Опыты гальвани и маттеуччи кратко

Обновлено: 05.07.2024

Тема занятия: Биоэлектрические явления. Современные представления о природе биопотенциалов.

Работа № 1. Биологический метод демонстрации биоэлектрических явлений в возбудимых тканях (1 и 2 опыты Л. Гальвани и опыт К. Маттеучи

Суть первого опыта Гальвани, который впервые бесспорно доказал существование "животного электричества", состоит в том, что при соприкосновении нервно-мышечного препарата с биметаллическим пинцетом наблюдается сокращение мышцы.

Первый опыт Гальвани.

Для работы необходимо: биметаллический пинцет, набор препаровальных инструментов, лоток, универсальный штатив, марлевые салфетки, раствор Рингера, лягушка.

Ход работы. Готовят препарат двух задних лапок лягушки и подвешивают его на штатив, берут биметаллический пинцет, одна бранша которого сделана из меди, а другая – из железа. Медную браншу подводят под нервный сплетения, а другую прикладывают к мышцам лапки. Наблюдают сокращение мышц лапок.

Рекомендации к оформлению работы: зарисуйте схему опыта, сделайте вывод о причине сокращения мышц.

Второй опыт Гальвани (сокращение без металла) состоял в том, что сокращение мышц лапки лягушки воспроизводилось без участия металла путем набрасывания отпрепарированного седалищного нерва на поврежденный участок мышцы голени. Разность потенциалов между наружной поверхностью мышцы и ее внутренней частью, существующая в покое, отчетливо проявляется в случаях, когда мышца повреждена. Потенциал, возникающий между неповрежденным и поврежденным участками, получил название "потенциал повреждения" или "демаркационный потенциал". Когда набрасываемый нерв попадает на поврежденный электроотрицательный участок мышцы, происходит замыкание цепи, в которой роль положительного полюса играют неповрежденная поверхность мышцы и участок соприкасающегося с ней нерва. Таким образом, во втором опыте Гальвани причиной возбуждения нерва является раздражающее действие тока, возникающего непосредственно в тканях.

Для работы необходимо: набор препаровальных инструментов, лоток, пипетка, стеклянный крючок, марлевые салфетки, раствор Рингера, лягушка.

Ход работы. Готовят препарат задней лапки лягушки. Затем тщательно препарируют седалищный нерв и отсекают его у позвонков. В нижней трети бедра пересекают мышцы и стеклянным крючком быстро набрасывают седалищный нерв таким образом, чтобы он одновременно коснулся поврежденной и не поврежденной поверхности бедра. При этом происходит сокращение мышц голени.

Рекомендации к оформлению работы. Зарисуйте схему опыта, сделайте вывод о причине сокращения мышц лапки.

Опыт Маттеучи. Раздражение нерва токами действия скелетной мышцы (вторичный тетанус). Маттеучи в 1840 г. показал, что можно вызвать сокращение мышц нервно-мышечного препарата, прикладывая нерв к сокращающимся мышцам другого препарата. Этот опыт свидетельствует о том, что в сокращающейся (действующей) мышце возникают токи, причем настолько значительные, что их можно использовать в качестве раздражителя для нерва другого препарата. Эти токи получили название "токов действия".

Для работы необходимо: набор препаровальных инструментов, лоток, стимулятор, электроды, стеклянный крючок, пробковая пластинка, раствор Рингера, лягушка.

Ход работы. Обездвиживают лягушку и готовят два препарат задних лапок лягушки, затем стеклянным крючком препарируют седалищный нерв у обоих препаратов до коленного сустава, удаляют бедренную кость и мышцы бедра, оставив голень и стопу. Нерв одного препарата оставляют с кусочком позвоночника, а у другого кусочек позвоночника. Обе лапки укладывают на пробковую пластинку. Нерв одного нервно-мышечного препарата (с кусочком позвоночника) с помощью стеклянного крючка помещают на электроды, которые соединены со стимулятором. На мышце этого препарата в продольном направлении набрасывают нерв второго нервно-мышечного препарата. Нерв первого нервно-мышечного препарата подвергают ритмическому раздражению, наблюдают тетаническое сокращение лапок.

При выполнении работы необходимо особенно бережно относится к препаровке нерва, следить, чтобы в ходе приготовления он не подсыхал. Непосредственно перед экспериментом поверхность мышцы первого нервно-мышечного препарата следует подсушить полоской фильтровальной бумаги.

Рекомендации к оформлению работы: Зарисуйте схему опыта, сделайте вывод о причине возникновения вторичного тетануса.

Рекомендации к оформлению работы: Зарисуйте схему проведения опыта, в выводе объясните возникновение токов действия.

История изучения биоэлектрических явлений

С изобретением в 20-х годах XIX столетия гальванометра (мультипликатора) и других электроизмерительных приборов физиологи получили возможность точно измерять электрические токи, возникающие в живых тканях, посредством специальных физических приборов.

С помощью мультипликатора К. Маттеучи (1838) впервые показал, что наружная поверхность мышцы заряжена электроположительно по отношению к ее внутреннему содержимому и эта разность потенциалов, свойственная состоянию покоя, резко падает при возбуждении. Маттеучи произвел также опыт, известный под названием опыта вторичного сокращения: при прикладывании к сокращающейся мышце нерва второго нервно-мышечного препарата его мышца тоже сокращается. Опыт Маттеучи объясняется тем, что возникающие в мышце при возбуждении потенциалы действия оказываются достаточно сильными, чтобы вызвать возбуждение приложенного к первой мышце нерва, а это влечет за собой сокращение второй мышцы.

Наиболее полно учение об биоэлектрических явлениях в живых тканях было разработано в 40—50-х годах прошлого столетия Э. Дюбуа-Реймоном. Особой его заслугой является техническая безупречность опытов. С помощью усовершенствованных им и приспособленных для нужд физиологии гальванометра, индукционного аппарата и неполяризующихся электродов Дюбуа-Реймон дал неопровержимые доказательства наличия электрических потенциалов в живых тканях как в покое, так и при возбуждении. На протяжении второй половины XIX и в XX веке техника регистрации биопотенциалов непрерывно совершенствовалась. Так, в 80-х годах прошлого столетия были применены в электрофизиологических исследованиях Н. Е. Введенским телефон, Липпманом— капиллярный электрометр, а в начале нашего столетия В. Эйнтховеном — струнный-гальванометр.

Благодаря развитию электроники физиология располагает весьма совершенными электроизмерительными приборами, обладающими малой инерционностью (шлейфные осциллографы) и даже практически безынерционными (электронно-лучевые трубки). Необходимая степень усиления биотоков обеспечивается электронными и усилителями переменного и постоянного тока. Разработаны микрофизиологические приемы исследования, позволяющие отводить потенциалы от одиночных нервных и мышечных клеток и нервных волокон. В этом отношении особое значение имеет использование в качестве объекта исследования гигантских нервных волокон (аксонов) головоногого моллюска кальмара. Их диаметр достигает 1 мм, что позволяет вводить внутрь волокна тонкие электроды, перфузировать его растворами различного состава, применять меченые ионы дли изучения ионной проницаемости возбудимой мембраны. Современные представления о механизме возникновения биопотенциалов в значительной мере основаны на данных, полученных в эксперименте на таких аксонах.

С изобретением в 20-х годах XIX столетия гальванометра (мультипликатора) и других электроизмерительных приборов физиологи получили возможность точно измерять электрические токи, возникающие в живых тканях, посредством специальных физических приборов.

С помощью мультипликатора К. Маттеучи (1838) впервые показал, что наружная поверхность мышцы заряжена электроположительно по отношению к ее внутреннему содержимому и эта разность потенциалов, свойственная состоянию покоя, резко падает при возбуждении. Маттеучи произвел также опыт, известный под названием опыта вторичного сокращения: при прикладывании к сокращающейся мышце нерва второго нервно-мышечного препарата его мышца тоже сокращается. Опыт Маттеучи объясняется тем, что возникающие в мышце при возбуждении потенциалы действия оказываются достаточно сильными, чтобы вызвать возбуждение приложенного к первой мышце нерва, а это влечет за собой сокращение второй мышцы.

Наиболее полно учение об биоэлектрических явлениях в живых тканях было разработано в 40—50-х годах прошлого столетия Э. Дюбуа-Реймоном. С помощью усовершенствованных им и приспособленных для нужд физиологии гальванометра, индукционного аппарата и неполяризующихся электродов Дюбуа-Реймон дал неопровержимые доказательства наличия электрических потенциалов в живых тканях как в покое, так и при возбуждении.

Так, в 80-х годах прошлого столетия были применены в электрофизиологических исследованиях Н. Е. Введенским телефон, Липпманом— капиллярный электрометр, а в начале нашего столетия В. Эйнтховеном — струнный-гальванометр.


Первый опыт Гальвани — сокращение икроножной мышцы лягушки при действии особым (Fe/Cu) пинцетом на седалищный нерв.

Второй опыт Гальвани — сокращение икроножной мышцы лягушки, наблюдаемое при набрасывании седалищного нерва на поврежденный и неповрежденный участки поверхности другой мышцу.



Позднее открытия Гальвани были подтверждены в работах Маттеучи (1837). Однако Маттеучи обнаружил явление вторичного, или индуцированного, сокращения: при помещении нерва одного нервно-мышечного препарата на мышцу другого препарата и раздражении нерва второго препарата Маттеучи наблюдал сокращение мышц обоих препаратов (рис. 3).


Рис. 3. Опыт Маттеучи: вторичное (индуцированное) сокращение мышцы

На основании этого явления Маттеучи выдвинул предположение об изменении электрических зарядов нервной ткани при ее возбуждении.

В 1896 г. В.Ю. Чаговец впервые высказал гипотезу о ионном механизме электрических потенциалов в живых клетках и попытался применить для их объяснения теорию электролитической диссоциации Аррениуса. В 1902 г. Ю.Бернштейном была развита мембранно-ионная теория, согласно которой клеточная поверхность представляет собой полупроницаемую мембрану, которая в состоянии физиологического покоя снаружи заряжена положительно, а внутри — отрицательно.

Современные представления о природе биоэлектрических явлений в тканях базируются на результатах работ Алана Ходжкина, Эндрью Хаксли, Бернарда Катца, которые в 1940-50-х гг. модифицировали и экспериментально обосновали мембранно-ионную теорию Ю. Бернштейна. В настоящее время их взгляды о природе биоэлектрических явлений пользуются всеобщим признанием. Согласно их представлениям наличие электрических потенциалов в живых клетках обусловлено различной концентрацией ионов Na + , К + , Са 2+ и CI- внутри и вне клетки, а также различной проницаемостью для них клеточной мембраны. За разработку теории ионного механизма возбуждения эти авторы были удостоены звания лауреатов Нобелевской премии.

Понятие о гальванизме

Из первого опыта Л. Гальванн известно, что разноименные металлы являются источником гальванического тока, который может оказывать раздражающее воздействие на живые ткани. Это должен учитывать врач-стоматолог при протезировании и пломбировании зубов разнородными металлами (золото, нержавеющая сталь, амальгамы), между которыми может возникать гальванический ток. Поскольку слюна является слабым электролитом, то выделение ионов металла в слюну создает условия для возникновения в полости рта микротоков различной величины. Сила возникающего тока зависит от следующих факторов:

  • рН слюны (сила тока увеличивается при отклонении рН в любую сторону от нейтральной);
  • качества имеющихся в полости рта металлов, их обработки и того, насколько далеко они находятся друг от друга в электрохимическом ряду металлов.

Читайте также: