такая молекула хорошо удерживается в клетке, а ее разветвленность позволяет ферментам быстро отщеплять множество молекул глюкозы одновременно.

Гликоген

Существуют заболевания, при которых распад гликогена нарушается: в результате нейроны не получают глюкозы (источника энергии, соответственно не синтезируются и молекулы АТФ). Из-за этого становятся возможны частые потери сознания.

Целлюлоза входит в состав клеточных стенок растений, придавая им необходимую твердость. Хитин образует клеточную стенку грибов и наружный скелет членистоногих.

Классификация углеводов

Нуклеиновые кислоты (от лат. nucleus — ядро)

Для ДНК характерны следующие азотистые основания: аденин - тимин, гуанин - цитозин; для РНК: аденин - урацил, гуанин - цитозин. Исходя из принципа комплементарности, данные основания соответствуют друг другу, в результате чего между ними образуются связи.

Между аденином и тимином образуется 2 водородные связи, а между гуанином и цитозином - 3.

Азотистые основания

Именно по этой причине количество аденина в молекуле ДНК всегда совпадает с количеством тимина. К примеру, если в ДНК 20% аденина, то с уверенностью можно сказать, что в ней 20% тимина. Выходит на оставшиеся основания - цитозин и гуанин - остается 60%, значит, цитозин и гуанин составляют в ДНК 30% каждый. Таким нехитрым образом, зная процент содержания одного основания, можно подсчитать все остальные.

В ДНК остаток сахара - дезоксирибоза, в РНК - рибоза.

Строение ДНК

    Рибосомальная РНК (рРНК)

Синтезируется в ядрышке. рРНК входит в состав малых и больших субъединиц рибосом. В процентном отношении рРНК составляет 80-90% всей РНК клетки.

Синтезируется в ядре в ходе процесса транскрипции (лат. transcriptio — переписывание). Фермент РНК-полимераза строит цепь иРНК по принципу комплементарности с ДНК. Исходя из данного принципа, гуанин (Г) в молекуле ДНК соединяется с цитозином (Ц) в РНК. Далее соответственно: цитозин (Ц) - гуанин (Г), аденин (А) - урацил (У), тимин (Т) - аденин (А).

Комплементарность ДНК и РНК

Обеспечивает транспорт аминокислоты к рибосоме во время синтеза белка. Благодаря этому становится возможным соединение аминокислот друг с другом, образуется белок. тРНК имеет характерную форму клеверного листа.

тРНК

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Какие продукты питания содержат большое количество жира?

Общая характеристика органических веществ. Среди всех химических элементов есть один, который наиболее тесно связан с живыми организмами. Это углерод. Известно уже более миллиона различных молекул, построенных на его основе. Наиболее интересна уникальная способность атомов углерода вступать в ковалентную связь друг с другом, образуя длинные цепи, сложные кольца и иные структуры. Органические вещества – это сложные углеродсодержащие соединения. Прежде считали, что только живые организмы способны их синтезировать. Однако сейчас путём химического синтеза уже получено огромное число различных органических соединений.

Простейшие углеродные соединения – это углеводороды, молекулы которых состоят из атомов только углерода и водорода. Самый простой углеводород – метан. В ранний период истории Земли метан входил в состав её первичной атмосферы. Возможно, именно он и положил начало бесчисленному разнообразию углеродсодержащих соединений, которые возникали по мере развития жизни и которые сейчас являются основой жизни.

В современных живых ор га низ мах углеводороды встречаются нечасто.

Сорок атомов углерода входит в состав углеводорода каротина – оранжево-жёлтого пигмента. Богаты каротином плоды шиповника и смородины, морковь и томаты, яичный желток. Очень важен для полноценного питания животных и человека ?-каротин – провитамин А, который в организме превращается в витамин А.

Некоторые млекопитающие способны избирательно накапливать провитамин А в жировой клетчатке и молоке. При недостатке витамина А снижается сопротивляемость к инфекционным заболеваниям, страдает репродуктивная функция, возникают проблемы с кожей и развивается так называемая куриная слепота – нарушается темновая адаптация.

Однако подавляющее большинство органических соединений устроено гораздо более сложно, нежели углеводороды.

Органические вещества живой природы чрезвычайно разнообразны по своим размерам, строению и функциям. Поэтому создать единую классификацию, которая учитывала бы все характерные особенности каждого соединения, практически невозможно. Наиболее распространено деление всех органических соединений на низкомолекулярные (аминокислоты, липиды, органические кислоты и др.) и высокомолекулярные, или биополимеры. Полимеры – это молекулы, состоящие из повторяющихся структурных единиц – мономеров. В свою очередь, все биополимеры подразделяют на две группы: гомополимеры, или регулярные, построенные из мономеров одного типа (например, гликоген, крахмал и целлюлоза состоят из молекул глюкозы), и гетерополимеры, или нерегулярные, в состав которых входят отличающиеся друг от друга мономеры (например, белки состоят из 20 типов аминокислот, а нуклеиновые кислоты – из 8 типов нуклеотидов: ДНК – из 4 типов, РНК – из 4 типов (см. § 8, 9)).

Рассмотрим наиболее важные группы органических соединений, которые определяют основные свойства клеток и организмов (рис. 13).

Липиды. Среди низкомолекулярных органических соединений, входящих в состав живых организмов, важную роль играют липиды, к которым относят жиры, воски и разнообразные жироподобные вещества. Это гидрофобные соединения, нерастворимые в воде. Обычно общее содержание липидов в клетке колеблется в пределах 5–15 % от массы сухого вещества.


Рис. 13. Основные группы органических веществ


Рис. 14. Модель (А) и схема строения (Б) молекулы нейтрального жира

Однако в клетках подкожной жировой клетчатки их количество возрастает до 90 %.

Широко распространены в природе нейтральные жиры, которые представляют собой соединения высокомолекулярных жирных кислот и трёхатомного спирта глицерина (рис. 14). В цитоплазме клеток нейтральные жиры откладываются в виде жировых капель.

Жиры являются источником энергии. При окислении 1 г жира до углекислого газа и воды выделяется 38,9 кДж энергии (при окислении 1 г глюкозы – всего 17 кДж).

Жиры служат источником метаболической воды, из 1 г жира образуется 1,1 г воды. Используя свои жировые запасы, верблюды или впадающие в зимнюю спячку суслики могут обходиться без воды длительное время.

Жиры в основном откладываются в клетках жировой ткани. Эта ткань служит энергетическим депо организма, предохраняет его от потери тепла и выполняет защитную функцию. В полости тела между внутренними органами у позвоночных животных формируются упругие жировые прокладки, которые защищают органы от повреждений, а подкожная жировая клетчатка создаёт теплоизоляционный слой.

Воски – пластичные вещества, обладающие водоотталкивающими свойствами. У насекомых они служат материалом для постройки сот. Восковой налёт на поверхности листьев, стеблей, плодов защищает растения от механических повреждений, ультрафиолетового излучения и играет важную роль в регуляции водного баланса.

Не менее важное значение в организме имеют жироподобные вещества.

Представители этой группы – фосфолипиды – формируют основу всех биологических мембран. По своей структуре фосфолипиды сходны с жирами, но в их молекуле один или два остатка жирных кислот замещены остатком фосфорной кислоты.

Важную роль в жизнедеятельности всех живых организмов, особенно животных, играет жироподобное вещество – холестерин. В корковом слое надпочечников, в половых железах и в плаценте из него образуются стероидные гормоны (кортикостероиды и половые гормоны). В клетках печени из холестерина синтезируются желчные кислоты, необходимые для нормального переваривания жиров.

При неправильном питании, если рацион человека чрезмерно богат жирами, содержание холестерина в крови резко возрастает. Это может привести к образованию на стенках кровеносных сосудов холестериновых бляшек, которые сужают и даже полностью перекрывают просвет сосудов, тем самым нарушая кровоснабжение органов и тканей. Развивается заболевание – атеросклероз.

К жироподобным веществам относят также жирорастворимые витамины А, D, E, K, обладающие высокой биологической активностью.

Вопросы для повторения и задания

1. Какие органические вещества входят в состав клетки?

2. Что такое липиды? Опишите их химический состав.

3. Какова роль липидов в обеспечении жизнедеятельности организма?

4. В чём заключается биологическое значение жироподобных веществ?

6. Составьте схемы – классификации органических веществ. На основе каких критериев созданы ваши схемы?

Подумайте! Выполните!

1. Какие вы знаете биологически активные вещества в организме человека, относящиеся к группе липидов? Каковы их функции?

2. Объясните, как восковой слой на поверхности листьев участвует в регуляции водного баланса растений.

3. В организме может существовать запас витаминов. Подумайте, какие витамины – жирорастворимые или водорастворимые – могут депонироваться в тканях. Объясните свою точку зрения.

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

Повторите и вспомните!

Человек

Обмен липидов. В организм человека липиды поступают с разнообразной животной и растительной пищей. Потребность в липидах (жирах) определяется общей интенсивностью процессов энергетического и пластического обмена, составляя в среднем 80–100 г в сутки. Избыток липидов откладывается в подкожной жировой клетчатке и стенках внутренних органов. В результате образуются депо, способные покрывать наши затраты энергии в течение многих суток. Как и углеводы, липиды с участием кислорода распадаются до CO2 и H2O.

Наибольшую ценность имеют липиды растительного происхождения. Молекулы, подобные растительным липидам, наш организм не способен синтезировать самостоятельно. Следовательно, они относятся к разряду незаменимых компонентов питания. Важно, чтобы доля растительных липидов (подсолнечное, оливковое, кукурузное, соевое масло) в пище была не ниже 30–40 %. При их дефиците страдают в первую очередь органы и ткани, где происходит интенсивное образование новых клеток (кожа, слизистые, красный костный мозг). Избыток гликогена, хранящегося в печени, может превращаться в жиры. В результате чрезмерное поступление углеводов и липидов с пищей приводит к накоплению жировых запасов, росту массы тела, увеличению риска многих заболеваний.

Кроме этого ретинол обнаруживается практически во всех клеточных мембранах. Совместно с липидами растительного происхождения он обеспечивает их гибкость и эластичность. Недостаток ретинола приводит к шелушению кожи, помутнению роговицы глаз, быстрому ухудшению состояния слизистых и красного костного мозга.

Витамин D (кальциферол) регулирует обмен кальция и фосфора и необходим для нормального развития костной ткани. Суточная доза витамина D для детей выше, чем для взрослых, и составляет 10–25 мг. При недостатке кальциферола в детском возрасте развивается рахит: кости конечностей искривляются, снижается тонус мышц, организм становится менее устойчив к инфекционным заболеваниям. Витамин D содержится в рыбьем жире, печени, яичном желтке. Это один из немногих витаминов, который может синтезироваться в организме человека. Он образуется в коже под действием ультрафиолетовых лучей солнечного спектра. Для предупреждения и лечения рахита детей не только кормят продуктами, богатыми витамином D, но и облучают специальной кварцевой лампой.

Витамин K (филлохинон) участвует в образовании протромбина, без которого невозможно свёртывание крови, и играет важную роль в формировании и восстановлении костей, обеспечивая синтез белка костной ткани. Витамин K доставляется в организм с пищей и частично образуется микрофлорой толстого кишечника. Витамином K богаты многие продукты: говяжья печень, цветная капуста, кабачки, салат. Суточная потребность в витамине K взрослых людей невелика, ориентировочно она составляет 600–800 мкг, т. е. меньше миллиграмма.

Витамин Е (токоферол) входит в состав клеточных мембран и защищает их от окисления. Основные источники витамина Е – это зёрна злаков, растительные масла, яйца, салат-латук, печень. Суточная потребность в токофероле – 10–15 мг. Витамин Е нетоксичен, однако его избыточное содержание повышает кровяное давление.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

7.1. Общая характеристика крови

7.1. Общая характеристика крови Кровь, лимфа и тканевая жидкость являются внутренней средой организма, в которой осуществляется жизнедеятельность клеток, тканей и органов. Внутренняя среда человека сохраняет относительное постоянство своего состава, которое

1. Общая характеристика инфекции

1. Общая характеристика инфекции Инфекция – это совокупность биологических реакций, которыми макроорганизм отвечает на внедрение возбудителя.Диапазон проявлений инфекций может быть различным. Крайними формами проявления инфекций являются:1) бактерионосительство,

1. Общая характеристика и возбудители ПТИ

1. Общая характеристика и возбудители ПТИ Пищевые токсикоинфекции (ПТИ) – обширная группа острых кишечных инфекций, развивающихся после употребления в пищу продуктов, инфицированных возбудителями и их токсинами.Клинически эти болезни характеризуются внезапным

2.1. Общая характеристика сигнала

2.1. Общая характеристика сигнала ССП выделяют при помощи специальных методов из ЭЭГ. Частотный диапазон ССП включает полосу от 0 Гц до 3 кГц и ограничен, с одной стороны, сверхмедленной электрической активностью мозга [Илюхина, 1977], а с другой – спайковой активностью

Общая характеристика

Общая характеристика Общий объем крови у взрослого человека составляет у женщин – 4 л, у мужчин – 5,2 л (примерно 8 % от массы тела). В норме рН крови – 7,36 – 7,7. Относительная плотность цельной крови – 1,050 – 1,065, плазмы – 1,024 – 1,030. Вязкость крови в 4–5 раз выше вязкости воды

Общая характеристика психической активности

Общая характеристика психической активности Как мы могли убедиться, на низшем уровне элементарной сенсорной психики поведение животных выступает в достаточно разнообразных формах, но все же мы имеем здесь дело лишь с примитивными проявлениями психической активности.

1.1. Общая характеристика

1.1. Общая характеристика К одноклеточным, или простейшим относятся около 30 тыс. видов, которые обитают в морях и океанах, пресных водоемах, в почве. Часть из них (около 3 тыс. видов) – паразиты животных и человека. Необходимым условием для жизни простейших является наличие

2.1. Общая характеристика

2.1. Общая характеристика Многоклеточные животные – организмы, тело которых состоит из многих клеток и их производных (различные виды межклеточного вещества). Характерный признак многоклеточных – качественная неравноценность слагающих их тело клеток, их

10.1. Общая характеристика

10.1. Общая характеристика По данным разнообразных исследований, доминирующими загрязнителями атмосферы являются автомобильный транспорт, предприятия электроэнергетики и многочисленные котельные. Из основных веществ в списке представлены оксиды азота, сероводород,

8. Органические вещества. Углеводы. Белки

8. Органические вещества. Углеводы. Белки Вспомните!Какие вещества называют биологическими полимерами?Каково значение углеводов в природе?Назовите известные вам белки. Какие функции они выполняют?Углеводы (сахара). Это обширная группа природных органических

9. Органические вещества. Нуклеиновые кислоты

9. Органические вещества. Нуклеиновые кислоты Вспомните!Почему нуклеиновые кислоты относят к гетерополимерам?Что является мономером нуклеиновых кислот?Какие функции нуклеиновых кислот вам известны?Какие свойства живого определяются непосредственно строением и

Читайте также: