Оксиды и кислоты химия кратко и понятно

Обновлено: 02.07.2024

Неорганическая химия - раздел химии, изучающий строение и химические свойства неорганических веществ.

Среди простых веществ выделяют металлы и неметаллы. Среди сложных: оксиды, основания, кислоты и соли. Классификация неорганических веществ построена следующим образом:

Классификация неорганических веществ

Большинство химических свойств мы изучим по мере продвижения по периодической таблице Д.И. Менделеева. В этой статье мне хотелось бы подчеркнуть ряд принципиальных деталей, которые помогут в дальнейшем при изучении химии.

Оксиды

Все оксиды подразделяются на солеобразующие и несолеобразующие. Солеобразующие имеют соответствующие им основания и кислоты (в той же степени окисления (СО)!) и охотно вступают в реакции солеобразования. К ним относятся, например:

  • CuO - соответствует основанию Cu(OH)2
  • Li2O - соответствует основанию LiOH
  • FeO - соответствует основанию Fe(OH)2 (сохраняем ту же СО = +2)
  • Fe2O3 - соответствует основанию Fe(OH)3 (сохраняем ту же СО = +3)
  • P2O5 - соответствует кислоты H3PO4

Солеобразующие оксиды, в свою очередь, делятся на основные, амфотерные и кислотные.

Основные, амфотерные и кислотные оксиды

Основным оксидам соответствуют основания в той же СО. В химических реакциях основные оксиды проявляют основные свойства, образуются исключительно металлами. Примеры: Li2O, Na2O, K2O, Rb2O CaO, FeO, CrO, MnO.

Основные оксиды взаимодействуют с водой с образованием соответствующего основания (реакцию идет, если основание растворимо) и с кислотными оксидами и кислотами с образованием солей. Между собой основные оксиды не взаимодействуют.

Li2O + H2O → LiOH (основный оксид + вода → основание)

Здесь не происходит окисления/восстановления, поэтому сохраняйте исходные степени окисления атомов.

Эти оксиды действительно имеют двойственный характер: они проявляют как кислотные, так и основные свойства. Примеры: BeO, ZnO, Al2O3, Fe2O3, Cr2O3, MnO2, PbO, PbO2, Ga2O3.

С водой они не взаимодействуют, так как продукт реакции, основание, получается нерастворимым. Амфотерные оксиды реагируют как с кислотами и кислотными оксидами, так и с основаниями и основными оксидами.

ZnO + KOH + H2O → K2[Zn(OH)4] (амф. оксид + основание = комплексная соль)

ZnO + N2O5 → Zn(NO3)2 (амф. оксид + кисл. оксид = соль; СО азота сохраняется в ходе реакции)

Fe2O3 + HCl → FeCl3 + H2O (амф. оксид + кислота = соль + вода; обратите внимание на то, что СО Fe = +3 не меняется в ходе реакции)

Амфотерные оксиды

Проявляют в ходе химических реакций кислотные свойства. Образованы металлами и неметаллами, чаще всего в высокой СО. Примеры: SO2, SO3, P2O5, N2O3, NO2, N2O5, SiO2, MnO3, Mn2O7.

  • SO2 - H2SO3
  • SO3 - H2SO4
  • P2O5 - H3PO4
  • N2O5 - HNO3
  • NO2 - HNO2, HNO3

Кислотные оксиды вступают в реакцию с основными и амфотерными, реагируют с основаниями. Реакции между кислотными оксидами не характерны.

SO2 + Na2O → Na2SO3 (кисл. оксид + осн. оксид = соль; сохраняем СО S = +4)

SO3 + Li2O → Li2SO4 (кисл. оксид + осн. оксид = соль; сохраняем СО S = +6)

P2O5 + NaOH → Na3PO4 + H2O (кисл. оксид + основание = соль + вода)

При реакции с водой кислотный оксид превращается в соответствующую ему кислоту. Исключение SiO2 - не реагирует с водой, так как продукт реакции - H2SiO3 является нерастворимой кислотой.

Основные и кислотные оксиды

  • CO
  • N2O
  • NO
  • SiO
  • S2O

Реакции несолеобразующих оксидов с основаниями, кислотами и солеобразующими оксидов редки и не приводят к образованию солей. Некоторые из несолеобразующих оксидов используют в качестве восстановителей:

FeO + CO → Fe + CO2 (восстановление железа из его оксида)

Оксид железа II

Основания

Основания - химические соединения, обычно характеризуются диссоциацией в водном растворе с образованием гидроксид-анионов. Растворимые основания называются щелочами: NaOH, LiOH, Ca(OH)2, Ba(OH)2.

Гидроксиды щелочных металлов (Ia группа) называются едкими: едкий натр - NaOH, едкое кали - KOH.

Основания растворимые и нерастворимые

Основания классифицируются по количеству гидроксид-ионов в молекуле на одно-, двух- и трехкислотные.

Однокислотные, двухкислотные и трехкислотные основания

Так же, как и оксиды, основания различаются по свойствам. Все основания хорошо реагируют с кислотами, даже нерастворимые основания способны растворяться в кислотах. Также нерастворимые основания при нагревании легко разлагаются на воду и соответствующий оксид.

NaOH + HCl → NaCl + H2O (основание + кислота = соль + вода - реакция нейтрализации)

Mg(OH)2 → (t) MgO + H2O (при нагревании нерастворимые основания легко разлагаются)

Если в ходе реакции основания с солью выделяется газ, выпадает осадок или образуется слабый электролит (вода), то такая реакция идет. Нерастворимые основания с солями почти не реагируют.

Ba(OH)2 + NH4Cl → BaCl2 + NH3 + H2O (в ходе реакции образуется нестойкое основание NH4OH, которое распадается на NH3 и H2O)

KOH + BaCl2 ↛ реакция не идет, так как в продуктах нет газа/осадка/слабого электролита (воды)

В растворах щелочей pH > 7, поэтому лакмус окрашивает их в синий цвет.

Лакмус в щелочной среде

Амфотерные оксиды соответствуют амфотерным гидроксидам. Их свойства такие же двойственные: они реагирую как с кислотами - с образованием соли и воды, так и с основаниями - с образованием комплексных солей.

Al(OH)3 + HCl → AlCl3 + H2O (амф. гидроксид + кислота = соль + вода)

Al(OH)3 + KOH → K[Al(OH)4] (амф. гидроксид + основание = комплексная соль)

При нагревании до высоких температур комплексные соли не образуются.

Al(OH)3 + KOH → (t) KAlO2 + H2O (амф. гидроксид + основание = (прокаливание) соль + вода - при высоких температурах вода испаряется, и комплексная соль образоваться не может)

Гидроксид алюминия

Кислоты

Кислота - химическое соединение обычно кислого вкуса, содержащее водород, способный замещаться металлом при образовании соли. По классификации кислоты подразделяются на одно-, двух- и трехосновные.

Основность кислоты определяется числом атомов водорода, которое способна отдать молекула кислоты, реагируя с основанием. Определять основность кислоты по числу атомов водорода в ней - часто верный способ, но не всегда: например, борная кислота H3BO3 является слабой одноосновной кислотой, фосфористая кислота H3PO3 - двухосновной кислотой.

Одно-, двух- и трехосновные кислоты

Кислоты отлично реагируют с основными оксидами, основаниями, растворяя даже те, которые выпали в осадок (реакция нейтрализации). Также кислоты способны вступать в реакцию с теми металлами, которые стоят в ряду напряжений до водорода (то есть способны вытеснить его из кислоты).

H3PO4 + LiOH → Li3PO4 + H2O (кислота + основание = соль + вода - реакция нейтрализации)

Zn + HCl → ZnCl2 + H2↑ (реакция идет, так как цинк стоил в ряду активности левее водорода и способен вытеснить его из кислоты)

Cu + HCl ↛ (реакция не идет, так как медь расположена в ряду активности правее водорода, менее активна и не способна вытеснить его из кислоты)

Записать эти кислоты в растворе в виде "H2CO3 или H2SO3" - будет считаться ошибкой. Пишите угольную и сернистую кислоты в разложившемся виде - виде газа и воды.

Выделение углекислого газа из раствора

Все кислоты подразделяются на сильные и слабые. Напомню, что мы составили подробную таблицу сильных и слабых кислот (и оснований!) в теме гидролиз. В реакции из сильной кислоты (соляной) можно получить более слабую, например, сероводородную или угольную кислоту.

Однако невозможно (и противоречит законам логики) получить из более слабой кислоты сильную, например из уксусной - серную кислоту. Природу не обманешь :)

K2S + HCl → H2S + KCl (из сильной - соляной кислоты - получили более слабую - сероводородную)

K2SO4 + CH3COOH ↛ (реакция не идет, так как из слабой кислоты нельзя получить сильную: из уксусной - серную)

Подчеркну важную деталь: гидроксиды это не только привычные нам NaOH, Ca(OH)2 и т.д., некоторые кислоты также считаются кислотными гидроксидами, например серная кислота - H2SO4. С полным правом ее можно записать как кислотный гидроксид: SO2(OH)2

В завершении подтемы кислот предлагаю вам вспомнить названия основных кислот и их кислотных остатков.

Названия кислот и их кислотных остатков

Соль - ионное соединение, образующееся вместе с водой при нейтрализации кислоты основанием (не единственный способ). Водород кислоты замещается металлом или ионом аммония (NH4). Наиболее известной солью является поваренная соль - NaCl.

  • Средние - продукт полного замещения атомов водорода в кислоте на металл: KNO3, NaCl, BaSO4, Li3PO4
  • Кислые - продукт неполного замещения атомов водорода: LiHSO4, NaH2PO4 и Na2HPO4 (гидросульфат лития, дигидрофосфат и гидрофосфат натрия)
  • Основные - продукт неполного замещения гидроксогрупп на кислотный остаток: CrOHCl (хлорид гидроксохрома II)
  • Двойные - содержат два разных металла и один кислотный остаток (NaCr(SO4)2


Знакомство с оксидами обычно начинается на уроках химии в 8 классе. Из этой статьи вы узнаете, что такое оксиды в химии, их классификацию и свойства, а также способы получения.

О чем эта статья:

Определение оксидов

Оксиды — это сложные вещества, состоящие из двух химических элементов (т. е. бинарные соединения), один из которых — кислород в степени окисления −2.

Общая формула оксидов: ЭxOy, где Э – химический элемент, а x и y — индексы, определяемые степенью окисления химических элементов.

Виды оксидов

Все оксиды делятся на солеобразующие и несолеобразующие.

Несолеобразующие оксиды — это оксиды, которые не взаимодействуют с кислотами и щелочами, то есть не способны образовать соли.

К несолеобразующим оксидам относят: CO, SiO, N2O, NO.

Солеобразующие оксиды — это оксиды, которые взаимодействуют с кислотами и щелочами с образованием солей.

Солеобразующие оксиды делятся на три группы:

Основные оксиды — это оксиды, образованные металлами со степенью окисления +1 или +2.

Примеры основных оксидов: Na +1 2O, Ca +2 O, Ba +2 O.

Амфотерные оксиды — оксиды, образованные металлами со степенью окисления +3 или +4.

К амфотерным оксидам относят также: ZnO, BeO, PbO, SnO.

Несмотря на то, что эти металлы проявляют степень окисления +2 в данных соединениях, их оксиды проявляют амфотерные свойства.

Примеры амфотерных оксидов: Al +3 2O3, Fe2 +3 O3.

Кислотные оксиды — оксиды, образованные металлами с валентностью V и более или неметаллами с любой валентностью (за исключением несолеобразующих оксидов, то есть CO, SiO, N2O, NO).

Если один и тот же химический элемент образовывает несколько оксидов, то с увеличением степени окисления основные свойства оксидов ослабевают и усиливаются кислотные.

CrO (оксид хрома (II)) — проявляет основные свойства;

Cr2O3 (оксид хрома (III)) — проявляет амфотерные свойства;

CrO3 (оксид хрома (VI)) — проявляет кислотные свойства.

Закрепим знания о типах оксидов, изучив схему:

Классификация оксидов

Номенклатура оксидов

Названия оксидов строятся по систематической номенклатуре следующим образом:

Указываем название второго химического элемента в родительном падеже.

Если этот элемент имеет переменную валентность, то указываем валентность элемента в этом соединении в скобках римской цифрой.

Номенклатура оксидов

Примеры названий оксидов:

Fe2O3 — оксид железа (III). Читается: феррум два о три.

Na2O — оксид натрия. Читается: натрия два о.

SO3 — оксид серы (VI). Читается: эс о три.

До появления систематической номенклатуры вещества называли по присущим им специфическим свойства (цвету, запаху и т. д.). Такой способ названия веществ — тривиальная номенклатура. Некоторые названия используются и сейчас.

Названия некоторых оксидов: таблица

Химическая формула оксида

Бытовое (тривиальное название)

Возможное научное название

Химические свойства основных оксидов

1. Взаимодействие с водой

С водой способны реагировать оксиды тех металлов, которым соответствуют растворимые гидроксиды. То есть с водой реагируют только оксиды щелочных и щелочноземельных металлов.

Основный оксид + вода = основание

Оксид магния взаимодействует с водой только при нагревании.

2. Взаимодействие с кислотными оксидами и кислотами

Основные оксиды, соответствующие щелочам, взаимодействуют со всеми кислотными оксидами и кислотами. Оксиды неактивных металлов взаимодействуют только с кислотными оксидами, соответствующими сильным кислотам, или с сильными кислотами.

Основный оксид + кислотный оксид = соль

Основный оксид + кислота = соль + вода

3. Взаимодействие с амфотерными оксидами

В эту реакцию могут вступать только основные оксиды щелочных или щелочноземельных металлов. При сплавлении двух оксидов образуется соль.

Основный оксид + амфотерный оксид = соль

Как составлять такие соли: металл в этой соли берем из основного оксида, а кислотный остаток из амфотерного оксида (они проявляют более кислотные свойства).

Химические свойства кислотных оксидов

1. Взаимодействие с водой

Кислотные оксиды взаимодействуют с водой с образованием соответствующих кислот. За исключением SiO2, которому соответствует нерастворимая кремниевая кислота.

Кислотный оксид + вода = кислота

2. Взаимодействие с основными оксидами и щелочами

Кислотные оксиды сильных кислот способны взаимодействовать с любыми основными оксидами или основаниями.

Кислотный оксид + основный оксид = соль

Кислотный оксид + основание = соль + вода

Кислотные оксиды, соответствующие слабым кислотам (такие как CO2, SO2), способны взаимодействовать с основными оксидами, соответствующим щелочам, а также с щелочами.

3. Взаимодействие с амфотерными оксидами и гидроксидами

С амфотерными оксидами в реакцию вступают кислотные оксиды — как правило, сильных кислот.

Кислотный оксид + амфотерный оксид = соль

Кислотный оксид + амфотерный оксид = соль + вода

Химические свойства амфотерных оксидов

1. Взаимодействие с водой

Амфотерные оксиды не взаимодействуют с водой — даже при нагревании!

Амфотерный оксид + вода ≠

2. Взаимодействие с кислотными оксидами и кислотой

Амфотерные оксиды взаимодействуют только с сильными и средними кислотами и их оксидами.

Амфотерный оксид + кислотный оксид = соль

Амфотерный оксид + кислота = соль + вода

3. Взаимодействие с основными оксидами

Амфотерные оксиды взаимодействуют только с теми оксидами, которые соответствуют щелочам. Реакция протекает только в расплаве, так как в растворе такие оксиды взаимодействуют преимущественно с водой с образованием щелочей.

Амфотерный оксид + основный оксид (расплав) = соль

4. Взаимодействие со щелочами

Продукты взаимодействия амфотерных оксидов со щелочами зависят от условий проведения реакции. В растворе образуются комплексные соли, а при сплавлении – средние соли.

Амфотерный оксид + щелочь (раствор) + вода = комплексная соль

Амфотерный оксид + щелочь (расплав) = средняя соль + вода

Получение оксидов

1. Окисление металлов

Почти все металлы окисляются кислородом до устойчивых степеней окисления.

Металлы с переменной степенью окисления, как правило, образуют соединения в степени окисления +3:

При взаимодействии щелочных металлов (элемента IA группы) образуются пероксиды Me2O2 или надпероксиды MeO2, где Ме — щелочной металл.

2. Окисление простых веществ — неметаллов

При окислении неметаллов в избытке кислорода, как правило, образуются высшие оксиды (это оксиды, в которых неметалл проявляют высшую степень окисления):

При недостаточном количестве кислорода образуются оксиды неметаллов в промежуточной степени окисления:

Существуют и исключения. Например, сера окисляется лишь до оксида серы (IV) даже в избытке кислорода:

Или азот, который взаимодействует с кислородом только при температуре 2 000̊С или под действием электрического разряда с образованием оксида азота (II):

Галогены (элементы VIIA группы) вовсе не взаимодействуют с кислородом, так же как и инертные газы (элементы VIIIA группы).

3. Разложение гидроксидов

Некоторые кислоты и гидроксиды неустойчивы и самопроизвольно разлагаются по схеме:

Гидроксид (кислота) = оксид + вода

Оксиды тяжелых металлов (нерастворимые гидроксиды) и кремниевая кислота разлагаются при нагревании по той же самой схеме.

Разложение кремниевой кислоты при нагревании

Разложение гидроксида железа (III) при нагревании

4. Окисление сложных веществ

Сложные бинарные (состоящие из двух химических элементов) соединения окисляются с образованием двух оксидов этих элементов в устойчивых степенях окисления.

Также оксиды получают разложением солей, например, карбонатов, нитратов сульфатов и т. д.

Мы узнали, какие вещества в химии называют оксидами, какие бывают оксиды, а также разобрали свойства каждого вида. Осталось подкрепить теорию практикой — а сделать это можно на курсах по химии в онлайн-школе Skysmart!

Неорганические вещества по составу принято делить на две группы: немногочисленную группу простых веществ (их насчитывается около 400) и очень многочисленную группу сложных веществ. Простые вещества состоят из одного химического элемента, а сложные – из нескольких.

Сложные вещества обычно делят на классы: оксиды, кислоты, основания, амфотерные гидроксиды и соли. Данная классификация несовершенна, т. к. в ней нет места для аммиака, соединений металлов с фосфором, азотом, углеродом и т. д.

Классификация неорганических веществ

ОКСИДЫ – это сложные вещества, состоящие из двух химических элементов, один из которых - кислород.

Классификация оксидов

Оксиды могут быть солеобразующими и несолеобразующими. Солеобразующим оксидам соответствуют гидроксиды и соли с элементом в той же степени окисления, что и в оксиде. Несолеобразующие оксиды не имеют соответствующих гидроксидов и солей. Таких оксидов немного: N 2 O, NO, SiO, CO.

Солеобразующие оксиды в зависимости от кислотно-основного характера делятся на кислотные, амфотерные и основные.

Основные оксиды образованы металлами с небольшими степенями окисления +1, +2. Амфотерные оксиды образованы переходными металлами со степенями окисления +3, +4, а также Be, Zn, Sn, Pb. Кислотные оксиды образованы неметаллами, а также металлами со степенью окисления больше, чем +4. Рис. 3.


ОСНОВАНИЯ – это сложные вещества, состоящие из ионов металла и гидроксид-ионов.

Классификация оснований

Основания – это сложные вещества, состоящие из катионов металла и одного или нескольких гидроксид-анионов. В основу классификации оснований могут быть положены разные признаки. Например, их отношение к воде. По данному признаку основания делят на растворимые в воде (щелочи) и нерастворимые в воде.

это сложные вещества, которые имеют свойства и кислот, и оснований, и потому их формулы можно записывать в разных формах:

Zn(OH) 2 = H 2 ZnO 2

форма основания форма кислоты

КИСЛОТЫ – это сложные вещества, состоящие из ионов водорода и кислотных остатков.

Классификация кислот

Кислоты – это сложные вещества, состоящие из атомов водорода, способных замещаться на металлы, и кислотных остатков. Кислоты можно разделить на группы по содержанию кислорода: кислородосодержащие (например, HNO 3 , H 2 SO 4 , H 3 PO 4 ) и бескислородные (HI, H 2 S).


СОЛИ – это сложные вещества, состоящие из ионов металла и кислотных остатков.

Виды солей


Средние соли состоят из катионов металла (или аммония) и анионов кислотных остатков. Кислые соли, кроме катионов металла, содержат катионы водорода и анион кислотного остатка. Основные соли в своем составе содержат гидроксид-анионы.

Если соль образована двумя видами катионов металлов и одним анионом, то ее называют двойной. Например, сульфат алюминия-калия KAl(SO 4 ) 2 .

Соли с двумя разными анионами и одним катионом называют смешанными. Например, Са(OCl)Cl – хлорид-гипохлорит кальция.

В комплексных солях содержится сложный ион, который принято заключать в квадратные скобки.

Формулы

Вы уже неоднократно встречались с различными типами соединений.

На этом уроке мы приведём эти знания в единую систему.

Среди неорганических химических соединений выделяют 4 основных класса:

Отнесение вещества к определенному классу происходит на основании его состава и химических свойств.

Конечно, каждое вещество обладает своими уникальными свойствами, но на этом уроке мы рассмотрим те их свойства, на основании которых вещества разделяют на классы.

Оксиды

Оксиды – это соединения двух элементов, один из которых – кислород.

Все химические элементы могут образовывать оксиды.

Некоторые химические элементы могут образовывать несколько оксидов, проявляя в них разные степени окисления.

При этом образуются совершенно непохожие друг на друга вещества.

Например, азот (N) образует пять оксидов:

Химическая формула

Валентность азота в веществе

Краткое описание вещества

Бесцветный газ без запаха. Токсичен – вызывает удушье.

У меня есть дополнительная информация к этой части урока!


Оксидов не образуют всего несколько элементов:

фтор F

гелий He

неон Ne

аргон Ar

криптон Kr

При нормальных условиях оксиды могут быть:

Химическая формула

Систематическое и тривиальное название

Внешний вид

Применение

Бесцветная жидкость без вкуса

Бесцветные кристаллы с горьким вкусом

Флюс в металлургии

Оксид углерода (IV)

Бесцветный газ без запаха

Наполнитель в пищевой промышленности

Бесцветный газ со сладковатым привкусом

Наркоз в медицине

Оксиды разделяют на три группы:

  • Кислотные (оксиды неметаллов). Кислотным оксидам соответствуют кислоты.
  • Основные (оксиды металлов). Основным оксидам соответствуют основания.
  • Амфотерные (оксиды переходных металлов),которые занимают примерно середину периодической таблицы элементов Менделеева.

Амфотерные оксиды обычно нерастворимы в воде, а растворимы в кислотах или в основаниях. В химических реакциях с кислотами они ведут себя как основные оксиды, а в реакциях с основаниями как кислотные.

Разделение основано на том, вещество какого типа способен образовывать данный оксид:

Оксид

Оксид водорода (H2O) или воду не относят ни к одному из этих типов, так как вода является основой жизни на Земле.

Оксиды легко вступают в реакцию с водой.

При этом получаются

Кислоты и основания также называют гидроксидами.

Пройти тест и получить оценку можно после входа или регистрации

Основания

Основание — сложное вещество, которое состоит из атома металла или иона аммония (NH4+) и гидроксогруппы (-OH)

Ca(OH)2 гидроксид кальция

NH4OH гидроксид аммония

Основания образуются при реакции основного оксида с водой

Не все оксиды реагируют с водой!

Из оксида кальция образуется гидроксид кальция:

Из оксида кальция образуется гидроксид кальция

У меня есть дополнительная информация к этой части урока!


Вы можете самостоятельно провести опыт.

Для него вам понадобится вода, фенолфталеин и негашеная известь.

Негашеную известь можно достать в строительном магазине или в семенном (она используется для раскисления почв в сельском хозяйстве).

Добавьте в воду немного фенолфталеина и всыпьте щепотку негашёной извести.

При этом раствор слегка нагреется, а фенолфталеин станет малиновым.

Вы увидели сразу два признака химической реакции: выделение тепла и изменение цвета.

Из за этого их свойства различаются.

Растворимые в воде основания называют щёлочи.

Щёлочи образуют металлы I и II групп периодической системы элементов и некоторые другие металлы.

Например, гидроксид натрия (NaOH) вы можете найти в составе средств для прочистки труб.

Щелочи известны с давних времен.

Поэтому для них характерны и исторически сложившиеся (тривиальные) названия:

КОН – едкое кали

NaOH – едкий натр

Са(ОН)2 – в твёрдом виде называется гашеная известь, раствор - известковая вода

Ва(ОН)2 – баритовая вода.

Основные свойства гидроксидов увеличиваются сверху вниз: гидроксид цезия CsOH намного более едкий, чем гидроксид натрия NaOH, но не находит широкого применения из-за малой распространенности цезия в природе.

Основания находят широкое применение в быту и в промышленности.

Основания находят широкое применение в быту и в промышленности

Пройти тест и получить оценку можно после входа или регистрации

Кислоты

Кислота – это сложное вещество, в молекуле которого имеется атом водорода и кислотный остаток.

Пример: серная кислота H2SO4

Ее состав можно написать так H + (HSO4) -

Видим, что она состоит из атома водорода H + и кислотного остатка (HSO4) - . Значит, это соединение - кислота!

Кислоты могут образовываться реакцией кислотных оксидов с водой.

Так образуется серная кислота H2SO4

Иначе H2SO4 можно записать в виде гидроксида SO2(OH)2

Кроме этих веществ кислотами в химии также называют множество органических кислот.

Органические кислоты – это те, которые образуются в живых организмах (например, муравьиная, уксусная, лимонная, щавелевая, яблочная, винная).

Их подробно изучает отдельная область химии – органическая химия.

Кислоты

Общие признаки кислот- это сложные вещества, а в их составе всегда есть водород.

Все кислоты в разной степени - это едкие вещества.

Карбонаты являются очень неустойчивыми в кислотах – разлагаются с выделением углекислого газа:

Карбонаты

У меня есть дополнительная информация к этой части урока!


Своё название кислоты получили из-за их кислого вкуса, который мы ощущаем из-за раздражающего воздействия кислот на вкусовые рецепторы.

А английское название acid произошло скорее всего от латинского названия уксусной кислоты – acetum, поскольку уксусная кислота была первой выделенной человеком кислотой.

Ещё алхимики, когда им нужна была кислая среда, использовали именно уксус.

Существует легенда о том, как падишах потребовал от своего придворного алхимика испытать принесённый ему жемчуг.

На что алхимик посоветовал опустить жемчуг в крепкий уксус, и если жемчуг в нём растворится, то он настоящий.

Поговаривают, что после такого совета падишах опустил в крепкий уксус не жемчуг, а алхимика.

На самом деле всё просто: жемчуг – это карбонат кальция (продукт реакции извести с углекислым газом).

Современные ученые доказали, что царица Египта Клеопатра удивляла своих гостей тем, что с легкостью выпивала уксус, в который перед этим бросала жемчуг.

Причина в том же: жемчуг, растворяясь, нейтрализовал большую часть уксуса.

При их смешивании происходит химическая реакция:

смесь азотной и соляной кислот

Образующийся нитрозилхлорид – очень агрессивное вещество, оно даже реагирует с металлами, не растворяющимися в чистых кислотах: золотом, платиной и палладием.

В лаборатории её обычно используют для очистки химической посуды от сильных загрязнений.

Кислота внутри нас.

Газ хлороводород, растворенный в воде, называют соляной кислотой.

Желудочный сок животных и человека содержит соляную кислоту HCl.

Вы могли встретиться уже с этим названием, поскольку соляная кислота свободно продаётся в хозяйственных магазинах.

Она используется в быту как чистящее средство.

  • в быту
  • в лаборатории
  • в технике
  • в промышленности в качестве исходных веществ для получения каких-либо других или в качестве промежуточных в ходе химических производств, также они могут являться конечным результатом производства.

У меня есть дополнительная информация к этой части урока!


Желудочный сок человека достаточно агрессивен!

Он может полностью растворить бритвенное лезвие за несколько дней.

Внимание! Сaution! Achtung! Attenzione! 注意力

При работе с кислотами следует помнить, что это едкие вещества, и соблюдать осторожность!

Не допускать попадания кислот на кожу, а особенно на слизистые оболочки – глаза, рот!

При попадании кислоты на кожу или в глаза следует промыть большим количеством проточной воды!

Читайте также: