Одна кольцевая днк это кратко

Обновлено: 06.07.2024

Для детального понимания сути метода ПЦР-диагностики необходимо совершить небольшой экскурс в школьный курс биологии.

Еще из школьных учебников мы знаем, что дезоксирибонуклеиновая кислота (ДНК) — универсальный носитель генетической информации и наследственных признаков у всех существующих на Земле организмов. Исключение составляют только некоторые микроорганизмы, например, вирусы — универсальным носителем генетической информации у них является РНК - одноцепочечная рибонуклеиновая кислота.

Строение ДНК-молекулы

Открытие ДНК молекулы произошло в 1953 году. Френсис Крик и Джеймс Уотсон открыли структуру двойной спирали ДНК, их работа впоследствии была отмечена Нобелевской премией.

Структура ДНК

Первичная структура ДНК — это линейная последовательность нуклеотидов ДНК в цепи. Последовательность нуклеотидов в цепи ДНК записывают в виде буквенной формулы ДНК: например — AGTCATGCCAG, запись ведется с 5’- на 3’-конец цепи ДНК.

Вторичная структура ДНК образуется за счет взаимодействий нуклеотидов (в большей степени азотистых оснований) между собой, водородных связей. Классический пример вторичной структуры ДНК — двойная спираль ДНК. Двойная спираль ДНК — самая распространенная в природе форма ДНК, состоящая из двух полинуклеотидных цепей ДНК. Построение каждой новой цепи ДНК осуществляется по принципу комплементарности, т. е. каждому азотистому основанию одной цепи ДНК соответствует строго определенное основание другой цепи: в комплемнтарной паре напротив A стоит T, а напротив G располагается C и т.д.

Синтез ДНК. Репликация

Уникальным свойством ДНК является ее способность удваиваться (реплицироваться). В природе репликация ДНК происходит следующим образом: с помощью специальных ферментов (гираз), которые служат катализатором (веществами, ускоряющими реакцию), в клетке происходит расплетение спирали в том ее участке, где должна происходить репликация (удвоение ДНК). Далее водородные связи, которые связывают нити, разрываются и нити расходятся.

Таким образом, процесс репликации ДНК (удваивания) включает в себя три основных этапа:

  • Расплетение спирали ДНК и расхождение нитей
  • Присоединение праймеров
  • Образование новой цепи ДНК дочерней нити

В основе анализа методом ПЦР лежит принцип репликации ДНК — синтеза ДНК, который современным ученым удалось воссоздать искусственно: в лаборатории врачи вызывают удвоение ДНК, но только не всей цепи ДНК, а ее небольшого фрагмента.

Функции ДНК

Молекула ДНК человека — носитель генетической информации, которая записана в виде последовательности нуклеотидов с помощью генетического кода. В результате описанной выше репликации ДНК происходит передача генов ДНК от поколения к поколению.

Изменение последовательности нуклеотидов в ДНК (мутации) может приводить к генетическим нарушениям в организме.


Обзор

3D-модель внехромосомной кольцевой ДНК

Автор
Редактор

Минихромосомы

Кольцевые ДНК описаны у вирусов, прокариот, низших эукариот (дрожжей, простейших и грибов), а также у некоторых высших растений. У млекопитающих, в том числе у человека, кольцевые ДНК присутствуют в составе митохондриального генома. Весь остальной геном, как считалось, в норме представлен линейными хромосомами и только в опухолях были описаны крупные внехромосомные кольцевые ДНК, которые удавалось наблюдать, изучая образцы новообразований в световом микроскопе (рис. 1).

Эти структуры получили название double minutes (от лат. minutus — маленький, мелкий) — двойные минихромосомы [1]. От обычных хромосом они отличаются не только кольцевой формой и размером, но и тем, что не имеют центромеры.

Четкой номенклатуры внехромосомных кольцевых ДНК, или вкДНК (extrachromosomal circular DNA, eccDNA), пока нет, но сегодня известно о существовании их вариантов размерами от сотен пар нуклеотидов (например, микроДНК, состоящей из 200–400 п.н.) до нескольких миллионов. Внехромосомная кольцевая ДНК может содержать повторяющиеся участки (как, скажем, теломерная или рибосомная ДНК) или состоять из уникальных, неповторяющихся последовательностей. Кольцевая ДНК упакована не столь плотно, как в хромосомах, что играет важную регуляторную роль, так как облегчает доступ к хроматину и способствует транскрипции определенных генов [3].

Совсем недавно на базе нейронной сети U-Net, широко применяющейся при анализе и обработке биомедицинских изображений, была создана программа ecSeg, позволяющая подсчитывать количество внехромосомных кольцевых ДНК в образцах различных клеточных линий [4]. Программа работает с изображениями, получаемыми камерой флуоресцентного микроскопа с метафазных пластинок, окрашенных DAPI (ДНК-связывающимся флуорофором). Проанализировав сорок различных опухолевых клеточных линий человека, создатели программы обнаружили, что некоторые из них (например, клеточная линия рака молочной железы HCC1569) содержат более 100 различных внехромосомных кольцевых ДНК в каждой клетке. Причем вариабельность вкДНК внутри одной и той же клеточной линии обеспечивается уже при их содержании в каждой клетке в количестве всего 10 единиц (и более). Это говорит о той важной роли, которую играет количество вкДНК в повышении неоднородности клеточной популяции.

Умножай и властвуй

В дальнейшем кольцевые структуры, несущие амплифицированный онкоген, могут встраиваться в хромосому, причем в произвольно выбранной позиции. В этом случае они формируют на хромосоме гомогенно окрашенные участки (ГОУ; в англоязычной литературе — homogenous staining regions, HSR), представляющие собой цитогенетическое проявление амплификации (рис. 2).

Двойные минихромосомы могут приводить к появлению ГОУ

Рисунок 2. Двойные минихромосомы могут приводить к появлению ГОУ при встраивании в один и тот же участок на хромосоме или распределяться случайным образом, встраиваясь в разные участки разных хромосом

Отсутствие центромер приводит к тому, что в процессе митоза двойные минихромосомы, в отличие от обычной хромосомной ДНК, распределяются между дочерними клетками случайным образом. Поскольку амплификация онкогенов придает опухолевой клетке преимущество в скорости роста по сравнению с соседями, те из них, что содержат большее количество внехромосомных кольцевых ДНК, приобретают пролиферативное преимущество и проходят, таким образом, положительный отбор в ходе эволюции опухоли [7].

Рассматривая прогрессию опухоли через призму дарвиновской эволюции, можно объяснить и альтернативный вариант — полное исчезновение двойных минихромосом из клетки. Например, при таргетном лечении трастузумабом рака молочной железы (РМЖ) с амплификацией гена Her2/neu примерно у одной трети больных возникает рецидив [8]. Механизмов развития резистентности к таргетной терапии существует много, но один из вариантов заключается в активации работы сигнальных каскадов, перекрывающихся с сигнальным путем Her2/neu, с помощью компенсирующей амплификации генов PIK3CA и c-Met [8], [9]. Так, при лечении трастузумабом метастатического РМЖ с амплификацией Her2/neu в 27,7% случаев обнаруживается и амплификация гена рецептора тирозинкиназы c-Met [10]. Амплификация с-Met берет на себя функцию драйверной, а кольцевые минихромосомы, несущие амплифицированный ген Her2/neu, становятся балластом: они элиминируются из клетки.

На примере появления резистентных к трастузумабу клеток и прогрессии РМЖ, несмотря на лечение, хорошо видно, почему ингибирование только одной молекулярной мишени может оказаться терапевтически неэффективным. Стратегическим направлением клинических исследований сейчас становится воздействие сразу на несколько мишеней (double-hit-лечение). Так, по сравнению с обычной таргетной терапией при немелкоклеточном раке легкого с мутациями гена EGFR, использование комбинированной терапии бевацузимабом и эрлотинибом увеличивает время до прогрессирования заболевания и общую выживаемость больных [11]. Комбинация различных препаратов используется и при лечении меланомы c мутацией в гене BRAF [12]. К сожалению, ни в одном из исследований не описана какая-либо комбинация препаратов, которая бы привела к полному излечению пациентов. Во всех случаях неизбежно развивается резистентность, правда, в более поздние сроки по сравнению с монотерапией.

Пассажир садится за руль

Молекулярный профиль внехромосомных кольцевых ДНК опухоли

Рисунок 3. Молекулярный профиль внехромосомных кольцевых ДНК опухоли в момент постановки диагноза и после обнаружения рецидива. В каждой из кольцевых минихромосом возможно возникновение дополнительных мутаций (обозначены кружками различных оттенков). вкДНК, несущие ген EGFR дикого типа (wtEGFR), отмечены черными кружками. Кольцевые минихромосомы с мутацией EGFRvIII — синего цвета, с мутацией EGFRxE16 — красного. Объяснения см. в тексте.

Под окружающей средой в данном случае мы понимаем спектр экспрессии генов и белков, мутации и эпигенетические изменения, уже имеющиеся в этой клетке, опухолевое микроокружение и внешние факторы, такие как препараты, используемые для лечения. В этом конкретном случае изменение окружающей среды — это воздействие на опухоль лекарственным препаратом эрлотиниб.

Когда замкнутость дает преимущества

Существование гетерогенности в опухоли может иметь большое клиническое значение, так как оказывает влияние на развитие заболевания и во многом определяет ответ на лечение [15], [16]. Представим себе опухолевые клетки с полностью идентичным геномом за исключением качественного и количественного спектра внехромосомных кольцевых ДНК. Уже только за их счет опухоль обеспечивает себе огромное разнообразие генотипических и фенотипических вариантов, и высока вероятность, что хотя бы один из них преуспеет больше остальных при изменении условий окружающей среды. Если учесть, что в реальных условиях in vivo опухоль является внутренне гетерогенной за счет генных мутаций и эпигенетических изменений, а также за счет влияния внешних факторов (таких как микроокружение опухоли), то вкДНК делает процесс опухолевой эволюции еще более сложным, приводя к прогрессии заболевания и неудачам в лечении.

На что способна кольцевая ДНК?

Важное открытие последних лет состоит в том, что в неопухолевых клетках также присутствуют внехромосомные кольцевые ДНК. Так, в 2018 году сразу две исследовательские группы продемонстрировали существование вкДНК в здоровых тканях человека [17], [18].

Молекулы кольцевой ДНК, обнаруженные в нормальных клетках, сильно различаются по размеру и генному составу. Часть из этих внехромосомных структур очень мала (менее 25 т.п.н.), другие же достигают 1 миллиона пар нуклеотидов, что сравнимо с двойными минихромосомами опухолей. Надо особо подчеркнуть, что сравнимы внехромосомные кольцевые ДНК опухолевой и нормальной тканей могут быть только по размеру, но не по структуре — в норме амплификации генов на внехромосомной ДНК не происходит.

Транскрипционной регуляцией экспрессии генов функции внехромосомной кольцевой ДНК не ограничиваются. Подобно экзосомам, она может выполнять роль переносчиков генетической информации от клетки к клетке. Межклеточные взаимодействия — это универсальный по своей природе биологический механизм, который лежит в основе существования всех многоклеточных. Процессы межклеточной коммуникации с особым вниманием изучают онкологи, так как, к сожалению, опухоли используют те же самые механизмы коммуникации, что и здоровые клетки. Уже накоплены данные о том, что вкДНК может репрограммировать микроокружение опухоли, участвовать в формировании преметастатических ниш, супрессивно модулировать иммунные клетки, тем самым определяя развитие опухолевого процесса и прогноз заболевания [3], [15–17].

Не менее интересно возможное участие внехромосомных кольцевых ДНК в регуляции иммунных процессов в клетке. Известно, что в ответ на появление молекул ДНК в цитоплазме клетка активирует cGAS — синтазу 2′-3′-циклического ГМФ-АМФ, — что запускает сигнальный каскад, кульминацией которого является продукция интерферона и других медиаторов воспаления . Таков иммунный ответ на внешние патогены.

При попадании в цитоплазму внехромосомная кольцевая ДНК, если она не подвергается деградации ферментами, такими как TREX1 , тоже способна запускать cGAS-каскад, действуя, таким образом, как эндогенный антиген, активирующий аутоиммунные пути в клетке.

Перспективы использования внехромосомной кольцевой ДНК в медицине

Источники ДНК для жидкостной биопсии

Количество внехромосомной кольцевой ДНК в крови не всегда коррелирует с размерами опухоли, но также зависит и от ее пролиферативной активности, васкуляризации, скорости деградации и других факторов. К тому же, необходимо помнить, что источником внехромосомной кольцевой ДНК в крови служат не только опухолевые, но и нормальные клетки. Но поскольку вкДНК опухолей обычно больше по размеру, это создает потенциальную возможность использования жидкостной биопсии для определения их динамики при хирургическом и лекарственном лечении злокачественных новообразований различной локализации [27]. Перспективным подходом является и оценка риска рецидива заболевания на основе выявляемых методом жидкостной биопсии закономерностей изменения численности внехромосомных кольцевых ДНК. Однако техническая сложность анализа минимальных различий размера вкДНК из здоровых и опухолевых клеток, необходимость минимизации ложно-положительных результатов и создания крайне чувствительного теста делают клиническое применение внехромосомной кольцевой ДНК опухолей как биомаркера для жидкостной биопсии делом отдаленного будущего. По крайней мере, эксперты американского общества клинической онкологии (ASCO) и коллегии американских патологов (CAP) по этому вопросу настроены скептически [28].

Заключение

Становится очевидным, что внехромосомные кольцевые ДНК играют важную роль в нормальных клетках и клетках опухолей. Будучи широко распространенными практически у всех эукариот, кольцевые ДНК участвуют в транскрипционной регуляции уровня экспрессии различных генов, процессах иммунного ответа, межклеточном взаимодействии и выполняют другие важные функции.

В опухолях же двойные минихромосомы можно рассматривать как резервуар для накопления различных амплификаций и точечных мутаций, причем все эти изменения, что немаловажно, являются обратимыми. Кольцевая ДНК обеспечивает высокую скорость накопления мутаций, которой не удается достичь в линейных хромосомах. И при этом клетка в любой момент может повернуть процесс вспять — если выяснится, что мутация несет потенциальный вред опухоли, вкДНК, ее содержащая, элиминируется из клетки. В конечном итоге именно внехромосомная кольцевая ДНК придает злокачественным новообразованиям пластичность, что делает лечение опухолей такой сложной задачей.

Максим Франк-Каменецкий

Биофизик Максим Франк-Каменецкий о геномах бактерий, репликации и преимуществах кольцевого строения ДНК

Над материалом работали

Максим Франк-Каменецкий

доктор физико-математических наук, профессор факультета биомедицинской инженерии Бостонского университета, приглашенный профессор Сколковского института науки и технологий (2014)

Что такое ДНК, и из чего она состоит? Кто и когда открыл эту молекулу в клетках человека и других живых организмов? Чем уникален открытый учеными механизм наследования, и какие последствия ждал весь мир после этого открытия? Всю необходимую информацию Вы можете узнать, прочитав эту статью.

ДНК и хромосомы

Иоганнес Фридрих Фишер – врач и биолог-исследователь родом из Швейцарии, стал первым в мире ученым, выделившим нуклеиновую кислоту. Открытие случилось в 1869 году, когда он занимался изучением животных клеток, а именно лейкоцитов, которых много содержалось в гное. Совершенно случайно молодой ученый заметил, что при отмывании лейкоцитов с гнойных повязок от них остается загадочное соединение. Под микроскопом Иоганн обнаружил, что оно содержится в ядрах клеток. Это соединение Мишер назвал нуклеином, а в процессе изучения его свойств переименовал в нуклеиновую кислоту, из-за наличия свойств, как у кислот.

Роль и функции только открытой нуклеиновой кислоты были неизвестны. Однако многие ученые того времени уже высказывали свои теории и предположения о существовании механизмов наследования.

Нынешние взгляды на состав молекулы ДНК ассоциируются у людей с именами английских ученых Джорджа Уотсона и Фрэнсиса Крика, которые открыли структуру данной молекулы в 1953 году. За несколько лет до этого, в тридцатые годы, ученые из советского союза А.Н. Белозерский и А.Р. Кезеля доказали наличие ДНК в клетках во всех живых организмах, тем самым они опровергли теорию о том, что молекула ДНК находится только в клетках животных, а в клетках растений присутствует только РНК. Лишь спустя несколько лет, в 1944 году, группой освальдских ученых было установлено, что молекула ДНК является механизмом сохранения наследственной информации клетки. Таким образом, благодаря совместным усилиям и трудам исследователей человечество познало тайну процесса эволюции и его основных принципов.

ДНК в медицине

Открытие состава молекулы дезоксирибонуклеиновой кислоты позволило перейти медицине на новый уровень развития. Появилось большое количество новых направлений практической медицины, стали доступны новые методы лечения, диагностики. Благодаря этому фундаментальному открытию для науки и современным технологиям, человечеству стали доступны:

  • Возможность поставить диагноз на ранней стадии заболевания, когда оно еще находится в скрытом периоде, и никаких симптомов не проявляется. у человека.
  • Тесты на наличие у человека аллергии или непереносимости некоторых пищевых продуктов. Индивидуальные исследования помогут выявить, какая пища хорошо усваивается организмом, а какая плохо или вообще не усваивается, и что может стать причиной аллергической реакции у исследуемого. Возможность узнать, какие этносы формируют Вашу внешность, и из каких народов были Ваши далекие предки
  • Тест на наличие врожденных заболеваний, передающиеся через поколения, оценка риска их возникновения у тестируемого человека.

И это еще не все доступные для людей услуги, которые может предложить медицина, изучающая генетику. Выше были представлены только самые популярные среди людей тесты. Перспективой для многих ученых-генетиков является создание таких лекарств, способных победить все болезни на Земле и даже смертность.

Строение молекулы ДНК

Молекула ДНК состоит из органических соединений - нуклеотидов, которые скручиваются в две спиралевидные цепи. Нуклеотиды в этих цепях – это базовые элементы, с помощью которых потом будут кодироваться и выстраиваться гены. В составе одного гена возможны несколько вариантов расположения некоторых нуклеотидов, поэтому вместе с тем, как меняется структура гена, меняется и его функциональность.

От цепочки к хромосоме

В каждом живом организме находится миллионы клеток, а внутри этих клеток находится ядро. Клетки, содержащие в себе ядро, называются эукариотами или ядерными. У древних одноклеточных нет оформленного ядра. К таким безъядерным одноклеточным, или прокариотам, относятся бактерии и археи, например, кишечная палочка или серая анаэробная бактерия. Также ядро отсутствует в клетках вирусов и вироидов, однако причисление вирусов к живым организмам – вопрос спорный, о котором по сей день дискуссируют ученые.

В ядре находятся хромосомы – структурный элемент, в котором содержится молекула ДНК в виде спирали, хранящая внутри себя всю генетическую информацию клетки.

Процесс упаковки ДНК спиралей

Количество нуклеотидов в ДНК велико, и нужны длинные цепочки, чтобы вместить все их число, поэтому нити ДНК закручиваются в две спирали, что позволяет укоротить цепочки в 5 раз, сделав их более компактными. Нити ДНК могут также закручиваться в форму суперспирали. Двойная спираль пересекает свою ось и накручивается на специальные гистоновые белки – гиразы, образуя при этом супервитки. Таким образом, двойная спираль закручивается в спираль более высокого порядка. Сокращение цепочек в этом случае произойдет в 30 раз.

Как гены связаны с ДНК

Ген – самый изученный на сегодняшний день участок ДНК. Гены являются структурной единицей наследственности всех живых организмов. Цепочки нуклеотидов в ДНК состоят из генов, которые определяют генотип особи, например, цвет и разрез глаз, тип кожи, рост, группу и резус фактор крови и другие физиологические качества и особенности внешности.

Еще много отраслей генетики до конца не изучены, и до конца не раскрыты все функции генома, но ученые до сих пор продолжают изучение генов, чтобы добиться новых открытий в области генетики.

Хромосома: определение и описание

Хромосомы

Хромосомы – структурный элемент клетки, находящийся внутри ядра. Они содержат в себе молекулы ДНК, в которых содержится вся наследственная информация.

Строение и виды хромосом:

Отсюда возникают различные типы хромосом:

  • Равноплечая – центромера перетягивает хроматиды точно посередине;
  • Неравноплечая – центромера неточно перетягивает хроматиды, из-за чего одно плечо хромосомы будет длиннее, а другое – короче. К этому типу относится Y-хромосома;
  • Палочковидная – центромера перетягивает хроматиды практически на их концах, из-за чего по форме хромосома напоминает палочку;
  • Точковые – очень мелкие хромосомы, форму которых трудно определить. В науке существуют 3 основные формы хромосом:
  • Х-хромосома, встречающаяся у особей женского и мужского пола;
  • Y-хромосома, встречающаяся только у мужских особей;
  • В-хромосома, которая очень редко встречается в клетках растений. Обычно их число доходит до 6, редко – до 12. Ее наличие обуславливает различные болезни и побочные эффекты в организме

Всего в клетке человека находится 46 хромосом: 22 пары аутосом, встречающиеся у обоих полов, и одна пара половых хромосом: XY – у мужчин, XX – у женщин. Забавно, что если прибавить к количеству хромосом хотя бы одну пару, то человек мог бы быть шимпанзе или тараканом, а если отнять, то – кроликом.

Еще интересно то, что человек и ясень имеют одинаковое количество хромосом, несмотря на принадлежность к разным видам и царствам.

Генетический код – система записи генетической информации в ДНК и РНК в виде определенной последовательности в цепочке нуклеотидов. Он должен сохранять наследственную информацию в первоначальном виде, восстанавливая повреждения цепочки в последующем поколении с помощью ДНК. Однако ген может каким-то образом быть поврежден, либо в нем может произойти мутация.

Генные мутации – изменение в последовательности нуклеотидов, например выпадение, замена, вставка другого нуклеотида в цепочку. Последствия этих мутаций могут быть полезные, вредные или нейтральные. Примером полезных мутаций является устойчивость к минусовым температурам, увеличенная плотность костей, меньшая потребность во сне, устойчивость к ВИЧ и другие. Примером вредных мутаций является аллергия на солнечный свет, глухота слепота и так далее. К нейтральным мутациям относятся те мутации, которые не влияют на жизнеспособность, например, гетерохромия.

Существуют также летальные и полулетальные мутации. Летальные мутации несовместимы с жизнью и приводят к гибели организма на ранних этапах его развития, например, при рождении у особи отсутствует головной мозг. Полулетальные мутации не приводят к смерти особи, но значительно уменьшают ее жизнеспособность. К таким мутациям относятся заболевания человека, передающиеся по наследству. Например, наличие 47-й хромосомы может вызвать у человека синдром Дауна, а, наоборот, отсутствие 46-й парной хромосомы – сидром Шерешевского-Тернера.

Расшифровка цепочки ДНК

Расшифровка цепочки ДНК в клетке – это исследование всех известных генов в клетках человека. Хоть цена за такую услугу значительно упала за последние десять лет, однако такое исследование по-прежнему остается дорогим удовольствием, и не каждый человек сможет позволить себе оплатить такую услугу. Чтобы уменьшить цену этого исследования, расшифровку ДНК стали делить по тематикам. Таким образом, появились различные тесты, которые исследуют интересующую человека группу генов и ее функции.

Как происходит расшифровка цепочки ДНК?

  • Взятые на пробу образцы ДНК нагревают, чтобы двойная спираль раскрутилась и распалась на две нити.
  • К интересующему участку цепочки генов прилепляется полимераза - фермент, синтезирующий полимеры нуклеиновых кислот. Процедура проходит при низких температурах.
  • С помощью полимеразы в интересующих участков происходит синтезов генов, необходимых для изучения.
  • Участки пропитывают светящейся краской, которая светится при лазерном воздействии.

Таким образом, ученые получают картину гена, которую можно изучить и расшифровать. Синтез РНК Нуклеотиды делятся на четыре базовых элемента, служащими основой для формирования генов: АТГЦ, или аденин, тимин, гуанин, цитозин. В их состав входят фосфорные остатки, азотистые основания и пептоза.

В ДНК эти нуклеотиды располагаются строго по парам параллельно друг другу строгими парами: аденин - с тимином, гуанин - с цитозином.

Важно, что молекула дезоксирибонуклеиновой кислоты не должна выходить за пределы мембраны ядра. С помощью РНК, которая играет роль копии участка цепи с генетическим кодом, генетическая цепочка может покинуть ядро, попасть вовнутрь клетки и воздействовать на ее внутренние процессы.

Как это происходит:

  • Один конец генной спирали раскручивается, формируя две развернутые нити с цепочкой генов.
  • К развернутому участку спирали подходит специальный фермент-строитель и поверх этого участка синтезирует его копию.
  • У копии в структуре нуклеотидов тимин во всех парах заменяется на урацил, что позволяет копии генетической цепи покинуть ядро клетки. Синтез белка при помощи генов Основное взаимодействие, происходящее между генами и клеткой, состоит в том, что различные гены могут заставлять клетку производить синтез разных белков с самыми непредсказуемыми свойствами.

Итак, группа генов, участвующих в процессе старения клеток может, как заставить процесс старения идти быстрее, так и вовсе его остановить и запустить процесс омолаживания. То есть, каждый из генов может спровоцировать синтез нескольких видов белка.

Генетик Сутягина Дарья

Сутягина Дарья Сергеевна

Эксперт-генетик

В нашей ДНК содержится очень много информации, но пока мы можем расшифровать лишь небольшой процент генов. Добавлю несколько интересных фактов о ДНК: возможность двойной ДНК у человека. Такое явление случается, когда при беременности в утробе развиваются близнецы, но в процессе развития плода они сливаются в одного человека. Длина одной молекулы ДНК человека равна 2 метрам, а общая длина цепочки ДНК всех клеток тела человека равна 16 млрд. километрам, что равно расстоянию от Земли до Плутона. ДНК человека и кенгуру всего лишь 150 млн. лет назад были одинаковыми. Все знания и информация во всем мире могла бы уместиться всего лишь в 2 граммах дезоксирибонуклеиновой кислоты.

Сайт учителей биологии МБОУ Лицей № 2 г. Воронежа, РФ

Site biology teachers lyceum № 2 Voronezh city, Russian Federation

ДНК

Дезоксирибонуклеиновая кислота (ДНК) — высокополимерное природное соединение, обеспечивающих хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов.


Молекула ДНК состоит из двух полинуклеотидных цепей, закрученных одна вокруг другой в спираль. Цепи построены из большого числа мономеров — нуклеотидов.

Молекулы ДНК обладают очень высокой молекулярной массой — до сотен миллионов. Лишь в митохондриях, а также некоторых вирусах и бактериях молекулярная масса ДНК значительно меньше; в этих случаях молекулы ДНК обычно имеют кольцевую структуру.

Размеры молекул ДНК. Молекулы ДНК обладают очень высокой молекулярной массой — до сотен миллионов атомных единиц массы, а длина молекулы может достигать нескольких сантиметров!

Размер ДНК выражается в парах нуклеотидов (пн).

Характеристика молекул ДНК некоторых организмов

Источник Молекулярная масса Длина молекулы Размер (пн) Тип структуры
Бактериофаг φ Х174 1,6 х 10 6 1,6 мкм 5 х 10 3 Кольцевая одноцепочечная
Бактериофаг Т2 1,2 х 10 8 50 мкм 2 х 10 5 Кольцевая двухцепочечная
Хромосома бактерии инфлюэнцы 7,9 х 10 8 300 мкм 1,2 х 10 6 Неизвестен
Хромосома кишечной палочки 2,6 х 10 8 1 мм 4 х 10 6 Кольцевая двухцепочечная
Хромосома №12 дрожжей 1,5х 10 9 500 мкм 2,2 х 10 6 Линейная двухцепочечная
Хромосома №3 мухи дрозофилы 4,2 х 10 10 16 мм 6,3 х 10 7 Линейная двухцепочечная

Общая длина молекул ДНК у человека и человекообразных обезьян составляет около 3 миллиардов нуклеотидов. Суммарная длина всех 46 молекул ДНК человека составляет около двух метров.

В клетках эукариот ДНК находится в ядре клетки в составе хромосом, а также в митохондриях и пластидах.


В клетках прокариот кольцевая или линейная молекула ДНК, так называемый нуклеоид, прикреплена изнутри к клеточной мембране. Кроме того, одно- или двухцепочечные молекулы ДНК могут oбразовывать геном ДНК-содержащих вирусов.


ДНК — носитель генетической информации; отдельные участки ДНК соответствуют определенным генам. ДНК точно воспроизводится при делении клеток, что обеспечивает в ряду поколений клеток и организмов передачу наследственных признаков о строении, развитии и специфических формах обмена веществ.

ДНК служит также матрицей для синтеза рибонуклеиновых кислот (РНК), определяя тем самым их первичную структуру (транскрипция). Через посредство информационной РНК (иРНК) осуществляется трансляция — синтез специфических белков, структура которых задана ДНК в виде определенной нуклеотидной последовательности.

Пространственная структура ДНК. Полимер ДНК обладает довольно сложной структурой.

Дезоксирибонуклеотиды соединены между собой ковалентно в длинные полинуклеотидные цепи ковалентными фосфодиэфирными связями.

У большинства живых организмов ДНК состоит не из одной, а из двух полинуклеотидных цепей (кроме некоторых вирусов, обладающих одноцепочечными ДНК-геномами).

Две цепи попарно объединяются при помощи водородных связей, возникающих между азотистыми основаниями нуклеотидов. Расположение нуклеотидов в цепях не случайное, а строго определенное: напротив аденина всегда располагается тимин, а напротив гуанина — цитозин ( принцип комплементарности ); при этом между аденином и тимином возникают две водородные связи, а между тимином и цитозином — три водородные связи.

Эти две длинные цепи закручены одна вокруг другой в виде спирали, в природе эта спираль чаще всего — правозакрученная. Подобно тому, как в винтовой лестнице сбоку можно увидеть ступеньки, на двойной спирали ДНК в промежутках между фосфатным остовом молекулы можно видеть ребра оснований, кольца которых расположены в плоскости, перпендикулярной продольной оси спирали.


Расшифровка структуры ДНК (1953 год) стала одним из поворотных моментов в истории биологии. За выдающийся вклад в это открытие Фрэнсису Крику, Джеймсу Уотсону, Морису Уилкинсу была присуждена Нобелевская премия по физиологии и медицине в 1962 году.

Функции ДНК: хранение наследственной информации, передача наследственной информации следующему поколению, передача генетической информации из ядра в цитоплазму.

Читайте также: