Оптоэлектронные приборы и приборы отображения информации кратко

Обновлено: 05.07.2024

Оптоэлектронными приборами называют устройства, излучающие и преобразующие излучение в инфракрасной, видимой или ультрафиолетовой областях спектра или использующие для своей работы электромагнитные излучения, частоты которых находятся в этих областях. В настоящее время к оптоэлектронным приборам относят

  • полупроводниковые приборы и микросхемы, выполняющие функции устройств оптической переработки информации,
  • устройства отображения информации, сканисторы – устройства развертки изображений,
  • единичные преобразователи электрических сигналов в оптические и наоборот – фотоизлучатели (светодиоды и лазеры) и фотоприемники (фоторезисторы, фотодиоды, фототранзисторы и фототиристоры), а также оптроны.

Оптронами называют приборы, в которых имеются и источники, и приемники излучения, конструктивно объединенные и помещенные в один корпус. Широко используются оптроны, в которых применяются пары

  • светодиод – фотодиод,
  • светодиод – фототранзитор,
  • светодиод – фототиристор.

Устройства оптоэлектроники имеют ряд достоинств. В них обеспечивается практически полная гальваническая развязка между входной и выходной цепями. Отсутствует обратное влияние приемника сигнала на его источник. Легко согласуются между собой электрические цепи с разными входными и выходными импедансами. Оптоэлектронные устройства имеют широкую полосу пропускания и преобразования сигналов, большое быстродействие и высокую информационную емкость оптических каналов связи. На оптические цепи не влияют всевозможные помехи, вызванные электрическими и магнитными полями.

В устройствах оптоэлектроники передача информации от источника оптического излучения к приемнику осуществляется через светопроводящую среду (воздух, вакуум) или специальные световоды (оптические волокна или планарные волноводы), выполняющие роль проводника оптического излучения. По существу, световоды в световодных системах являются эквивалентами электрических проводов в электронных системах. Световодные линии передачи информации характеризуются большой пропускной способностью, т.е. возможностью совмещать в одном световоде большое количество каналов связи при очень высокой скорости передачи информации, достигающей десятков гигабит в секунду. Несколько каналов информации можно объединить в одном световоде, так как оптическое излучение легко разделяется по длинам волн. Световодные линии являются эквивалентами электрических проводников и характеризуются большой пропускной способностью, возможностью совмещать в одном световоде большое число каналов связи при очень высокой скорости передачи информации, достигающей гигабит в секунду. Оптическое излучение легко разделяется по длинам волн, поэтому в одном световоде можно объединять несколько каналов информации. Отсутствие электрического тока в световодах обеспечивает их высокую пожаро- и взрывобезопасность. Эти свойства важны при прокладке линий связи и установке устройств автоматики в помещениях с повышенной опасностью. Оптоэлектронные устройства могут быть изготовлены по интегральной технологии. Оптические интегральные схемы обладают широкой полосой пропускания, невосприимчивостью к вибрации, повышенной надежностью, экономичностью при серийном производстве, малыми размерами и массой.

Излучающие приборы преобразуют электрическую энергию в энергию оптического излучения с определенной длиной волны или в узком диапазоне длин волн. В основе работы управляемых источников оптического излучения лежит одно из следующих физических явлений: температурное свечение, газоразрядное излучение, электролюминесценция; индуцированное излучение. Источники излучения бывают когерентными и некогерентными. Лампы накаливания, газоразрядные лампы, электролюминесцентные элементы, инжекционные светодиоды являются некогерентными источниками излучения. Когерентными источниками излучения являются лазеры. Принцип действия полупроводниковых излучающих приборов основан на явлении электролюминесценции. Электролюминесценцией называют явление излучения света телами под действием электрического поля. Электролюминесценция является частным случаем люминесценции. Под люминесценцией понимают электромагнитное нетепловое излучение, обладающее длительностью, значительно превышающей период световых колебаний. Люминесцировать могут твердые, жидкие и газообразные тела. В оптоэлектронных полупроводниковых приборах используется люминесценция кристаллических примесных полупроводников с широкой запрещенной зоной. Для работы в диапазоне видимого излучения (0,38…0,78 мкм) используются полупроводники с шириной запрещенной зоны 1,5…3,0 эВ. Это исключает применение германия и кремния, технология которых хорошо отработана, а используются материалы типа АIIIВV (арсенид галлия GaAs, фосфид галлия GaP, нитрид галлия GaN, карбид кремния SiC), трехкомпонентный твердый раствор фосфида и арсенида галлия GaAs1-xPx, где 0 £ x Влияние ионизационного излучения на материалы применяемые в радиотехнике

Современная наука активно развивается в самых разных направлениях, стремясь охватить все возможные потенциально полезные сферы деятельности. Среди всего этого следует выделить оптоэлектронные приборы, которые используются как в процессе передачи данных, так и их хранения или обработки. Они используются практически везде, где применяется более или менее сложная техника.

Что это такое?

  • блоках связи аппаратуры;
  • входных цепях измеряющих устройств;
  • высоковольтных и сильноточных цепях;
  • мощных тиристорах и симисторах;
  • релейных устройствах и так далее.

Все такие изделия могут быть классифицированы по нескольким базовым группам, в зависимости от их отдельных компонентов, конструкции или других факторов. Об этом ниже.

оптоэлектронные приборы

Излучатель

Оптоэлектронные приборы и устройства оснащаются системами передачи сигнала. Их называют излучателями и в зависимости от типа, изделия разделяются следующим образом:

  • Лазерные и светодиоды. Такие элементы относятся к самым универсальными. Для них характерны высокие показатели коэффициента полезного действия, весьма узкий спектр луча (этот параметр также известен как квазихроматичность), достаточно широкий диапазон работы, поддержание четкого направления излучения и очень высокая скорость работы. Устройства с подобными излучателями работают очень долго и крайне надежно, отличаются небольшими размерами и отлично показывают себя в сфере микроэлектронных моделей.
  • Электролюминесцентные ячейки. Такой элемент конструкции показывает не особо высокий параметр качества преобразования и работает не слишком долго. При этом, устройствами весьма тяжело управлять. Однако именно они лучше всего подходят для фоторезисторов и могут использоваться для создания многоэлементных, многофункциональных структур. Тем не менее в силу своих недостатков, сейчас излучатели такого типа используются достаточно редко, только тогда, когда без них действительно нельзя обойтись.
  • Неоновые лампы. Отдача света этих моделей сравнительно невысока, а также они плохо выдерживают повреждения и работают недолго. Отличаются большими размерами. Используются крайне редко, в отдельных видах приборов.
  • Ламы накаливания. Такие излучатели применяются только в резисторном оборудовании и больше нигде.

Как следствие, светодиодные и лазерные модели оптимально подходят практически для всех сфер деятельности и лишь в некоторых областях, где по-другому нельзя, применяются другие варианты.

оптоэлектронные приборы и устройства

Фотоприемник

Классификация оптоэлектронных приборов также производится и по типу этой части конструкции. В качестве принимающего элемента могут использоваться разные типы изделий.

  • Фото- тиристоры, транзисторы и диоды. Все они относятся к универсальным устройствам, способным работать с переходом открытого типа. Чаще всего в основе конструкции лежит кремний и из-за этого изделия получают достаточно широкий спектр чувствительности.
  • Фоторезисторы. Это единственный альтернативный вариант, главным преимуществом которого является изменение свойств очень сложным образом. Это помогает реализовывать всевозможные математические модели. К сожалению, именно фоторезисторы инерционны, что значительно сужает сферу их применения.

Прием луча – это один из самых базовых элементов любого подобного устройства. Только после того как он сможет быть получен, начинается дальнейшая обработка, и она будет невозможна при недостаточно высоком качестве связи. Как следствие, конструкции фотоприемника уделяется огромное внимание.

классификация оптоэлектронных приборов

Оптический канал

Особенности конструкции изделий может неплохо показать используемая система обозначений фотоэлектронных и оптоэлектронных приборов. В том числе это касается и канала передачи данных. Выделяют три основных их варианта:

  • Удлиненный канал. Фотоприемник в такой модели отдален на достаточно серьезное расстояние от оптического канала, образуя специальный световод. Именно такой вариант конструкции активно применяется в компьютерных сетях для активной передачи данных.
  • Закрытый канал. Такой тип конструкции использует специальную защиту. Она превосходно предохраняет канал от внешнего воздействия. Применяются модели для системы гальванической развязки. Это достаточно новая и перспективная технология, сейчас непрерывно совершенствующаяся и постепенно заменяющая собой электромагнитные реле.
  • Открытый канал. Такая конструкция подразумевает наличие воздушного зазора между фотоприемником и излучателем. Используются модели в системах диагностики или разнообразных датчиках.

система обозначений фотоэлектронных и оптоэлектронных приборов

Спектральный диапазон

С точки зрения этого показателя, все виды оптоэлектронных приборов можно разделить на два вида:

полупроводниковые приборы диоды тиристоры оптоэлектронные приборы

Конструкция

По этому показателю оптоэлектронные приборы разделяются на три группы:

  • Специальные. Сюда входят устройства оснащенными несколькими излучателями и фотоприемниками, датчиками присутствия, положения, задымленности и так далее.
  • Интегральные. В таких моделях дополнительно используются специальные логические схемы, компараторы, усилители и другие устройства. Кроме всего прочего, выходы и входы у них гальванически развязаны.
  • Элементарные. Это самый простой вариант изделий, в которых приемник и излучатель присутствуют только в одном экземпляре. Они могут быть как тиристорными, так и транзисторными, диодными, резистивными и вообще, любыми другими.

В приборах могут использоваться все три группы или каждая по отдельности. Конструктивные элементы играют существенную роль и напрямую воздействуют на функциональность изделия. В то же время сложное оборудование может использовать и самые простейшие, элементарные разновидности, если это будет целесообразно. Но верно и обратное.

оптоэлектронные приборы и их применение

Оптоэлектронные приборы и их применение

С точки зрения использования устройств все они могут разделяться на 4 категории:

  • Интегральные схемы. Применяются в самых разных приборах. Используется принцип между разными элементами конструкции при помощи отдельных частей, которые изолированы друг от друга. Это не дает взаимодействовать компонентам никаким образом, кроме того, который был предусмотрен разработчиком.
  • Изоляция. В этом случае используются специальные оптические резисторные пары, их диодные, тиристорные или транзисторные разновидности и так далее.
  • Преобразование. Это один из самых распространенных вариантов использования. В нем ток трансформируется в свет и применяется именно таким образом. Простой пример – всевозможные лампы.
  • Обратное преобразование. Это уже полностью противоположный вариант, в котором именно свет трансформируется в ток. Используются для создания всевозможных приемников.

Фактически, сложно представить себе практически любое устройство, работающее на электричестве и лишенное какого-то варианта оптоэлектронных компонентов. Они могут быть представлены в небольшом количестве, но все равно будут присутствовать.

виды оптоэлектронных приборов

Итоги

Все оптоэлектронные приборы, тиристоры, диоды, полупроводниковые приборы – это конструктивные элементы разных видов оборудования. Они позволяют человеку получать свет, передавать информацию, обрабатывать или даже хранить ее.

Оптоэлектроника – это раздел электроники, связанный главным образом с изучением эффектов взаимодействия между электромагнитными волнами оптического диапазона и электро­нами вещества (преимущественно твердых тел) и охватываю­щий проблемы создания оптоэлектронных приборов (в основ­ном методами микроэлектронной технологии), в которых эти эффекты используются для генерации, передачи, обработки, хранения и отображения информации.

Согласно этому определению оптоэлектронику как научно-техническое направление характеризуют три отличительные черты.

1. Физическую основу оптоэлектроники составляют явления, методы, средства, для которых принципиальны сочетание и неразрывность оптических и электронных процессов.

2. Техническую основу оптоэлектроники определяют конст­руктивно-технологические концепции современной микроэлек­троники: миниатюризация элементов; предпочтительное разви­тие твердотельных плоскостных конструкций; интеграция эле­ментов и функций; ориентация на специальные сверхчистые материалы; применение методов групповой обработки изделий.

3. Функциональное назначение оптоэлектроники состоит в решении следующих задач: генерации, переносе, преобразо­вании, хранении и отображении информации.

Для решения перечисленных задач в оптоэлектронных при­борах используются информацион­ные сигналы в оптической и электрической формах, но определяющими являются оптиче­ские сигналы – именно этим достигается то качественно новое, что отличает оптоэлектронику.

Оптоэлектронными называют приборы, чув­ствительные к электромагнитному излучению в видимой, инфракрасной и ультрафиолетовой областях, а также при­боры, производящие или использующие такое излучение.

В конкретном оптоэлектронном приборе наличие всех трех составляющих данного выше определения является обяза­тельным, но перечисленные отличительные признаки могут быть воплощены в большей или меньшей степени. Это по­зволяет разделить опто- и фотоэлектронные приборы (фото­электронные умножители, электроннолучевые приборы).

На рис. 2.1 представлена классификация оптоэлектронных при­боров и указаны физические эффекты, лежащие в основе их работы.


На практике широко используются источники излуче­ния (излучатели), приемники излучения (фотоприемни­ки) и оптроны (оптопары).

Излучатель – источник, световой поток или яркость которого является функцией электрического сигнала, поступающего на его вход.

Из источников излучения нашли широкое применение светодиоды и лазеры, а из приемников – фоторезисторы, фотодиоды, фототранзисторы и фототиристоры. Широко используются оптроны, в которых применя­ются пары светодиод–фотодиод, светодиод–фототранзистор, светодиод–фототиристор.

По виду используемого излучателя выделяют приборы ко­герентной (с лазерами) и некогерентной (со светоизлучающими диодами) оптоэлектроники.

Как отдельные приборы, так и сложные оптоэлектронные системы создаются из отдельных элементов. Основными оптоэлектронными элементами являются:

· источники когерентного оптического излучения (полупро­водниковый лазер);

· источники некогерентного оптического излучения (светоизлучающий диод);

· активные и пассивные оптические среды;

· приемники оптического излучения (фотодиод);

· оптические элементы (линза);

· волоконно-оптические элементы (волоконно-оптический жгут);

· интегрально-оптические элементы (интегрально-оптическое зеркало).

По функциональному назначению в классе оптоэлектронных приборов, кроме миниатюрных источников излучения и одно- и многоэлементных приемников излучения, следует выделить следующие приборы.

Оптопарой называют оптоэлектронный прибор, в котором конструктивно объединены в общем корпусе излучатель на входе и фотоприемник на выходе, взаимодейст­вующие друг с другом оптически и электрически.

Оптопары широко используются в микроэлектронной и элек­тротехнической аппаратуре для обеспечения электрической развязки при передаче информационных сигналов, бесконтакт­ной коммутации сильноточных и высоковольтных цепей и соз­дания перестраиваемых фотоприемников в устройствах кон­троля и регулирования.

Оптоэлектронные датчики – приборы, преобразующие внешние физические воздействия: температуру, давление, влажность, ускорение, магнитное поле и другие, – в электри­ческие сигналы. Действие этих приборов основано на различных принципах. К датчикам относятся формирователи сигналов изо­бражения и оптопары с открытым оптическим каналом. Осо­бенно интенсивное развитие этого направления связано с по­явлением волоконно-оптических датчиков, в которых внешние воздействия изменяют характеристики оптического сигнала, распространяюще­гося по волокну.

Волоконно-оптические линии связи (ВОЛС) – устройства и системы, содержащие гибкий волоконно-оптический световод (в виде кабеля), сочлененный с излучателем на одном (пере­дающем) конце и с фотоприемником на другом (приемном).

Физическую основу ВОЛС определяют процессы распро­странения оптических сигналов по волоконному световоду, а также светогенерационные и фотоэлектрические явления в из­лучателе и приемнике.

Перечислим основные достоинства оптоэлектронных приборов:

Высокая пропускная способность оптического канала. Частота колебаний на три-пять порядков выше, чем в осво­енном радиотехническом диапазоне. Это значит, что во столько же раз возрастает и пропускная способность оптического ка­нала передачи информации.

Идеальная электрическая развязка входа и выхода. Ис­пользование в качестве носителя информации электрически нейтральных фотонов обусловливает бесконтактность оптиче­ской связи. Отсюда следуют идеальная электрическая развязка входа и выхода; однонаправленность потока информации и отсутствие обратной реакции приемника на источник; помехо­защищенность оптических каналов связи; скрытность передачи информации по оптическому каналу связи.

Как недостатки можно выделить следующие особенности ОЭП:

Малый коэффициент полезного действия. Коэффициент полезного действия преобразований вида E (освещенность) > L (яркость) и L > E в лучших современных приборах (лазеры, светодиоды, p-i-n фо­тодиоды), как правило, не превышает 10. 20%. Поэтому если в устройстве осуществляются такие преобразования лишь два­жды (на входе и на выходе), как, например, в оптопарах или волоконно-оптических линиях связи (ВОЛС), то общий КПД падает до единиц процентов. Введение каждого дополнитель­ного акта преобразования информационных сигналов из одной формы в другую ведет к уменьшению КПД еще на порядок или более. Малое значение КПД вызывает рост энергопотребления, что недопустимо из-за ограниченных возможностей источников питания; затрудняет миниатюризацию, поскольку практически не удается отвести выделяющуюся теплоту; снижает эффек­тивность и надежность большинства оптоэлекронных приборов.

Наличие разнородных материалов, применяемых в оптоэлектронных приборах и системах, обусловливает: малый об­щий КПД устройства из-за поглощения излучения в пассивных областях структур, отражения и рассеяния на оптических гра­ницах; снижение надежности из-за различия температурных коэффициентов расширения материалов; сложность общей герметизации устройства; технологическую сложность и высокую стоимость.

Общая характеристика оптоэлектронных приборов

Оптоэлектронными называют приборы, которые чувствительны к электромагнитному излучению в видимой, инфракрасной и ультрафиолетовой областях, а также приборы, производящие или использующие такое излучение.

Излучение в видимой, инфракрасной и ультрафиолетовой областях относят к оптическому диапазону спектра. Обычно к указанному диапазону относят электромагнитные волны с длиной от 1 нм до 1 мм, что соответствует частотам примерно от 0,5 · 10 12 Гц до 5 · 10 17 Гц. Иногда говорят о более узком диапазоне частот — от 10 нм до 0,1 мм ( 5 · 10 12 …5 · 10 16 Гц). Видимому диапазону соответствуют длины волн от 0,38 мкм до 0,78 мкм (частота около, но меньше 10 15 Гц).

Орлов Анатолий Владимирович

На практике широко используются источники излучения (излучатели), приемники излучения (фотоприемники) и оптроны (оптопары).

Оптроном называют прибор, в котором имеется и источник, и приемник излучения, конструктивно объединенные и помещенные в один корпус.

Из источников излучения нашли широкое применение светодиоды и лазеры, а из приемников — фоторезисторы, фотодиоды, фототранзисторы и фототиристоры.

Широко используются оптроны, в которых применяются пары светодиод-фотодиод, светодиод-фототранзистор, светодиод-фототиристор.

Читайте также: