Описанный четырехугольник это кратко

Обновлено: 02.07.2024

Сегодня ты узнаешь некоторые теоремы, которые помогут тебе в решении, казалось бы, сложных задач по геометрии.

Но после прочтения этой статьи они станут легкими!

Ведь ты будешь знать все об описанном четырехугольнике!

Коротко о главном

Четырехугольник называется описанным, если существует окружность, касающаяся всех его сторон.


В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны.

В буквах: \( \large AB+CD=AD+BC\)


Если в параллелограмм можно вписать окружность, то это – ромб.

Что такое описанный четырехугольник

Посмотри — сперва нарисуем:


А теперь напишем:

Четырехугольник называется описанным, если существует окружность, касающаяся всех его сторон.

А что, разве не всегда существует такая окружность?

Ведь вон треугольник-то всегда является описанным – потому что во всякий треугольник можно вписать окружность. Чем же четырехугольник-то хуже? И вот оказывается, что чем-то, да хуже.

Представь себе, например, длинный прямоугольник.


Как вот в него, спрашивается, можно вписать окружность? Конечно, никак. И это лишь один из примеров четырехугольника, в которой НЕЛЬЗЯ вписать окружность.

А в какие же можно? Вот, оказывается есть такая теорема (утверждение то есть).

В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны.

Вот как это записывается в буквах:


\( \displaystyle a+c=b+d\)
или (то же самое)
\( \displaystyle AB+CD=AD+BC\)


Но тогда у нас есть огромное количество касательных! Ты ещё помнишь, что отрезки касательных, проведённых из одной точки, равны? Ну, вот, значит

\( \displaystyle BK=BN\) (обозначим \( \displaystyle x\))

\( \displaystyle CK=CL\) (обозначим \( \displaystyle y\))

\( \displaystyle DL=DM\) (обозначим \( \displaystyle z\))

\( \displaystyle AM=AN\) (обозначим \( \displaystyle u\))

А теперь получилось, что

\( \displaystyle \left| \beginAB=x+u\\CD=y+z\end \right.\Rightarrow AB+CD=x+y+z+u\)

\( \displaystyle \left| \beginBC=x+y\\AD=u+z\end \right.\Rightarrow BC+AD=x+y+z+u\)

То есть \( \displaystyle AB+CD=AD+BC\)! Здорово, правда?

А теперь получим простое, но красивое следствие из этой теоремы.

Следствие. Если в параллелограмм можно вписать окружность, то это ромб.

Почему? Давай разберёмся. Пусть есть параллелограмм \( \displaystyle ABCD\).


Раз параллелограмм, то \( \displaystyle AB=CD,~AD=BC\) (вспоминаем свойства параллелограмма). Обозначим \( \displaystyle \text=\text\) буквой \( \displaystyle a\), а \( \displaystyle \text=\text\) буквой \( \displaystyle b\).

А теперь применим теорему. \( \displaystyle ABCD\) описанный \( \displaystyle \Rightarrow a+a=b+b\), то есть \( \displaystyle a=b\) – вот и получился ромб.


Видишь, как сработала теорема?

Ну… или не сразу решится, но этот факт непременно тебе поможет.

Доказательство теоремы об окружности, вписанной в четырехугольник


Четырехугольник называется описанным, если существует окружность, касающаяся всех его сторон.

Давай прежде всего осознаем, что, в отличие от треугольника, далеко не во всякий четырехугольник можно поместить окружность так, чтобы она касалась всех его сторон.


А раз так, то математики, конечно же, не могли успокоиться, пока не придумали теорему, которая сообщит нам, что же такое нужно требовать от четырехугольника, чтобы в него можно было поместить окружность, касающуюся всех сторон.

И вот эта теорема:

В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны.


\( \large a+c=b+d\)
или (в других буквах)
\( \large AB+CD=AD+BC\)

А теперь – доказательство!

Пункт 1 вообще ОЧЕНЬ лёгкий. Смотри:


Пусть в \( ABCD\) вписана окружность. Тогда получается из точек \( A,B,C,\) и \( D\) проведено по две касательных, которые равны!

(Вспоминаем о равенстве отрезков касательных проведённых из одной точки)

\( \displaystyle BK=BN\) (обозначим \( x\))

\( \displaystyle CK=CL\) (обозначим \( y\))

\( \displaystyle DL=DM\) (обозначим \( z\))

\( \displaystyle AM=AN\) (обозначим \( u\))

И теперь получается, что

\( \displaystyle \Rightarrow AB+CD=AD+BC!\)

Обе этих суммы состоят из одинаковых кусочков, просто взятых в разном порядке.

Готово: пункт 1 доказали.

А теперь, наоборот, пункт 2.

Пусть в \( \displaystyle ABCD\) выполняется \( \displaystyle AB+CD=AD+BC\)


Обрати внимание, что это всегда можно сделать – центром \( \displaystyle O\) такой окружности будет пересечение биссектрис углов \( \displaystyle B\) и \( \displaystyle C\).

Разберём эти случаи и убедимся, что оба они ведут к противоречию.


Пусть \( \displaystyle AD\) пересекает окружность. Давай тогда проведём \( \displaystyle A_>\), которая будет касаться окружности.

По пункту 1 для четырехугольника \( \displaystyle ABC_>\) должно быть

а по условию для четырехугольника \( \displaystyle ABCD\)

Значит (вычитаем нижнее равенство из верхнего)

То есть \( \displaystyle D_>+AD=A_>\)

Но так СОВСЕМ не может быть – нарушается неравенство треугольника для \( \Delta AD_>\):

Вот и противоречие. Поэтому точно выяснили, что \( AD\) НЕ МОЖЕТ пересекать окружность.

Если все стороны четырёхугольника касаются окружности, то он называется четырёхугольником, описанным около этой окружности, а окружность — вписанной в четырёхугольник.

Не все четырёхугольники возможно описать около окружности, так как биссектрисы четырёх углов могут не пересекаться в одной точке, и не удастся найти центр вписанной окружности.

Cetrst_iev_rl.jpg

Так как отрезки касательных, проведённых из одной точки к окружности, равны, и \(AB = AK + KB\), \(BC = BL + LC\), \(CD = CM + MD\), и \(AD = DN + NA\), то, очевидно, \(AB + CD = BC + AD\).

Это свойство можно использовать и как признак для определения, в какие четырёхугольники можно вписать окружность.

Если суммы противоположных сторон четырёхугольника равны, то в такой четырёхугольник можно вписать окружность.

Самостоятельно сделай обзор четырёхугольников (параллелограмм, в том числе — квадрат, прямоугольник, ромб, трапеция, в том числе — равнобедренная трапеция и прямоугольная трапеция), в которые можно вписать окружность.

Вписанный четырехугольник — четырехугольник, все вершины которого лежат на одной окружности.
Очевидно, эта окружность будет называться описанной вокруг четырехугольника.

Описанный четырехугольник — такой, что все его стороны касаются одной окружности. В этом случае окружность вписана в четырехугольник.

На рисунке — вписанные и описанные четырехугольники и их свойства.

Вписанный и описанный четырехугольники

Ты нашел то, что искал? Поделись с друзьями!

Посмотрим, как эти свойства применяются в решении задач ЕГЭ.

. Два угла вписанного в окружность четырехугольника равны и . Найдите больший из оставшихся углов. Ответ дайте в градусах.

Рисунок к задаче 1

Сумма противоположных углов вписанного четырехугольника равна . Пусть угол равен . Тогда напротив него лежит угол в градусов. Если угол равен , то угол равен .

. Три стороны описанного около окружности четырехугольника относятся (в последовательном порядке) как . Найдите большую сторону этого четырехугольника, если известно, что его периметр равен .

Рисунок к задаче 2

Пусть сторона равна , равна , а . По свойству описанного четырехугольника, суммы противоположных сторон равны, и значит,

Получается, что равна . Тогда периметр четырехугольника равен . Мы получаем, что , а большая сторона равна .

. Около окружности описана трапеция, периметр которой равен . Найдите ее среднюю линию.

Рисунок к задаче 3

Мы помним, что средняя линия трапеции равна полусумме оснований. Пусть основания трапеции равны и , а боковые стороны — и . По свойству описанного четырехугольника,
, и значит, периметр равен .
Получаем, что , а средняя линия равна .

Еще раз повторим свойства вписанного и описанного четырехугольника.

Четырехугольник можно вписать в окружность тогда и только тогда, когда суммы его противоположных углов равны .

Четырехугольник можно описать вокруг окружности тогда и только тогда, когда суммы длин его противоположных сторон равны.

Докажите эти утверждения. Это задание особенно полезно тем, кто решает задачи второй части профильного ЕГЭ по математике.


Четырёхугольником называется фигура, которая состоит из четырёх точек (вершин) и четырёх отрезков (сторон), которые последовательно соединяют вершины. При этом никакие три из данных точек не должны лежать на одной прямой, а соединяющие их отрезки не должны пересекаться.

Четырёхугольник называется выпуклым, если он расположен в одной полуплоскости относительно прямой, которая содержит любую из его сторон.

Сумма углов выпуклого четырёхугольника равна 360°:

Не существует четырёхугольников, у которых все углы острые или все углы тупые.

Каждый угол четырёхугольника всегда меньше суммы трёх остальных углов:

Каждая сторона четырёхугольника всегда меньше суммы трёх остальных сторон:

Площадь произвольного выпуклого четырёхугольника равна:


Диагоналями четырёхугольника называются отрезки, соединяющие его противолежащие вершины.

Диагонали выпуклого четырёхугольника пересекаются, а невыпуклого – нет.

Площадь произвольного выпуклого четырёхугольника:


Если M , N , P , Q – середины сторон выпуклого четырёхугольника ABCD , а R , S – середины его диагоналей, то четырёхугольники MNPQ , MRPS , NSQR являются параллелограммами и называются параллелограммами Вариньона.

Форма и размеры параллелограммов Вариньона связаны с формой и размерами данного четырёхугольника ABCD . Так MNPQ – прямоугольник, если диагонали четырёхугольника ABCD перпендикулярны; MNPQ – ромб, если диагонали четырёхугольника ABCD равны; MNPQ – квадрат, если диагонали четырёхугольника ABCD перпендикулярны и равны;

Отрезки MP , NQ и RS называются первой, второй и третьей средними линиями выпуклого четырёхугольника.

В параллелограмме, и только в нём, середины диагоналей совпадают, и потому третья средняя линия вырождается в точку. Для других четырёхугольников средние линии – отрезки.

Все средние линии четырёхугольника пересекаются в одной точке и делятся ею пополам:

MG=GP , NG=GQ , RG=GS .

Сумма квадратов средних линий четырёхугольника равна четверти суммы квадратов всех его сторон и диагоналей:

MP 2 + NQ 2 + RS 2 = ¼ (AB 2 +BC 2 +CD 2 +AD 2 +AC 2 +BD 2 ).

Если β – угол между первой и второй средними линиями четырёхугольника, то его площадь:


Равными плитками, которые имеют форму произвольного, не обязательно выпуклого, четырёхугольника можно замостить плоскость так, чтобы не было наложений плиток друг на друга и не осталось непокрытых участков плоскости.

Четырёхугольник называется описанным около окружности (описанным), если существует такая окружность, которая касается всех его сторон, тогда сама окружность называется вписанной.

Четырёхугольник является описанным тогда и только тогда, кода суммы его противолежащих сторон равны:

Для сторон описанного четырёхугольника и радиуса вписанной в него окружности верно:

Площадь описанного четырёхугольника:

где r – радиус вписанной окружности, p – полупериметр четырёхугольника.

Площадь описанного четырёхугольника:


Центр вписанной в четырёхугольник окружности является точкой пересечения биссектрис всех четырёх углов этого четырёхугольника.

Точки касания вписанной окружности отсекают равные отрезки от углов четырёхугольника:

AK = AN , BK = BL , CL = CM , DM = DN .

Если O – центр окружности, вписанной в четырёхугольник ABCD, то

∠AOB+∠COD = ∠BOC+∠AOD =180°.

Для описанного четырёхугольника ABCD со сторонами AB = a , BC = b , CD = c и AD = d верны соотношения:


Четырёхугольник называется вписанным в окружность (вписанным), если существует окружность, проходящая через все его вершины, тогда сама окружность называется описанной около четырёхугольника.

Выпуклый четырёхугольник является описанным тогда и только тогда, когда сумма его противолежащих углов равна 180°:

Центр описанной около четырёхугольника окружности является точкой пересечения всех четырёх серединных перпендикуляров сторон этого четырёхугольника.

Первая теорема Птолемея. Выпуклый четырёхугольник тогда и только тогда является вписанным, когда выполняется равенство:


Вторая теорема Птолемея. Выпуклый четырёхугольник тогда и только тогда является вписанным, когда выполняется равенство:


Радиус окружности, описанной около четырёхугольника:


Площадь вписанного четырёхугольника:


Диагонали выпуклого четырёхугольника разбивают каждый его угол на два угла. Углы, опирающиеся на одну сторону, называются связанными углами.

Выпуклый четырёхугольник является вписанным тогда и только тогда, когда у него есть хотя бы одна пара равных связанных углов.

У вписанного четырёхугольника любые два связанных угла равны.

Если четырёхугольник одновременно является описанным и вписанным, то его площадь:



Для радиусов описанной и вписанной окружностей данного четырёхугольника и расстояния между центрами этих окружностей выполняется соотношение:


Параллелограммом называется четырёхугольник, противолежащие стороны которого попарно параллельны:

У параллелограмма противолежащие стороны равны и противолежащие углы равны:

Сумма любых двух соседних углов параллелограмма равна 180°:

∠A +∠ B =∠ B +∠ C =∠ C +∠ D =∠ A +∠ D =180°.

Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам:

Каждая диагональ делит параллелограмм на два равных треугольника:

∠ ABC =∠ CDA ; ∠ ABD =∠ CDB .

Две диагонали параллелограмма делят его на четыре равновеликих треугольника:

Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон:

e 2 +f 2 = a 2 +b 2 +a 2 +b 2 = 2(a 2 +b 2 ).

  • Если у четырёхугольника противолежащие стороны попарно равны, то этот четырёхугольник – параллелограмм.
  • Если у четырёхугольника две противолежащие стороны равны и параллельны, то этот четырёхугольник – параллелограмм.
  • Четырёхугольник, диагонали которого в точке пересечения делятся пополам – параллелограмм.
  • Если у четырёхугольника противолежащие углы попарно равны, то этот четырёхугольник – параллелограмм.

Высотой параллелограмма называется перпендикуляр, проведённый из вершины параллелограмма к неприлежащей стороне:

Площадь параллелограмма можно определить:

  • через его сторону и высоту, проведённую к ней:

Ромбом называется параллелограмм, у которого все стороны равны:

Диагонали ромба пересекаются под прямым углом и являются биссектрисами его углов:

∠ ABD =∠ CBD =∠ ADB =∠ CDB ; ∠ BAC =∠ DAC =∠ BCA =∠ DCA .

В любой ромб можно вписать окружность с центром в точке пересечения его диагоналей.

Радиус окружности, вписанной в ромб, можно вычислить:



  • через отрезки, на которые делит сторону ромба точка касания:


Площадь ромба можно определить:





Прямоугольником называется параллелограмм, у которого все углы прямые:

Диагонали прямоугольника равны и точкой пересечения делятся на четыре равных отрезка:

Площадь прямоугольника можно определить:

Около любого прямоугольника можно описать окружность с центром в точке пересечения его диагоналей и радиусом, который равен половине диагонали:

Квадрат – это прямоугольник, у которого все стороны равны:

Диагонали квадрата равны и перпендикулярны.

Сторона и диагональ квадрата связаны соотношениями:



У квадрата центры вписанной и описанной окружностей совпадают и находятся в точке пересечения его диагоналей.

Радиус описанной окружности:


Радиус вписанной окружности:


Трапецией называется четырёхугольник у которого только две противолежащие стороны параллельны:

Параллельные стороны называются основаниями трапеции, непараллельные – боковыми сторонами.

Высота трапеции – перпендикуляр, проведённый из произвольной точки одного основания трапеции к прямой, содержащей другое основание трапеции.

Средней линией (первой средней линией) трапеции называется отрезок, который соединяет середины боковых сторон данной трапеции:

Средняя линия трапеции параллельна её основаниям и равна их полусумме:

При продолжении до пересечения боковых сторон трапеции образуются два подобных треугольника с коэффициентом подобия, равным отношению основ:

Δ AED ∼ Δ BEC , k = AD / BC .

Треугольники, образованные основами и отрезками диагоналей подобны с коэффициентом подобия, равным отношению основ:

Δ AОD ∼ Δ CОВ , k = AD / BC .

Площади треугольников, образованных боковыми сторонами и отрезками диагоналей трапеции, равны:

Отрезок, соединяющий середины оснований (вторая средняя линия) трапеции, проходит через точку пересечения диагоналей, а его продолжение – через точку пересечения продолжений боковых сторон:

Отрезок, соединяющий середины диагоналей (третья средняя линия) трапеции, параллелен основаниям и равен их полуразности:

В трапецию можно вписать окружность, если сумма её основ равна сумме боковых сторон:

Центром вписанной в трапецию окружности является точка пересечения биссектрис внутренних углов трапеции.

В трапецию АВСD с основаниями AD и BC можно вписать окружность тогда и только тогда, когда выполняется хотя бы одно из равенств:


Боковые стороны трапеции видны из центра окружности, вписанной в данную трапецию, под прямым углом:

Радиус вписанной в трапецию окружности можно определить:


  • через отрезки, на которые делится боковая сторона точкой касания:


Равнобокой называется трапеция, у которой боковые стороны равны:

У равнобокой трапеции:

Около трапеции можно описать окружность тогда и только тогда, когда она равнобокая.

Стороны и диагональ равнобокой трапеции связаны соотношением:

Трапеция называется прямоугольной, если одна из её боковых сторон перпендикулярна основаниям.

Площадь трапеции можно определить:

  • через полусумму оснований (первую среднюю линию) и высоту:



Дельтоид называется четырёхугольник, который имеет две пары равных соседних сторон.

Дельтоид может быть выпуклым или невыпуклым.

Прямые, содержащие диагонали любого дельтоида пересекаются под прямым углом.

В любом дельтоиде углы между соседними неравными сторонами равны.

Площадь любого дельтоида можно определить:


  • через две соседние неравные стороны и угол между ними:

В любой выпуклый дельтоид можно вписать окружность.

Если выпуклый дельтоид не является ромбом, то существует окружность, касающаяся продолжений всех четырёх сторон данного дельтоида.

Для невыпуклого дельтоида можно построить окружность, касающуюся двух сторон большей длины и продолжений двух меньших сторон, а также окружность, касающуюся двух меньших сторон и продолжений двух сторон большей длины.

Вокруг дельтоида можно описать окружность тогда и только тогда, когда его неравные стороны образуют углы по 90°.

Радиус окружности, описанной около дельтоида можно определить через две его неравные стороны:


Четырёхугольник называется ортодиагональным, если его диагонали пересекаются под прямым углом.

Четырёхугольник является ортодиагональным тогда и только тогда, когда выполняется одно из условий:

  • для сторон четырёхугольника верно: a²+c² = b²+d ²;
  • для площади четырёхугольника верно: S = ½ef ;
  • параллелограмм Вариньона с вершинами в серединах сторон четырёхугольника является прямоугольником.

Сумма квадратов противолежащих сторон вписанного в окружность ортодиагонального четырёхугольника равна квадрату диаметра описанной окружности:

Ортодиагональный четырёхугольник является описанным около окружности тогда и только тогда, когда произведения его противолежащих сторон равны:

Если ABCD – ортодиагональный четырёхугольник, описанный около окружности с центром в точке О , то верны соотношения:

Читайте также: