Объясните на основании теории бора наличие линейчатых спектров у атома водорода кратко

Обновлено: 30.06.2024

АТОМНАЯ ФИЗИКА

Элементы квантовой физики атомов и молекул

Теория атома водорода по Бору

§1 Модель атома Томсона и Резерфорда

Учение об атомном строении вещества возникло в античные времена. Однако, до конца XIX века атом считался элементарной неделимой первоосновой (“кирпичиком ”) любого вещества.

В середине XIX века экспериментально было доказано, что электрон является одной из основных составных частей любого вещества. (В 1749 году Бенджамин Франклин высказал гипотезу, что электричество представляет собой своеобразную материальную субстанцию. Центральную роль электрической материи он отводил представлению об атомистическом строении электрического флюида. В работах Франклина впервые появляются термины: заряд, разряд, положительный заряд, отрицательный заряд, конденсатор, батарея, частицы электричества.

Иоганн Риттер в 1801 году высказал мысль о дискретной, зернистой структуре электричества.

Вильгельм Вебер в своих работах с 1846 года вводит понятие атома электричества и гипотезу, что его движением вокруг материального ядра можно объяснить тепловые и световые явления.


  1. В 1905 г. Была предложена Дж. Дж. Томсоном (лорд Кельвин) первая модель атома, согласно которой атом представляет собой непрерывно заряженный положительным зарядом шар радиуса ~ 10 -10 м, внутри которого около своих положений равновесия колеблются электроны. Суммарный отрицательный заряд электронов равен положительному заряду шара, поэтому атом в целом нейтрален (модель атома Томсона называют “булочкой с изюмом” или “пудинг с изюмом”).


Э. Резерфорд в 1909 г. Провел эксперименты по прохождению α - частиц сквозь тонкие металлические пластинки золота и платины. (α-частицы возникают при радиоактивных превращениях. Заряд α - частицы равен двум зарядам электрона: qα = 2 e = 2·1,6·10 -19 Кл , масса четырем массам протона : mα = 4 mp = 4·1,67·10 -27 кг). α - частицы испускались радием, помещенным внутри свинцовой полости с каналом так, чтобы все частицы, кроме движущихся вдоль канала, поглощались свинцом. Узкий пучок попадал на фольгу из золота перпендикулярно её поверхности. α - частицы, прошедшие сквозь фольгу и рассеянные ею вызывали вспышки (сцинтилляции) на флуоресцирующем экране.

Опыты показали, что в большинстве случаев α – частицы после прохождения через фольгу сохраняли прежнее направление или отклонялись на очень малые углы. Однако некоторые α – частицы (приблизительно одна из 20 000) отклонялись на большие углы, порядка 135 ÷ 150°. Т.к. электроны не могут существенно изменять движение α – частицы ( ), то Э. Резерфорд предположил, что весь положительный заряд атома сосредоточен в его ядре – области занимающей весьма малый объём по сравнению со всем объёмом атома. Остальная часть атома представляет собой облако отрицательно заряженных электронов, полный заряд которых равен положительному заряду ядра. Эта модель атома была предложена Резерфордом в 1911 г. и получила название планетарной модели атома, т.к. она напоминает солнечную систему: в центре системы находится “солнце”- ядро, а вокруг него по орбитам движутся “планеты” – электроны.

Недостатки модели Э. Резерфорда:

а) Электроны в атомной модели не могут быть неподвижными, т.к. под действием силы Кулона они бы притянулись (и ”упали бы”) к ядру. В этой модели существует бесконечно много значений радиусов орбит электрона и соответствующих им значений скорости


Откуда следует, что радиус и скорость может изменяться непрерывно. Следовательно, может испускаться любая порция энергии, и, следовательно, спектр атома должен быть сплошным. В действительности же опыт показывает, что атомы имеют линейчатые спектры.


б) При r ≈10 -10 м v ≈ 10 6 м/с и Согласно электродинамике, электроны, движущиеся с ускорением, должны излучать электромагнитные волны и вследствие этого непрерывно терять энергию. И тогда, электрон будет по спирали приближаться к ядру, и через τ ≈ 10 -10 с упасть на него. С другой стороны, частота излучения должна непрерывно изменяться вследствие изменения r , v , T . Следовательно, атом будет давать непрерывный спектр.

Попытки построить модель атома с использованием законов классической механики, электричества и оптики привели к противоречию с экспериментальными данными:

модель - а) неустойчивость атома; б) сплошной спектр;

эксперимент - а) атом устойчив; б) излучает при определенных условиях; в) линейчатый спектр.

§2 Линейчатый спектр атома водорода.

Формула Бальмера - Ридберга

Светящиеся газы дают линейчатые спектры испускания, состоящие из отдельных спектральных линий. Когда свет проходит через газы возникают линейчатые спектры поглощения – каждый атом поглощает те спектральные линии, которые сам может испускать.

Спектр – совокупность гармонических составляющих или длин волн. Например, если волна может быть представлена в виде суперпозиции двух волн с частотами ω1 и ω2, то говорят, что спектр имеет две составляющие или две линии с λ1 и λ2. Спектры бывают:

а) линейчатые – у атомов и простых молекул разряженных газов; полосатые - - сложные молекулы; сплошные – нагретые твердые тела и жидкости;

б) испускания- при электрическом газовом разряде, при нагреве твердых тел и др.; поглощения – свет проходит через газы, жидкости и твердые тела и при этом каждый атом поглощает те спектральные линии, которые сам может испускать;

в) дисперсионные (призматические) – получаются при разложении белого света на призме; дифракционные – при разложении на дифракционной решетке;

г) атомным – спектр, полученный на атомах (например, разряд в газах); молекулярным (полосатым) – имеет вид полос, образованных близко расположенными спектральными линиями

1) колебательными -> ДИК (дальняя инфракрасная область λ = 0,1 ÷ 1 мм);

2) вращательными - > ИК λ = 1 ÷ 10 мкм;

3) электронно – колебательными (видимая и УФ область спектра λ = 0,3 мкм и выше);

Первым был изучен спектр самого простого элемента – атома водорода. Бальмер в 1885 г. установил, что длины волн известных в то время девяти линий спектра водорода могут быть вычислены по формуле


И. Ридберг (шведский ученый) предложил иную форму записи


- формула Бальмера – Ридберга.

R’ = 10973731 м -1 – постоянная Ридберга (R’ = 1,1·10 7 м -1 ),


т.к. , то можно записать


где R = R c = 3,29·10 15 c -1 – то же постоянная Ридберга.

Формула Бальмера – Ридберга впервые указала на особую роль целых чисел в спектральных закономерностях.

В настоящее время известно большое число спектральных линий водорода, длины волн которых с большой степенью точности удовлетворяют формуле Бальмера – Ридберга. Из формулы Бальмера – Ридберга видно, что спектральные линии, отличающиеся различными значениями n , образуют группу или серию линий, называемую серией Бальмера. С ростом n спектральные линии серии сближаются друг с другом.

Серия Бальмера расположена в видимой части спектра, поэтому была обнаружена первой.

В начале XX века в спектре атома водорода было обнаружено ещё несколько серий в невидимых частях спектра.

Самым простым из всех атомов является атом водорода, и он выступил в свое время в качестве своеобразного тест-объекта для теории Бора. К моменту появления теории атом водорода был тщательно исследован в ходе экспериментов: имелось знание о том, что он содержит единственный электрон. Ядром атома является протон.

Протон - это частица с положительным зарядом, модуль которого равен модулю заряда электрона, а масса больше массы электрона в 1836 раз.

Серия Бальмера и формула Ридберга

Начало XIX века ознаменовалось открытием линейчатого спектра.

Линейчатый спектр - это дискретные спектральные линии в видимой области излучения атома водорода.

В последующем закономерности, в соответствии с которыми ведут себя длины волн (или частоты) линейчатого спектра, подробно в количественном отношении исследовал И. Бальмер (в 1885 г.)

Серия Бальмера - совокупность спектральных линий атома водорода в видимой части спектра.

Позднее подобные серии спектральных линий обнаружились в ультрафиолетовой и инфракрасной частях спектра. В 1890 г. И. Ридберг составил запись эмпирической формулы для частот спектральных линий (формула Ридберга):

ν n m = R 1 m 2 - 1 n 2 .

Для серии Бальмера m = 2 , n = 3 , 4 , 5 , . . . . Для ультрафиолетовой серии (серия Лаймана) m = 1 , n = 2 , 3 , 4 , . . . .

Неизменяемая R в формуле для частот спектральных линий носит название постоянной Ридберга и равна: R = 3 , 29 · 10 15 Г ц .

До того, как Бор сформулировал постулаты, вопросы, каким же образом возникают линейчатые спектры и каков смысл целых чисел, входящих в формулы спектральных линий водорода (и некоторых других атомов), оставались без ответа.

Правило квантования

Бором было сформулировано правило квантования, которое приводило к соотносимым с опытом значениям энергий стационарных состояний атома водорода. Ученый выдвинул гипотезу, что момент импульса электрона, совершающего вращение вокруг ядра, может принимать лишь дискретные значения, кратные постоянной Планка.

Для круговых орбит правило квантования Бора имеет запись:

m e ν r n = n h 2 π ( n = 1 , 2 , 3 , . . . ) .

В данном выражении m e является массой электрона, υ - его скоростью, r n обозначает радиус стационарной круговой орбиты.

Правило квантования Бора дает возможность путем вычисления определить радиусы стационарных орбит электрона в атоме водорода и отыскать значения энергий. Скорость электрона, который совершает вращение по круговой орбите некоторого радиуса r в кулоновском поле ядра, записывается в виде соотношения (в соответствии с 2 законом Ньютона):

ν 2 = e 2 4 π ε 0 m e r .

Самой близкой к ядру орбите соответствует значение n = 1 .

Боровский радиус - это радиус первой орбиты, расположенной ближе всех к ядру электрона атома водорода, определяемый как:

r 1 = α 0 = ε 0 h 2 π m e e 2 = 5 , 29 · 10 - 11 м .

Радиусы последующих орбит получают возрастание пропорционально n 2 .

Полная механическая энергия E системы из атомного ядра и электрона, вращающегося по стационарной круговой орбите радиусом r n , имеет запись:

E n = E k + E p = m e ν 2 2 - e 2 4 π ε 0 r n .

Заметим, что E p 0 , поскольку имеет место действие сил притяжения между электроном и ядром. Подставим в это выражение записи для υ 2 и r n и получаем:

E n = - m e e 4 8 e 0 2 h 2 · 1 n 2 .

В квантовой физике атома целое число n = 1 , 2 , 3 , . . . носит название главного квантового числа.

В соответствии со вторым постулатом Бора: когда электрон переходит с одной стационарной орбиты с энергией E n на другую стационарную орбиту с энергией E m E n , атом испускает квант света с частотой ν n m , равной Δ E n m h :

ν n m = ∆ E n m h = m e e 4 8 ε 0 2 h 3 1 m 2 - 1 n 2 .

Это выражение полностью идентично с эмпирической формулой Ридберга для спектральных серий атома водорода, если за постоянную R взять:

R = m e e 4 8 ε 0 2 h 3 .

Подставим в это выражение числовые значения всех переменных, получим

R = 3 , 29 · 10 15 Г ц .

Полученное значение отлично коррелируется с эмпирическим значением R .

На рисунке 6 . 3 . 1 проиллюстрировано образование спектральных серий в излучении атома водорода при переходе электрона с высоких стационарных орбит на более низкие.

Рисунок 6 . 3 . 1 . Стационарные орбиты атома водорода и образование спектральных серий.

Рисунок 6 . 3 . 2 демонстрирует диаграмму энергетических уровней атома водорода с указанием переходов для различных спектральных серий.

Рисунок 6 . 3 . 2 . Диаграмма энергетических уровней атома водорода с указанием переходов для различных спектральных серий. Также имеется указание длин волн для первых пяти линий серии Бальмера.

Тот факт, что теория Бора для атома водорода и результаты эксперимента оказались так отлично согласованы между собой, стал весомым аргументом в пользу верности этой теории. Но при этом попытка использовать теорию применительно к более сложным атомам закончилась провалом. Бору не удалось дать физическую интерпретацию правилу квантования – это позже, спустя десятилетие, сделал де Бройль, опираясь на представления о волновых свойствах частиц. Его предположение заключалось в том, что каждая орбита в атоме водорода соответствует волне, получающей распространение по окружности около ядра атома. Стационарная орбита имеет место тогда, когда волна постоянно повторяет себя после каждого оборота вокруг ядра. Иначе говоря, стационарная орбита соответствует круговой стоячей волне де Бройля на длине орбиты (рис. 6 . 3 . 3 ). Такое явление подобно стационарной картине стоячих волн в струне с закрепленными концами.

Рисунок 6 . 3 . 3 . Иллюстрация идеи де Бройля возникновения стоячих волн на стационарной орбите для случая n = 4 .

Согласно дебройлевским идеям, в стационарном квантовом состоянии атома водорода на длине орбиты должно укладываться целое число длин волн λ :

Если подставить сюда формулу длины волны де Бройля λ = h p , где p = m e υ – импульс электрона, то:

n h n e ν = 2 π r n или m e ν r n = n h 2 π .

Итак, правило квантования Бора находится во взаимосвязи с волновыми свойствами электронов.

Вообще можно сказать, что Бор достиг поразительных успехов в попытках объяснить спектральные закономерности. Появилось утверждение, что атомы являются квантовыми системами, а энергетические уровни стационарных состояний атомов дискретны. Практически одномоментно с возникновением боровской теории экспериментально было доказано, что существуют стационарные состояния атома и квантование энергии. Дискретность энергетических состояний атома опытным путем продемонстрировали в 1913 г. Д. Франк и Г. Герц, исследуя столкновение электронов с атомами ртути. Выяснилось, что при энергии электронов менее 4 , 9 э В их столкновение с атомами ртути протекает согласно закону абсолютно упругого удара. А, когда энергия электронов равна 4 , 9 э В , столкновение с атомами ртути будет иметь черты неупругого удара. Таким образом, выходит, что, столкнувшись с неподвижными атомами ртути, электроны лишаются всей своей кинетической энергии, что, в свою очередь, означает факт поглощения атомами ртути энергии электрона и перевода электронов из основного состояния в первое возбужденное состояние:

E 2 - E 1 = 4 , 9 э В .

В соответствии с концепцией Бора, когда будет происходить обратный самопроизвольный переход атома, ртуть будет испускать кванты с частотой

ν = E 2 - E 1 h = 1 , 2 · 10 15 Г ц .

Линия спектра с подобной частотой в самом деле нашлась в ультрафиолетовой части спектра излучения атомов ртути.

Утверждения о дискретных состояниях находились в противоречии с классической физикой, в связи с чем также возник закономерный вопрос: не опровергает ли квантовая теория законы классической физической теории.

Квантовая физика отнюдь не стремилась отменить фундаментальные основы, такие как законы сохранения энергии, импульса, электрического разряда и подобное. По сформулированному Бором принципу соответствия квантовая физика вмещает в себя классические представления, и при некоторых условиях можно заметить планомерный переход от квантовых представлений к классическим. Энергетический спектр атома водорода как раз дает нам такой пример (рис. 6 . 3 . 2 ): при больших квантовых числах n ≫ 1 дискретные уровни постепенно становятся ближе, что задает плавный переход в область непрерывного спектра, вытекающего из классической физики.

Квантовые числа

Видение Бора о том, что существуют определенные орбиты для движения электронов в атоме, оказалось очень условным. В действительности, траектория движения электрона в атоме почти не имеет общего с движением планет или спутников. Физический смысл есть лишь в возможности обнаружить электрон в том или ином месте, и эта вероятность описывается квадратом модуля волновой функции | Ψ | 2 . Волновая функция Ψ служит решением базового уравнения квантовой механики – уравнения Шредингера. Выяснилось, что состояние электрона в атоме описывается целым набором квантовых чисел.

Основное квантовое число n - квантовое число, задающее квантование энергии атома.

Орбитальное квантовое число l – число, применяемое для квантования момента импульса.

Магнитное квантовое число m – число, применяемое для квантования проекции момента импульса.

Квантовое число m введено в связи с тем, что проекция момента импульса на любое выделенное в пространстве направление (к примеру, направление вектора B → магнитного поля) также принимает дискретный ряд значений.

s -состояния ( 1 s , 2 s , . . . , n s , . . . ) – это состояния, при которых орбитальное квантовое число l равно нулю.

Описываются s -состояния сферически симметричными распределениями вероятности.

Когда l > 0 сферическая симметрия электронного облака нарушается.

p -состояния - это состояния при l = 1 .

d -состояния – это состояния при l = 2 и т.д.

Рис. 6 . 3 . 4 иллюстрирует кривые распределения вероятности ρ ( r ) = 4 π r 2 | Ψ | 2 обнаружения электрона в атоме водорода на разных расстояниях от ядра в состояниях 1 s и 2 s .

Рисунок 6 . 3 . 4 . Распределение вероятности обнаружения электрона в атоме водорода в состояниях 1 s и 2 s . r 1 = 5 , 29 · 10 – 11 м – радиус первой орбиты Бора.

На рисунке 6 . 3 . 4 наглядно продемонстрировано, что электрон в состоянии 1 s (основное состояние атома водорода) имеет возможность быть обнаруженным на различных расстояниях от ядра. С самой высокой вероятностью электрон обнаружится на расстоянии, равном радиусу r 1 первой боровской орбиты. Вероятность нахождения электрона в состоянии 2 s достигает максимума на расстоянии r = 4 r 1 от ядра. И в том, и в том случае атом водорода возможно представить, как сферически симметричное электронное облако, в центре которого расположено ядро.

Простейший из атомов, атом водорода явился своеобразным тест-объектом для теории Бора. Ко времени создания теории он был хорошо изучен экспериментально. Было известно, что он содержит единственный электрон. Ядром атома является протон – положительно заряженная частица, заряд которой равен по модулю заряду электрона, а масса в 1836 раз превышает массу электрона. Еще в начале XIX века были открыты дискретные спектральные линии в видимой области излучения атома водорода (так называемый линейчатый спектр ). Впоследствии закономерности, которым подчиняются длины волн (или частоты) линейчатого спектра, были хорошо изучены количественно (И. Бальмер, 1885 г.). Совокупность спектральных линий атома водорода в видимой части спектра была названа серией Бальмера . Позже аналогичные серии спектральных линий были обнаружены в ультрафиолетовой и инфракрасной частях спектра. В 1890 году И. Ридберг получил эмпирическую формулу для частот спектральных линий:

Для серии Бальмера , . Для ультрафиолетовой серии (серия Лаймана) , . Постоянная в этой формуле называется постоянной Ридберга . Ее численное значение . До Бора механизм возникновения линейчатых спектров и смысл целых чисел, входящих в формулы спектральных линий водорода (и ряда других атомов), оставались непонятными.

Постулаты Бора определили направление развития новой науки – квантовой физики атома. Но они не содержали рецепта определения параметров стационарных состояний (орбит) и соответствующих им значений энергии .

Правило квантования, приводящее к согласующимся с опытом значениям энергий стационарных состояний атома водорода, Бором было угадано. Он предположил, что момент импульса электрона, вращающегося вокруг ядра, может принимать только дискретные значения, кратные постоянной Планка. Для круговых орбит правило квантования Бора записывается в виде

Здесь e – масса электрона, υ – его скорость, – радиус стационарной круговой орбиты. Правило квантования Бора позволяет вычислить радиусы стационарных орбит электрона в атоме водорода и определить значения энергий. Скорость электрона, вращающегося по круговой орбите некоторого радиуса в кулоновском поле ядра, как следует из второго закона Ньютона, определяется соотношением
где – элементарный заряд, – электрическая постоянная. Скорость электрона υ и радиус стационарной орбиты связаны правилом квантования Бора. Отсюда следует, что радиусы стационарных круговых орбит определяются выражением

Самой близкой к ядру орбите соответствует значение . Радиус первой орбиты, который называется боровским радиусом , равен

Радиусы последующих орбит возрастают пропорционально .

Полная механическая энергия системы из атомного ядра и электрона, обращающегося по стационарной круговой орбите радиусом , равна

Следует отметить, что p 2 и , получим:

Целое число называется в квантовой физике атома главным квантовым числом .

Согласно второму постулату Бора, при переходе электрона с одной стационарной орбиты с энергией на другую стационарную орбиту с энергией атом испускает квант света, частота которого равна :

Эта формула в точности совпадает с эмпирической формулой Ридберга для спектральных серий атома водорода, если положить постоянную равной

Подстановка числовых значений e, , и в эту формулу дает результат

,
который очень хорошо согласуется с эмпирическим значением . Рис. 6.3.1 иллюстрирует образование спектральных серий в излучении атома водорода при переходе электрона с высоких стационарных орбит на более низкие.

На рис. 6.3.2. изображена диаграмма энергетических уровней атома водорода и указаны переходы, соответствующие различным спектральным сериям.

Диаграмма энергетических уровней атома водорода. Показаны переходы, соответствующие различным спектральным сериям. Для первых пяти линий серии Бальмера в видимой части спектра указаны длины волн

Прекрасное согласие боровской теории атома водорода с экспериментом служило веским аргументом в пользу ее справедливости. Однако попытки применить эту теорию к более сложным атомам не увенчались успехом. Бор не смог дать физическую интерпретацию правилу квантования. Это было сделано десятилетием позже де Бройлем на основе представлений о волновых свойствах частиц. Де Бройль предложил, что каждая орбита в атоме водорода соответствует волне, распространяющейся по окружности около ядра атома. Стационарная орбита возникает в том случае, когда волна непрерывно повторяет себя после каждого оборота вокруг ядра. Другими словами, стационарная орбита соответствует круговой стоячей волне де Бройля на длине орбиты (рис. 6.3.3). Это явление очень похоже на стационарную картину стоячих волн в струне с закрепленными концами.

В стационарном квантовом состоянии атома водорода на длине орбиты должно укладываться по идее де Бройля целое число длин волн λ, т. е.

.

Подставляя в это соотношение длину волны де Бройля , где e – импульс электрона, получим:

Таким образом, боровское правило квантования связано с волновыми свойствами электронов.

Успехи теории Бора в объяснении спектральных закономерностей в изучении атома водорода были поразительны. Стало ясно, что атомы – это квантовые системы, а энергетические уровни стационарных состояний атомов дискретны. Почти одновременно с созданием теории Бора было получено прямое экспериментальное доказательство существования стационарных состояний атома и квантования энергии. Дискретность энергетических состояний атома была продемонстрирована в 1913 г., в опыте Д. Франка и Г. Герца, в котором исследовалось столкновение электронов с атомами ртути. Оказалось, что если энергия электронов меньше , то их столкновение с атомами ртути происходит по закону абсолютно упругого удара. Если же энергия электронов равна , то столкновение с атомами ртути приобретает характер неупругого удара, т. е. в результате столкновения с неподвижными атомами ртути электроны полностью теряют свою кинетическую энергию. Это означает, то атомы ртути поглощают энергию электрона и переходят из основного состояния в первое возбужденное состояние,

.

Согласно боровской концепции, при обратном самопроизвольном переходе атома ртуть должна испускать кванты с частотой

Спектральная линия с такой частотой действительно была обнаружена в ультрафиолетовой части спектра излучения атомов ртути.

Представление о дискретных состояниях противоречит классической физике. Поэтому возник вопрос, не опровергает ли квантовая теория ее законы.

Квантовая физика не отменила фундаментальных классических законов сохранения энергии, импульса, электрического разряда и т. д. Согласно сформулированному Н. Бором принципу соответствия , квантовая физика включает в себя законы классической физики, и при определенных условиях можно обнаружить плавный переход от квантовых представлений к классическим. Это можно видеть на примере энергетического спектра атома водорода (рис. 6.3.2). При больших квантовых числах дискретные уровни постепенно сближаются, и возникает плавный переход в область непрерывного спектра, вытекающего из классической физики.

Половинчатая, полуклассическая теория Бора явилась важным этапом в развитии квантовых представлений, введение которых в физику требовало кардинальной перестройки механики и электродинамики. Такая перестройка была осуществлена в 20-е – 30-е годы XX века.

Состояния, в которых орбитальное квантовое число , описываются сферически симметричными распределениями вероятности. Они называются -состояниями (1, 2, . , . ). При значениях сферическая симметрия электронного облака нарушается. Состояния с называются -состояниями, с – -состояниями и т. д.

На рис. 6.3.4 изображены кривые распределения вероятности обнаружения электрона в атоме водорода на различных расстояниях от ядра в состояниях 1 и 2.

Распределение вероятности обнаружения электрона в атоме водорода в состояниях 1 и 2. – радиус первой боровской орбиты

Как видно из рис. 6.3.4, электрон в состоянии 1 (основное состояние атома водорода) может быть обнаружен на различных расстояниях от ядра. С наибольшей вероятностью его можно обнаружить на расстоянии, равном радиусу первой боровской орбиты. Вероятность обнаружения электрона в состоянии 2 максимальна на расстоянии от ядра. В обоих случаях атом водорода можно представить в виде сферически симметричного электронного облака, в центре которого находится ядро.


Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев.

Темы кодификатора ЕГЭ: постулаты Бора.

Планетарная модель атома, успешно истолковав результаты опытов по рассеянию -частиц, в свою очередь столкнулась с очень серьёзными трудностями.

Как мы знаем, любой заряд, движущийся с ускорением, излучает электромагнитные волны. Это - неоспоримый факт классической электродинамики Максвелла, подтверждаемый многочисленными наблюдениями.

Нам также хорошо известно, что электромагнитные волны несут энергию. Стало быть, ускоренно движущийся заряд, излучая, теряет энергию, которая этим излучением уносится.

А теперь давайте возьмём произвольный электрон в планетарной модели. Он двигается вокруг ядра по замкнутой орбите, так что направление его скорости постоянно меняется. Следовательно, электрон всё время имеет некоторое ускорение (например, при равномерном движении по окружности это будет центростремительное ускорение), и поэтому должен непрерывно излучать электромагнитные волны. Расходуя свою энергию на излучение, электрон будет постепенно приближаться к ядру; в конце концов, исчерпав запас своей энергии полностью, электрон упадёт на ядро.

Если исходить из того, что механика Ньютона и электродинамика Максвелла работают внутри атома, и провести соответствующие вычисления, то получается весьма озадачивающий результат: расход энергии электрона на излучение (с последующим падением электрона на ядро) потребует совсем малого времени - порядка секунды. За это время атом должен полностью "коллапсировать" и прекратить своё существование.

Таким образом, классическая физика предрекает неустойчивость атомов, устроенных согласно планетарной модели. Этот вывод находится в глубоком противоречии с опытом: ведь на самом деле ничего такого не наблюдается. Предметы нашего мира вполне устойчивы и не коллапсируют на глазах! Атом может сколь угодно долго пребывать в невозбуждённом состоянии, не излучая при этом электромагнитные волны.

Постулаты Бора.

Оставалось признать, что внутри атомов перестают действовать известные законы классической физики. Микромир подчиняется совсем другим законам.

Первый прорыв в познании законов микромира принадлежит великому датскому физику Нильсу Бору. Он предложил три постулата, резко расходящиеся с механикой и электродинамикой, но тем не менее позволяющих правильно описать простейший из атомов - атом водорода.

Классическая физика хорошо описывает непрерывные процессы - движение материальной точки, изменение состояния идеального газа, распространение электромагнитных волн. . . Энергия объекта, подчиняющегося механике или электродинамике, в принципе может принимать любые значения. Однако линейчатые спектры указывают на дискретность процессов, происходящих внутри атомов. Эта дискретность должна фигурировать в законах новой теории.

Первый постулат Бора. Всякий атом (и вообще, всякая атомная система) может находиться не во всех состояниях с любым, наперёд заданным значением энергии. Возможен лишь дискретный набор избранных состояний, называемых стационарными, в которых энергия атома принимает значения Находясь в стационарном состоянии, атом не излучает электромагнитные волны.

Как видим, первый постулат Бора вопиющим образом противоречит классической физике: налагается запрет на любые значения энергии, кроме избранного прерывистого набора, и признаётся, что электроны, вроде бы движущиеся ускоренно, на самом деле не излучают.

Выглядит фантастически, не правда ли? Однако в том же 1913 году, когда Бор предложил свои постулаты, существование стационарных состояний было подтверждено экспериментально - в специально поставленном опыте немецких физиков Франка и Герца. Таким образом, стационарные состояния - это не выдумка, а объективная реальность.

Значения разрешённого набора называются уровнями энергии атома. Что происходит при переходе с одного уровня энергии на другой?

Второй постулат Бора. Если атом переходит из стационарного состояния с большей энергией в стационарное состояние с меньшей энергией , то разность этих энергий может высвободиться в виде излучения. В таком случае излучается фотон с энергией

Эта же формула работает и при поглощении света: в результате столкновения с фотоном атом переходит из состояния в состояние с большей энергией , а фотон при этом исчезает.

Для примера на рис. 1 показано излучение фотона при переходе атома с энергетического уровня на уровень . Переход заключается в том, что электрон "соскакивает" с одной орбиты на другую, расположенную ближе к ядру.


Рис. 1. Излучение фотона атомом

Формула (1) даёт качественное представление о том, почему атомные спектры испускания и поглощения являются линейчатыми.

В самом деле, атом может излучать волны лишь тех частот, которые соответствуют разностям значений энергии разрешённого дискретного набора ; соответственно, набор этих частот также получается дискретным. Вот почему спектр излучения атомов состоит из отдельно расположенных резких ярких линий.

Вместе с тем, атом может поглотить не любой фотон, а только тот, энергия которого в точности равна разности каких-то двух разрешённых значений энергии и . Переходя в состояние с более высокой энергией , атомы поглощают ровно те самые фотоны, которые способны излучить при обратном переходе в исходное состояние . Попросту говоря, атомы забирают из непрерывного спектра те линии, которые сами же и излучают; вот почему тёмные линии спектра поглощения холодного атомарного газа находятся как раз в тех местах, где расположены яркие линии спектра испускания этого же газа в нагретом состоянии.

Качественного объяснения характера атомных спектров, однако, недостаточно. Хотелось бы иметь теорию, позволяющую вычислить частоты наблюдаемых спектров. Бору удалось это сделать в самом простом случае - для атома водорода.

Атом водорода.

Атом водорода состоит из ядра с зарядом , которое называется протоном, и одного электрона с зарядом (через обозначена абсолютная величина заряда электрона). При построении своей теории атома водорода Бор сделал три дополнительных предположения.

1. Прежде всего, мы ограничиваемся рассмотрением только круговых орбит электрона. Таким образом, электрон движется вокруг протона по окружности радиуса с постоянной по модулю скоростью (рис. 2 ).


Рис. 2. Модель атома водорода

2. Величина , равная произведению импульса электрона на радиус орбиты , называется моментом импульса электрона. В каких единицах измеряется момент импульса?

Это в точности размерность постоянной Планка! Именно здесь Бор увидел появление дискретности, необходимой для квантового описания атома водорода.

Правило квантования (третий постулат Бора). Момент импульса электрона может принимать лишь дискретный набор значений, кратных "перечёркнутой" постоянной Планка:

3. Выше мы говорили, что классическая физика перестаёт работать внутри атома. Так оно в действительности и есть, но вопреки этому мы предполагаем, что электрон притягивается к протону с силой, вычисляемой по закону Кулона, а движение электрона подчиняется второму закону Ньютона:

Эти три предположения позволяют довольно просто получить формулы для уровней энергии атома водорода. Переписываем соотношение (3) в виде:

Из правила квантования (2) выражаем :

и подставляем это в (4) :

Отсюда получаем формулу для допустимых радиусов орбит электрона:

Теперь перейдём к нахождению энергии электрона. Потенциальная энергия кулоновского взаимодействия электрона с ядром равна:

(Она отрицательна, так как отсчитывается от бесконечно удалённой точки, в которой достигает максимального значения.)

Полная энергия электрона равна сумме его кинетической и потенциальной энергий:

Вместо подставим правую часть выражения (4) :

Полная энергия, как видим, отрицательна. Если на радиус орбиты никаких ограничений не накладывается, как это имеет место в классической физике, то энергия может принимать любые по модулю значения. Но согласно (5) существует лишь дискретный набор возможных значений радиуса; подставляя их в (6) , получаем соответствующий набор допустимых значений энергии атома водорода:

Основное состояние атома водорода - это состояние с наименьшей энергией . В основном состоянии атом может находиться неограниченно долго. Вычисление даёт:

Мы видим, что если атом находится в основном состоянии, то для выбивания электрона нужно сообщить атому энергию, равную как минимум 13,6 эВ. Эта величина носит название энергии ионизации атома водорода.

По формуле (5) легко вычислить радиус орбиты основного состояния:

То есть, диаметр атома оказывается равным как раз см - величине, известной из опыта. Таким образом, теория Бора впервые смогла объяснить размер атома!

Кроме того, в рамках теории Бора удаётся получить формулы для вычисления частот (или длин волн) спектра атома водорода. Так, согласно второму постулату Бора и формуле (7) имеем:

На практике чаще имеют дело с длинами волн. Учитывая, что , формулу (8) можно переписать так:

Константа м называется постоянной Ридберга. Теория Бора даёт значение этой постоянной, очень хорошо согласующееся с экспериментом.

Длины волн спектра атома водорода образуют серии, характеризующиеся фиксированным значением в формуле (9) . Все длины волн данной серии излучаются при переходах на уровень с вышележащих энергетических уровней .

Переходы в основное состояние:

образуют серию Лаймана. Длины волн этой серии описываются формулой (9) при :

Линии серии Лаймана лежат в ультрафиолетовом диапазоне.

Переходы на второй уровень:

образуют серию Бальмера. Длины волн этой серии подчиняются формуле (9) при :

Первые четыре линии серии Бальмера лежат в видимом диапазоне (рис. 3 ), остальные - в ультрафиолетовом.


Рис. 3. Видимый спектр атома водорода (серия Бальмера)

Переходы на третий уровень:

образуют серию Пашена.Длины волн этой серии описываются формулой (9) при :

Все линии серии Пашена лежат в инфракрасном диапазоне.

Имеются ещё три "именованных" серии: это серия Брэккета (переходы на уровень), серия Пфунда (переходы на уровень ) и серия Хэмпфри (переходы на уровень ). Все линии этих серий лежат в далёкой инфракрасной области.

Достоинства и недостатки теории Бора.

О достоинствах модели атома водорода, предложенной Бором, мы так или иначе уже сказали. Резюмируем их.

-Теория Бора продемонстрировала, что для описания атомных объектов принципиально недостаточно представлений классической физики. В микромире работают другие, совершенно новые законы.
Для микромира характерно квантование - дискретность изменения величин, описывающих состояние объекта. В качестве меры квантования, как показала теория Бора, может выступать постоянная Планка , которая является универсальной константой и играет фундаментальную роль во всей физике микромира (а не только в явлениях излучения и поглощения света).

-Теория Бора впервые и совершенно точно указала на факт наличия стационарных энергетических состояний атома, образующих дискретный набор. Этот факт оказался общим свойством объектов микромира.

-В рамках модели Бора удалось получить формулы для вычисления частот спектра атома водорода и объяснить размер атома. Классическая физика была не в состоянии решить эти проблемы.

Однако теория Бора, разумеется, не могла претендовать на роль общей теории, описывающей микромир. Модель Бора обладала рядом существенных недостатков.

-Теория Бора непоследовательна. С одной стороны, она отвергает описание атома на основе классической физики, так как постулирует наличие стационарных состояний и правила квантования, непонятных с точки зрения механики и электродинамики. С другой стороны, классические законы - второй закон Ньютона и закон Кулона - используются для записи уравнения движения электрона по круговой орбите.

-Теория Бора не смогла дать адекватное описание самого простого после водорода атома гелия. Подавно не могло быть и речи о распространении теории Бора на более сложные атомы.

-Даже в самом атоме водорода теория Бора смогла описать не всё. Например, дав выражения для частот спектральных линий, модель Бора не объясняла различие в их интенсивностях. Кроме того, неясен оставался механизм образования молекулы водорода из двух атомов.

Несмотря на свои недостатки, теория Бора стала важнейшим этапом развития физики микромира. Полуклассическая-полуквантовая модель Бора послужила промежуточным звеном между классической физикой и последовательной квантовой механикой , построенной десятилетием позже - в 1920-х годах.

Читайте также: