Общие сведения об освещении кратко

Обновлено: 05.07.2024

Освещение создается источником света — это объект, излучающий энергию, которая воспринимается зрительной системой человека.

Виды и классификации источников света

По природе излучения

ЕстественныеИскусственные
Самопроизвольно излучают светСозданы руками человека
Солнце, огонь, полярные сияния, некоторые животные и растения, фосфорЗажигалки, спички, лампы, монитор телевизора и т. д

По виду излучения

ТепловыеЛюминесцентные
Излучение получается в результате нагрева источника.Источник света остается холодным.
Огонь, Солнце, лампы накаливания.Лампы дневного света; рекламные трубки с инертными газами; светлячки, некоторые виды грибов, планктона и рыб.

Также источники света могут быть:

ТочечныеПротяженные
Источники света, размеры которых малы по сравнению с расстоянием до наблюдателя и ими в данных условиях можно пренебречь.Источник света, который нельзя назвать точечным, каждая его точка излучает свет во всех направлениях.
Для наблюдателя с Земли — звезды.Солнце, лампы дневного света, рекламные вывески.

Один и тот же источник света в разных условиях можно назвать точечным или протяженным.

Пример: если лампа находится достаточно близко к объекту, то она будет протяженным источником света. Если же она находится далеко, то точечным.

Также можно сказать, что от протяженного источника видимое излучение попадает не в одну точку объекта, а на относительно большую его поверхность.

Виды искусственных электрических световых излучателей, исходя из классификации по принципам работы:

1. Тепловые источники света.

Классические лампы накаливания, а также галогенные лампы, угольные дуги, инфракрасные излучатели.

Принцип действия основан на нагревании рабочего элемента (чаще всего — проволоки из вольфрама) до температуры, при которой он начинает испускать инфракрасное излучение и видимый свет.

  • обладают хорошей цветопередачей;
  • на работу не оказывает влияния внешняя среда;
  • не требуют дополнительных устройств для запуска;
  • экологичные.
  • КПД менее 3 %. Энергия расходуется на разогрев и поддержание нужной температуры вольфрамовой проволоки;
  • срок службы не превышает 2000 часов.

Особенность галогенных ламп — более длительный ресурс эксплуатации, около 5000 часов. В колбу устройства вводят специальные галогеновые газы, замедляющие разрушение вольфрамовой нити. Среди плюсов таких ламп — яркий свет, высокое качество цветопередачи.

2. Люминесцентные.

Газоразрядные лампы, лампы с тлеющим разрядом, ртутные лампы с дуговым разрядом низкого и высокого давления.

Электрический импульс создает ультрафиолетовое излучение, при котором наблюдается свечение люминофора в парах ртути.

  • энергопотребление ниже и срок службы дольше, чем у ламп накаливания;
  • колбе можно придать любую форму: есть трубчатые, кольцевые и компактные спиралевидные модели;
  • хороший уровень световой отдачи.
  • требуется дополнительный пускорегулирующий аппарат;
  • из-за содержания ртути требуют специальных условий утилизации;
  • плохой уровень цветопередачи и мерцание.

3. Смешанного типа.

Специализированные излучатели для прожекторных установок (например, авиационных и корабельных), которые способны функционировать в особых условиях.

В основу работы положен нагрев электрической дуги высокой интенсивности. Не встречаются в свободной продаже. Для запуска требуется сложная схема, обеспечивающая нагрев и поддержание разряда, поэтому энергопотребление высокое.

4. Светодиодные или LED (англ. light-emitting diode, LED)

Источники света на основе свето- или фотодиодов.

Светодиоды — полупроводниковые приборы, излучающие свет при пропускании электрического тока постоянной частоты.

Фотодиоды — под действием лучей света накапливают электроны, создавая электрический потенциал. При пропускании электрического тока в прямом направлении электроны перемещаются с одного энергетического уровня на другой и излучают фотоны.

Современные материалы позволяют дать хорошую яркость и охватить почти весь цветовой спектр, поэтому светодиоды широко применяются в качестве осветительных приборов. Бывают в виде сменных ламп или отдельно выполненных светильников — самостоятельных устройств, состоящих из корпуса, светодиода и электрического драйвера (преобразователя питания).

  • низкая потребляемая мощность,
  • длительный срок службы;
  • надежны в использовании;
  • не требуют специальных условий утилизации.
  • высокая цена;
  • при выходе из строя одного из элементов, светильник, сделанный в виде самостоятельного устройства, подлежит замене на аналогичный.

Эти недостатки чаще всего компенсируются экономией на электроэнергии и обслуживании (редкая замена ламп), что особенно актуально для уличного освещения.

Сравнительная таблица источников света приведена на рисунке 1.

Основные параметры источников света

Изучает раздел физики фотометрия.

1. Световой поток Ф, измеряется в лм — люмен. Характеризует мощность излучения, оценивается по световому ощущению глазом человека. Рассчитывается по формуле:

Ф= ε/t, где ε — количество световой энергии (кДж), t — время (измеряется в секундах, минутах или часах).

2. Световая отдача — отношение светового потока лампы к ее мощности, лм/Вт. Эту характеристику используют для оценки экономичности искусственного источника света. Проще говоря, можно узнать, сколько электрической мощности преобразуется в свет.

3. Яркость L, измеряется в кд/м2 (кандела на квадратный метр). Это главный фактор светоощущения.

4. Освещенность E, измеряется в лк (люкс). 1лк равен потоку излучения Ф=1 лм, равномерно распределенному по площади S=1м2.

5. Сила света I, измеряется в кд (кандела). Является показателем интенсивности светового потока в определенном направлении. Рассчитывается по формуле:

I = Ф/Ω, где Ω — телесный угол, измеряется в стерадианах.

Сила света некоторых источников:

  1. Солнце ≈ 3∙1027 кд.
  2. Маяк ≈ 1∙105 кд.
  3. Свеча ≈ 0,5–2 кд.
  4. Прожектор ≈ 8 ∙ 108 кд.
  5. Фара автомобиля (дальний свет) ≈ 12 000 кд.
  6. Светлячок ≈ 0,01–0,001 кд.

Для искусственных источников света также имеют значение:

  • номинальное напряжение питающей сети U, B;
  • электрическая мощность W, Вт;
  • срок службы t, ч;
  • цветовая температура Tc, К;
  • цветопередача.

Цвета предметов, изображения будут различаться лучше, если они освещены сплошным равномерным спектром. Чем ближе излучение лампы к солнечному свету, тем она лучше и дороже. При индексе цветопередачи более 90 цвета предметов будут казаться чрезвычайно насыщенными.

При низком индексе трудно определить цвет предмета, однако контуры будут видны. От яркости это практически не зависит.

Какие источники света используют в помещениях и на улице

Уличное освещение — средства искусственного увеличения оптической видимости на улице в темное время суток.

Как правило, осуществляется лампами, закрепленными на мачтах, столбах, путепроводах и других опорах. Для наружного освещения используют газоразрядные лампы высокого давления и светодиодные светильники, поскольку и те, и другие хорошо переносят перепады температур, имеют широкий диапазон мощности и длительный срок эксплуатации.

Для освещения помещений используют:

  • естественное освещение от прямых солнечных лучей и рассеянного света небосвода;
  • освещение, создаваемое искусственными источниками света (лампа накаливания, газоразрядные и светодиодные);
  • совмещение 1 и 2 — при недостатке естественного освещения подключаются искусственные излучатели.

При строительстве и эксплуатации жилых и промышленных зданий учитывают естественное освещение, так как оно необходимо для:

  • сохранения зрения человека;
  • повышения работоспособности и жизненного тонуса;
  • поддержания помещений в надлежащем санитарно-гигиеническом состоянии.

Интенсивность естественного освещения интерьера зависит от следующих факторов:

  • время суток и сезон года, ориентация зданий по сторонам света;
  • степень затенения света расположенными рядом зданиями, деревьями и т. п.;
  • облачность, присутствие в воздухе пыли и газов, которые поглощают солнечные лучи;

количество и расположение окон — на одной или двух наружных стенах, верхних перекрытиях или комбинация этих вариантов.

Современные источники искусственного освещения преобразуют электрическую энергию в световой поток.

Выбор необходимого уровня освещенности в производственных помещениях зависит от:

  • точности работы;
  • коэффициента отражения рабочей поверхности;
  • контраста между деталью и фоном;
  • времени, в течение которого требуется напряжение зрения;
  • наличия предметов, опасных для прикосновения.

Виды искусственного освещения:

общее — светильники размещаются в верхней зоне помещения равномерно или рядом с оборудованием;

местное — дополнительно к общему освещению подключаются светильники непосредственно на рабочих местах.

Чаще всего применяют и общее, и местное освещение.

Искусственное освещение в помещении приблизительно можно рассчитать следующим образом:

ЭЛЕКТРИЧЕСКОЕ ОСВЕЩЕНИЕ
преобразование электроэнергии в свет в целях создания гигиенически благоприятных, комфортных и безопасных условий для зрительного восприятия.
ВНУТРЕННЕЕ ОСВЕЩЕНИЕ
На изложенных общих принципах должно базироваться освещение любого внутреннего помещения. Однако в таких общественных помещениях, как магазины и театры, где не ставятся крайне ответственные задачи зрительной работы и где воздействие на воображение и привлекательность более приоритетны, чем комфортность и эффективность зрительного восприятия, качество освещения имеет менее важное значение. Оно весьма существенно там, где приходится иметь дело с очень ответственными задачами зрительной работы, - в операционных, учреждениях, механических цехах, школьных классах, студенческих аудиториях. В качестве источников света для внутреннего освещения применяются в основном лампы накаливания и газоразрядные лампы (люминесцентные, ртутные и др.). Большинство учреждений, школ и общественных зданий освещается люминесцентными лампами или лампами накаливания, тогда как во многих производственных помещениях, особенно с высокими потолками, используются ртутные, а также люминесцентные лампы. Но во всех случаях источники света должны быть закрыты экранами, исключающими прямую блескость, а там, где это возможно, - и отраженную. В одном из конструктивных вариантов светильник с минимальной прямой и отраженной блескостью посылает почти весь свой выходной световой поток вверх, на потолок, который выполняет роль вторичного источника большой площади с малой яркостью. Еще один важный способ повышения качества внутреннего освещения - применение матового отделочного покрытия с высокой отражающей способностью для потолка, стен, пола и мебели. Это превращает потолок, стены, пол и мебель во вторичные источники света большой площади, благодаря чему не только повышается коэффициент использования света в помещении, но и увеличивается доля рассеянного света, а также устраняются резкие тени. Исследования условий оптимального освещения помещений, требующих комфортности, привели к следующим выводам: потолки лучше всего делать белыми с высоким коэффициентом отражения, порядка 85%; коэффициент отражения стен должен составлять 40-60% (при этом возможен широкий спектр приятных оттенков); коэффициент отражения мебели должен составлять около 35%, пола - не менее 20%. Эти требования подразумевают, в частности, что на окнах должны быть предусмотрены неяркие занавеси, задергиваемые в темное время суток, а поверхность стола должна иметь достаточно высокий коэффициент отражения, чтобы по яркости она не контрастировала с белой бумагой. Высокие коэффициенты отражения способствуют созданию идеальных условий для зрительной работы.
НАРУЖНОЕ ОСВЕЩЕНИЕ
Изложенные выше общие принципы относятся и к наружному освещению. Рекомендуемое количество света здесь обычно меньше, так как задачи зрительной работы менее ответственны и высокий уровень освещенности экономически неоправдан. Качество освещения тоже менее существенно, особенно при очень низких уровнях освещенности, но прямая блескость должна устраняться или сводиться к минимуму.
Освещение дорог. Главная цель освещения дорог - обеспечение хорошей видимости в ночное время, необходимой для безопасного и удобного движения пешеходов и транспорта. При проектировании дорог обычно учитываются такие факторы, как интенсивность движения, рельеф, статистика дорожно-транспортных происшествий, типы транспортных средств, ожидаемые скорости движения, правила парковки, строительные характеристики (размеры, материалы) и наличие особых участков - пересечений, развязок, мостов, путепроводов, подъездных путей. Источниками света на улицах городов и автомагистралях служат в основном газоразрядные лампы.
Заливающий свет. Заливающий свет, создаваемый лампами (накаливания и газоразрядными) с рефлекторами, применяется для наружного освещения зданий, а также для освещения стадионов, автомобильных стоянок и других открытых многолюдных зон. В широких масштабах такое освещение впервые было применено на Панамерикано-Тихоокеанской международной выставке в Сан-Франциско в 1915, где полная затрачиваемая на это мощность составляла около 8 МВт. С появлением более совершенных источников света стало возможно освещение заливающим светом многих видов спортивных сооружений - для игры в бейсбол, футбол, теннис.
ЭЛЕКТРИЧЕСКИЕ ИСТОЧНИКИ СВЕТА
Существуют два основных вида электрических источников света - лампы накаливания и газоразрядные лампы. Среди газоразрядных ламп особое место занимают люминесцентные.
ЛАМПЫ НАКАЛИВАНИЯ
В лампах накаливания свет испускает металлическая проволочка (нить), раскаленная добела проходящим по ней током.
Устройство лампы. Типичная бытовая лампа накаливания (общего назначения) состоит из следующих частей (рис. 1): нити накала в виде спирали из вольфрамовой проволочки, стеклянного баллона (который откачивается и заполняется инертным газом) и цоколя, который является объединяющей и силовой деталью лампы и имеет контакты для подключения нити накала к электропитанию. Все эти три элемента конструкции могут быть разного размера и различной формы в зависимости от назначения - лампа общего назначения, с внутренним отражателем, витринная, для уличного освещения, для автомобильных фар, для карманного фонаря, фотографическая лампа-вспышка. В бытовых лампах с тремя режимами накаливания имеются две нити накала, которые можно включать по отдельности и вместе, получая разную яркость. Средний срок службы большинства бытовых ламп при номинальном напряжении составляет 750-1000 ч.

Рис. 1. ЛАМПА НАКАЛИВАНИЯ. 1 - нить накала (в некоторых лампах монтируется вертикально - вдоль оси стеклянной опорной ножки); 2 - цоколь; 3 - стеклянный баллон.


Рис. 1. ЛАМПА НАКАЛИВАНИЯ. 1 - нить накала (в некоторых лампах монтируется вертикально - вдоль оси стеклянной опорной ножки); 2 - цоколь; 3 - стеклянный баллон.

ПЕРВАЯ ЛАМПА НАКАЛИВАНИЯ - копия лампы, изобретенной Т. Эдисоном в 1879. Нить накала лампы, полученная обугливанием хлопковой нитки, светила в течение 40 ч.


ПЕРВАЯ ЛАМПА НАКАЛИВАНИЯ - копия лампы, изобретенной Т. Эдисоном в 1879. Нить накала лампы, полученная обугливанием хлопковой нитки, светила в течение 40 ч.


Достоинства и недостатки. Достоинства лампы накаливания таковы: низкая начальная стоимость лампы и необходимого для нее оборудования, компактность, благодаря которой она хорошо подходит для регулирования светового потока, надежная работа при низких температурах и довольно высокий при ее размерах световой выход. К недостаткам же, способным при некоторых обстоятельствах перевесить достоинства, относятся низкий световой КПД, высокая рабочая температура и заметные колебания светового выхода при изменениях напряжения питания.
ГАЗОРАЗРЯДНЫЕ ЛАМПЫ
В газоразрядных лампах электроэнергия преобразуется в свет при прохождении электрического тока через газ или пары металла. Цвет светового излучения зависит от рода газа, его давления и от вида люминофора, нанесенного на внутренние стенки стеклянного баллона лампы. Газоразрядные лампы наполняются инертными газами (неоном, аргоном, криптоном или ксеноном), а также парами ртути или натрия.
Ртутные лампы. Ртутные лампы типа применяемых в промышленности состоят из следующих частей (рис. 2): кварцевой трубки дугового разряда, наполненной аргоном и парами ртути; наружной стеклянной колбы (с внутренним люминофорным покрытием), окружающей трубку дугового разряда, закрывающей ее от воздействия потоков окружающего воздуха и предотвращающей окисление; цоколя, на котором держится вся лампа и имеются электрические контакты для подвода напряжения питания. Размеры и форма этих конструктивных элементов могут быть разными в зависимости от типа лампы - общего назначения (с прозрачной колбой, с люминесцентным покрытием, с исправленной цветностью, рефлекторная, полурефлекторная лампы), ультрафиолетовые, солнечного света и фотохимические лампы. Средний срок службы ртутных ламп общего назначения составляет 6000-12 000 ч. После того как ртутная лампа включена и в ней установился дуговой разряд, ток разряда через пары ртути сам по себе непрерывно нарастает. Поэтому его приходится ограничивать внешним балластным устройством.

Рис. 2. РТУТНАЯ ГАЗОРАЗРЯДНАЯ ЛАМПА - типичная конструкция 40-Вт лампы с люминофорным покрытием. 1 - наружная колба; 2 - рабочий электрод; 3 - токопроводящие стойки; 4 - кварцевая трубка дугового разряда; 5 - рабочий электрод; 6 - пусковой электрод; 7 - опорные траверсы трубки дугового разряда; 8 - пусковые резисторы; 9 - опорные элементы; 10 - внутреннее люминофорное покрытие.


Рис. 2. РТУТНАЯ ГАЗОРАЗРЯДНАЯ ЛАМПА - типичная конструкция 40-Вт лампы с люминофорным покрытием. 1 - наружная колба; 2 - рабочий электрод; 3 - токопроводящие стойки; 4 - кварцевая трубка дугового разряда; 5 - рабочий электрод; 6 - пусковой электрод; 7 - опорные траверсы трубки дугового разряда; 8 - пусковые резисторы; 9 - опорные элементы; 10 - внутреннее люминофорное покрытие.


Достоинства и недостатки. Ртутные лампы отличаются высоким световым КПД (в 2-3 раза большим, чем у ламп накаливания общего назначения), большим сроком службы и компактностью, благодаря чему они хорошо подходят для регулирования светового потока. Их недостатки - высокая стоимость лампы и вспомогательного оборудования, синевато-зеленый оттенок свечения и медленный повторный пуск. Цветность ртутной лампы исправляется применением внутреннего люминофорного покрытия.
Люминесцентные лампы. Люминесцентные лампы состоят из следующих основных деталей (рис. 3): стеклянного баллона, двух цоколей (с выводными контактами) на обоих концах баллона и двух подогревных катодов (электронных эмиттеров) из вольфрамовой нити или стальной трубки. Баллон наполнен парами ртути и инертным газом (аргоном); на внутренние стенки баллона нанесено люминофорное покрытие, преобразующее ультрафиолетовое излучение газового разряда в видимый свет. Конструкция лампы, представленная на рис. 3, типична для самых распространенных 40-Вт ламп.

Рис. 3. ЛЮМИНЕСЦЕНТНАЯ ЛАМПА - типичная конструкция лампы с холодными катодами, рассчитанной на токи ниже средних. 1 - ртуть; 2 - штампованная стеклянная ножка с электровводами; 3 - трубка для откачки (при изготовлении); 4 - выводные штырьки; 5 - концевая панелька; 6 - катод с эмиттерным покрытием. Трубка наполнена инертным газом и парами ртути. Внутренние стенки трубки покрыты люминофором.


Рис. 3. ЛЮМИНЕСЦЕНТНАЯ ЛАМПА - типичная конструкция лампы с холодными катодами, рассчитанной на токи ниже средних. 1 - ртуть; 2 - штампованная стеклянная ножка с электровводами; 3 - трубка для откачки (при изготовлении); 4 - выводные штырьки; 5 - концевая панелька; 6 - катод с эмиттерным покрытием. Трубка наполнена инертным газом и парами ртути. Внутренние стенки трубки покрыты люминофором.


Лампа действует следующим образом. Электрод на одном из концов лампы испускает электроны, которые с большой скоростью летят вдоль лампы, пока не произойдет столкновение со встретившимся атомом ртути. При этом они выбивают электроны атома на более высокую орбиту. Когда выбитый электрон возвращается на прежнюю орбиту, атом испускает ультрафиолетовое излучение. Последнее, проходя через люминофор, преобразуется в видимый свет.
Типы ламп. Люминесцентные лампы делятся на две группы соответственно типу электродов: с подогревными катодами и с холодными катодами. В лампах с подогревными катодами, которые рассчитываются на большие токи (1-2 А), как правило, используются спиральные активированные вольфрамовые нити накала. В лампах же с холодными катодами предусматриваются цилиндрические электроды с покрытием из эмиттерных материалов, и они рассчитываются на меньшие токи. Средний срок службы ламп с подогревными катодами зависит от наработки на один пуск: 7500 ч при 3 ч наработки на один пуск и более 18 000 ч в непрерывном режиме. Для ламп же с холодными катодами срок службы не зависит от числа пусков и достигает 25 000 ч. Лампы с подогревными катодами по способу их пуска делятся на лампы с предварительным прогревом, быстрого и моментального пуска. Как и все другие газоразрядные приборы, лампы с подогревными катодами нельзя присоединять к источнику питания без балластного устройства, ограничивающего ток (рис. 4). Лампы с предварительным прогревом нуждаются также в стартере; при пуске такой лампы замыкается стартер, и катоды, соединенные последовательно, подключаются к сети питания, так что по ним проходит ток. После того как катоды разогреются настолько, что могут эмиттировать электроны, стартер автоматически размыкается, и лампа загорается. В благоприятных условиях весь пуск занимает несколько секунд. В лампах быстрого пуска катоды нагреваются постоянно, а разряд возникает при повышении напряжения. Стартеры не требуются, и время пуска значительно меньше, чем у ламп с предварительным прогревом. В лампах моментального пуска не требуется ни прогрева катодов, ни стартера. Просто на катод подается повышенное напряжение, которое вызывает эмиссию электронов и зажигание разряда в лампе.

Рис. 4. ЛЮМИНЕСЦЕНТНАЯ ЛАМПА с подогревными катодами, рассчитанная на большие токи.


Рис. 4. ЛЮМИНЕСЦЕНТНАЯ ЛАМПА с подогревными катодами, рассчитанная на большие токи.


Достоинства и недостатки. К достоинствам люминесцентных ламп относятся высокая световая отдача (до 77 лм/Вт) и большая долговечность. Недостатки - высокая начальная стоимость лампы и светильника, шум дросселя стартера и мерцание. Хотя перечень недостатков обширнее, достоинства столь велики, что уже к 1952 лампы накаливания в США были вытеснены люминесцентными лампами в качестве основного электрического источника света.
Электролюминесцентные лампы. В отличие от люминесцентных ламп (в которых свет испускается при возбуждении люминофора ультрафиолетовым излучением газового разряда), в электролюминесцентных лампах, изобретенных в 1936, электроэнергия преобразуется непосредственно в свет благодаря применению специальных люминофоров. Лампа представляет собой многослойную конструкцию из слоя люминофора (цинк-сульфидного, активированного медью или свинцом) и двух электропроводящих пластин, одна из которых прозрачна. Устройство электролюминесцентных ламп двух типов показано на рис. 5. Цвет свечения лампы (синий, зеленый, желтый или розовый) зависит от частоты напряжения питания, а яркость - от частоты и напряжения. Электролюминесцентные лампы пока что не отличаются большой световой отдачей.
См. также ЭЛЕКТРОВАКУУМНЫЕ И ГАЗОРАЗРЯДНЫЕ ПРИБОРЫ.

Рис. 5. ЭЛЕКТРОЛЮМИНЕСЦЕНТНЫЕ ЛАМПЫ двух разных типов в поперечном разрезе.


Рис. 5. ЭЛЕКТРОЛЮМИНЕСЦЕНТНЫЕ ЛАМПЫ двух разных типов в поперечном разрезе.

ПИКАДИЛЛИ - одна из центральных площадей Лондона.


ПИКАДИЛЛИ - одна из центральных площадей Лондона.


ЛИТЕРАТУРА
Епанешников М.М. Электрическое освещение. М., 1973 Кнорринг Г.М. и др. Справочная книга для проектирования электрического освещения. Л., 1976 Лозовский Л.И. Проектирование электрического освещения. Минск, 1976 Кунгс Я.А., Фаермарк М.А. Экономия электрической энергии в осветительных установках. М., 1984

Свет важен в любых видах деятельности человека. Без правильно организованного освещения нельзя создать нормальные условия для работы или отдыха. При недостаточном освещении появляется повышенная утомляемость, которая со временем приводит к заболеваниям.

В данной статье разберем, какие бывают виды освещения, в чем их особенности, какие источники света применяются, в каких единицах измеряется освещенность.

Что такое освещение

Освещение — это наличие света из разных источников, при котором человек различает окружающее пространство и находящиеся в нем объекты. В свою очередь, все физические объекты, окружающие людей, разделяют на светящиеся и несветящиеся. При работе, связанной с необходимостью различать объекты, обеспечивают требуемую освещенность на рабочем месте.

При недостаточном количестве света возникает повышенная утомляемость глаз и опасность травмирования сотрудника.

Длительная работа в таких условиях приводит к физическим и умственным перегрузкам, вызывает хронические заболевания.

Чрезмерная яркость, в свою очередь, может на некоторое время привести к потере способности различать предметы или даже к полному прекращению работы. Различают прямое ослепление, при котором на глаз воздействует сильный источник света. Ослепление может быть также вызвано воздействием света, отражающегося от разных поверхностей.

В каких нормативно-технических документах прописаны нормы и требования

Основные требования, предъявляемые к системам освещения, определяются следующими НТД:

Основные характеристики и единицы измерения

В системе СИ световой поток измеряется в люменах (лм). Один люмен равен одинаковому во всех направлениях световому потоку. Этот поток излучает единичный источник света, сила которого равна 1 канделе.

Свет от такого источника освещает часть пространства, которое должно объединять все лучи, выходящие из одной точки и пересекающие плоскость — телесный угол. Величина данного угла равна 1 стерадиану.

Поверхности предметов лучше видны в зависимости от количества света, попадающего на них.

Теперь перейдем к определению освещенности. Это отношение светового потока к площади участка поверхности, на который он падает.

В системе СИ освещенность измеряется в люксах (лк). Значение освещенности вычисляется по формуле Е=Ф/S. В ней Ф — световой поток в люменах, S — освещаемая площадь в квадратных метрах. Один люкс равен одному люмену на квадратный метр.

Если расстояние между источником света и поверхностью увеличить, то освещенность уменьшится пропорционально квадрату расстояния. Для примера: если увеличить расстояние в два раза, значение освещенности снизится в четыре раза.

Представим, что мы пытаемся рассмотреть некий предмет ночью при помощи фонарика. Если света, испускаемого фонариком, недостаточно, то мы просто приблизим устройство к предмету.

Также освещенность зависит от того, под каким углом от фонарика падает свет на предмет. Если угол прямой, то поверхность предмета видна намного лучше. Наконец, освещенность напрямую зависит от мощности источника света. Чем мощнее фонарик, тем лучше видны предметы, на которые он направлен.

Подробнее о единицах измерения в освещении вы можете почитать здесь.

Виды освещения и их особенности

В зависимости от используемых источников света выделяют системы освещения следующих типов: искусственного, естественного и комбинированного освещения.

Они различаются не только по источнику света, но и по освещаемой зоне. Могут применяться системы местного и общего освещения.

По источнику света

По происхождению различают два вида освещения — естественное и искусственное.

Естественное

Такие типы освещения используют солнечный свет, попадающий в здание через специально предназначенные проемы. Это самый распространенный тип. Он применяется в помещениях, где постоянно находятся люди.

Солнечный свет самый благоприятный для глаз. Также он выгоднее экономически. Поэтому при проектировании зданий жилого или производственного назначения предусматривают широкие окна и застекленные световые проемы на крыше для максимального поступления солнечного света.

Различают боковое освещение, когда проемы располагаются в боковых стенах зданий, и верхнее при нахождении таких проемов в перекрытиях или в специальных конструкциях — фонарях.

Естественное освещение

Рисунок 2 — естественное освещение из окон

Если такие проемы располагаются с двух сторон здания, это освещение двухстороннего типа, а если только с одной — это одностороннее освещение. При комбинированном типе освещения проемы находятся в стене и в верхней части зданий.

Искусственное

Недостаток естественного освещения — зависимость потока солнечного света от времени суток, погоды и времен года. Искусственное освещение используется, когда нет возможности обеспечить требуемое количество света. Для этого устанавливают приборы электрического освещения. В свою очередь, искусственное освещение делят на рабочее, аварийное, охранное и дежурное.

Что такое освещение и каким оно бывает

Рисунок 3. Искусственное освещение

В помещениях, зданиях и на открытых пространствах, где проводится работа, в местах прохождения сотрудников и движения транспорта организуется рабочее освещение. При наличии зон, где условия труда или виды освещения различаются, организуется отдельное управление осветительными системами.

Для эвакуации людей или когда требуется продолжать работу при отключении рабочего освещения используется аварийное освещение. Его составные элементы — освещение безопасности и эвакуационное.

Первый тип применяется при отключении подачи электроэнергии на системы рабочего освещения, когда нарушение работы производственного оборудования может вызвать:

  • Пожар, взрыв, выбросы опасных веществ, приводящие к отравлению.
  • Продолжительное нарушение процесса производства.
  • Прекращение работы объектов, обеспечивающих электроснабжение, теплоснабжение, связь, водоснабжение, кондиционирование, вентиляцию воздуха и т. п.
  • Нарушения работы детских учреждений.

Источники света данного типа подключают к электроснабжению от независимого источника. Освещенность, создаваемая ими, должна быть не меньше 5% от общей, но не менее 2 лк в зданиях и 1 лк на территории предприятий.

Что такое освещение и каким оно бывает

Рисунок 4. Освещение безопасности

Для предотвращения травмирования при движении людского потока во время эвакуации используют системы эвакуационного освещения.

Эти системы обязательно должны применяться:

  • В местах, представляющих опасность при прохождении людского потока.
  • При эвакуации более 50 человек, когда осуществляется движение по лестницам и проходам.
  • Когда отсутствует естественное освещение в производственных помещениях.
  • При отключении рабочего освещения в помещениях с производственным циклом и опасностью получения травм из-за необходимости продолжения работ на оборудовании, при одновременном нахождении в помещениях свыше 100 работников.
  • При наличии в зданиях больше 6 этажей.

Наименьшая освещенность в помещениях — 0,5 лк, а ее величина на открытых пространствах — не ниже 0,2 лк. Допустимая величина неравномерности освещения — не более 40:1. Для систем эвакуационного освещения могут применять светильники освещения безопасности.

Что такое освещение и каким оно бывает

Эвакуационное освещение

Охранные осветительные системы используются для освещения границ территорий в темное время суток, когда специальные охранные средства отсутствуют. Внутри помещений в нерабочее время применяются системы дежурного освещения. Источником света может быть часть светильников систем аварийного или рабочего освещения.

Что такое освещение и каким оно бывает

Рисунок 6. Охранное освещение

Для лучшей энергоэффективности и экономии электроэнергии светильники систем охранного освещения оснащаются датчиками движения.

Комбинированное

Когда естественное освещение не обеспечивает требуемую освещенность, его дополняют искусственным. Такой вид освещения называется совмещенным, или комбинированным.

Комбинированное освещение обязательно организуется в помещениях при работах, которые требуют наивысшей, очень высокой и высокой точности. Это задачи, относящиеся к 1, 2 и 3 разрядам зрительной работы. К таким помещениям относятся кабинеты врачей, ателье ремонта радиоаппаратуры, мастерские, где обрабатывается древесина, и т. п.

Подобное освещение применяется в помещениях или в многоэтажных зданиях, где по условиям организации производственных процессов не обеспечивается нормированное значение освещенности. Комбинированное освещение используется в других случаях, если это требуется по условиям НТД в помещениях.

По освещаемой зоне

Системы освещения различаются по освещаемой зоне. Выделяют общее и местное освещение.

Местное

Местное освещение применяется в качестве дополнительного для выделения небольшого участка или зоны. Например, удобнее установить направленный светильник на станке, чем полностью его освещать. При выборе светильника нужно учитывать, что резкий перепад яркости провоцирует повышенную усталость глаз.

Местное освещение может быть направленным, если требуемая освещенность поверхности достигается направлением на него светового потока от светильника, или рассеянным, когда свет проходит через полупрозрачный плафон. Для организации такого освещения используют направленные светильники, светильники с абажурами и настольные лампы. Можно организовать освещение отраженным светом, когда световой луч направляется на стену или потолок.

Что такое освещение и каким оно бывает

Рисунок 7. Местное освещение

Общее

Системы общего освещения применяются как внутри, так и снаружи помещения. Это наиболее распространенный тип для обеспечения нормальных условий труда или отдыха.

При организации общего освещения нужно помнить о равномерности распределения световых потоков и соответствии уровня освещенности принятым нормативам. Как правило, светильники располагают на потолке, но допускается их размещение на стенах.

Освещение смешанного типа объединяет все вышеописанные виды. Свет может исходить из светильников с полупрозрачными плафонами, направленными вверх или вниз.

Что такое освещение и каким оно бывает

Рисунок 8. Общее освещение к содержанию ↑

По назначению

Кроме вышеперечисленных видов системы освещения подразделяются на декоративные, рекламные, архитектурные и витринные.

Декоративное освещение позволяет улучшить привлекательность интерьера, правильно расставив световые акценты, сделать его более уютным. Оно организуется встроенными, потолочными или напольными светильниками.

При использовании наружной подсветки, например, для бассейнов, дорожек или клумб, применяют водонепроницаемое оборудование.

Основная задача наружного рекламного, архитектурного и витринного освещения — придание объекту выразительности и привлекательного внешнего вида. Требования для таких систем определяются спецификой объекта и нормативными показателями.

При проектировании учитывают, что яркость таких систем не должна заметно отличаться от общей яркости освещения. Также обращают внимание на коэффициент отражения и уровень распределения светового потока от витрин. Свет, исходящий от витрин, не должен ослеплять людей.

Как проводится измерение освещённости

Для измерения освещенности применяют специальные приборы — люксметры. Самое простое устройство имеет в конструкции фотоэлемент для преобразования энергии света в электрические сигналы. Для отображения силы тока в приборе есть стрелочная шкала и цифровой ЖК-индикатор.

Замеры освещенности в помещении или на открытой местности могут иметь погрешность до 10% из-за различий в световом спектре. Для ее исключения применяют поправочный коэффициент. Существуют более точные приборы, в которых используются специальные светофильтры и насадки. Такие приспособления позволяют повысить точность измерения.

Что такое освещение и каким оно бывает

Рисунок 9. Люксметры

Для определения освещенности в фотографии применяют экспонометры, а для измерения длительности и мощности вспышки используют флэшметры.

При измерении освещенности, создаваемой искусственным источником света, учитывают коэффициенты пульсации. Глаза человека не различают пульсацию света, но долгое нахождение в таких условиях вызывает повышенную утомляемость, головную боль, негативно отражается на общем самочувствии.

Величину пульсации измеряют пульсометром. Приборы для замера освещенности конструктивно совмещаются с пульсометрами и приборами для определения яркости — яркометрами.

Методы измерения уровня освещенности в производственных помещениях, на месте работ вне зданий, на дорогах и т. п. указаны в ГОСТ Р 54944-2012. Согласно требованиям этого стандарта прибор при измерении освещенности располагают в горизонтальном положении в точке замера.

Параметры естественного и искусственного освещения замеряют отдельно для исключения ошибок. После замеров результаты анализируются и принимается решение о достаточности освещенности.

Заключение

Рассмотрев типы освещения, его основные характеристики, требования нормативных документов, можно определить эффективность проведения рабочих процессов. Производительность труда и комфорт напрямую связаны с уровнем освещенности.

При определении уровня освещенности учитывают и специфику самого объекта, на котором проводятся измерения. При возникновении сложностей можно обратиться за помощью в специализированные организации.

ЭЛЕКТРИЧЕСКОЕ ОСВЕЩЕНИЕ, преобразование электроэнергии в свет в целях создания гигиенически благоприятных, комфортных и безопасных условий для зрительного восприятия.

ВНУТРЕННЕЕ ОСВЕЩЕНИЕ

На изложенных общих принципах должно базироваться освещение любого внутреннего помещения. Однако в таких общественных помещениях, как магазины и театры, где не ставятся крайне ответственные задачи зрительной работы и где воздействие на воображение и привлекательность более приоритетны, чем комфортность и эффективность зрительного восприятия, качество освещения имеет менее важное значение. Оно весьма существенно там, где приходится иметь дело с очень ответственными задачами зрительной работы, – в операционных, учреждениях, механических цехах, школьных классах, студенческих аудиториях.

В качестве источников света для внутреннего освещения применяются в основном лампы накаливания и газоразрядные лампы (люминесцентные, ртутные и др.). Большинство учреждений, школ и общественных зданий освещается люминесцентными лампами или лампами накаливания, тогда как во многих производственных помещениях, особенно с высокими потолками, используются ртутные, а также люминесцентные лампы. Но во всех случаях источники света должны быть закрыты экранами, исключающими прямую блескость, а там, где это возможно, – и отраженную. В одном из конструктивных вариантов светильник с минимальной прямой и отраженной блескостью посылает почти весь свой выходной световой поток вверх, на потолок, который выполняет роль вторичного источника большой площади с малой яркостью.

Еще один важный способ повышения качества внутреннего освещения – применение матового отделочного покрытия с высокой отражающей способностью для потолка, стен, пола и мебели. Это превращает потолок, стены, пол и мебель во вторичные источники света большой площади, благодаря чему не только повышается коэффициент использования света в помещении, но и увеличивается доля рассеянного света, а также устраняются резкие тени.

Исследования условий оптимального освещения помещений, требующих комфортности, привели к следующим выводам: потолки лучше всего делать белыми с высоким коэффициентом отражения, порядка 85%; коэффициент отражения стен должен составлять 40–60% (при этом возможен широкий спектр приятных оттенков); коэффициент отражения мебели должен составлять около 35%, пола – не менее 20%. Эти требования подразумевают, в частности, что на окнах должны быть предусмотрены неяркие занавеси, задергиваемые в темное время суток, а поверхность стола должна иметь достаточно высокий коэффициент отражения, чтобы по яркости она не контрастировала с белой бумагой. Высокие коэффициенты отражения способствуют созданию идеальных условий для зрительной работы.

НАРУЖНОЕ ОСВЕЩЕНИЕ

Изложенные выше общие принципы относятся и к наружному освещению. Рекомендуемое количество света здесь обычно меньше, так как задачи зрительной работы менее ответственны и высокий уровень освещенности экономически неоправдан. Качество освещения тоже менее существенно, особенно при очень низких уровнях освещенности, но прямая блескость должна устраняться или сводиться к минимуму.

Освещение дорог.

Главная цель освещения дорог – обеспечение хорошей видимости в ночное время, необходимой для безопасного и удобного движения пешеходов и транспорта.

При проектировании дорог обычно учитываются такие факторы, как интенсивность движения, рельеф, статистика дорожно-транспортных происшествий, типы транспортных средств, ожидаемые скорости движения, правила парковки, строительные характеристики (размеры, материалы) и наличие особых участков – пересечений, развязок, мостов, путепроводов, подъездных путей. Источниками света на улицах городов и автомагистралях служат в основном газоразрядные лампы.

Заливающий свет.

Заливающий свет, создаваемый лампами (накаливания и газоразрядными) с рефлекторами, применяется для наружного освещения зданий, а также для освещения стадионов, автомобильных стоянок и других открытых многолюдных зон. В широких масштабах такое освещение впервые было применено на Панамерикано-Тихоокеанской международной выставке в Сан-Франциско в 1915, где полная затрачиваемая на это мощность составляла около 8 МВт. С появлением более совершенных источников света стало возможно освещение заливающим светом многих видов спортивных сооружений – для игры в бейсбол, футбол, теннис.

ЭЛЕКТРИЧЕСКИЕ ИСТОЧНИКИ СВЕТА

Существуют два основных вида электрических источников света – лампы накаливания и газоразрядные лампы. Среди газоразрядных ламп особое место занимают люминесцентные.

ЛАМПЫ НАКАЛИВАНИЯ

В лампах накаливания свет испускает металлическая проволочка (нить), раскаленная добела проходящим по ней током.

Устройство лампы.

Типичная бытовая лампа накаливания (общего назначения) состоит из следующих частей (рис. 1): нити накала в виде спирали из вольфрамовой проволочки, стеклянного баллона (который откачивается и заполняется инертным газом) и цоколя, который является объединяющей и силовой деталью лампы и имеет контакты для подключения нити накала к электропитанию. Все эти три элемента конструкции могут быть разного размера и различной формы в зависимости от назначения – лампа общего назначения, с внутренним отражателем, витринная, для уличного освещения, для автомобильных фар, для карманного фонаря, фотографическая лампа-вспышка. В бытовых лампах с тремя режимами накаливания имеются две нити накала, которые можно включать по отдельности и вместе, получая разную яркость. Средний срок службы большинства бытовых ламп при номинальном напряжении составляет 750–1000 ч.

 Edison National Historic Site, U.S Department of the Interior, National Park Service ПЕРВАЯ ЛАМПА НАКАЛИВАНИЯ – копия лампы, изобретенной Т. Эдисоном в 1879. Нить накала лампы, полученная обугливанием хлопковой нитки, светила в течение 40 ч.

Достоинства и недостатки.

Достоинства лампы накаливания таковы: низкая начальная стоимость лампы и необходимого для нее оборудования, компактность, благодаря которой она хорошо подходит для регулирования светового потока, надежная работа при низких температурах и довольно высокий при ее размерах световой выход. К недостаткам же, способным при некоторых обстоятельствах перевесить достоинства, относятся низкий световой КПД, высокая рабочая температура и заметные колебания светового выхода при изменениях напряжения питания.

ГАЗОРАЗРЯДНЫЕ ЛАМПЫ

В газоразрядных лампах электроэнергия преобразуется в свет при прохождении электрического тока через газ или пары металла. Цвет светового излучения зависит от рода газа, его давления и от вида люминофора, нанесенного на внутренние стенки стеклянного баллона лампы. Газоразрядные лампы наполняются инертными газами (неоном, аргоном, криптоном или ксеноном), а также парами ртути или натрия.

 Collier

Ртутные лампы.

Ртутные лампы типа применяемых в промышленности состоят из следующих частей (рис. 2): кварцевой трубки дугового разряда, наполненной аргоном и парами ртути; наружной стеклянной колбы (с внутренним люминофорным покрытием), окружающей трубку дугового разряда, закрывающей ее от воздействия потоков окружающего воздуха и предотвращающей окисление; цоколя, на котором держится вся лампа и имеются электрические контакты для подвода напряжения питания. Размеры и форма этих конструктивных элементов могут быть разными в зависимости от типа лампы – общего назначения (с прозрачной колбой, с люминесцентным покрытием, с исправленной цветностью, рефлекторная, полурефлекторная лампы), ультрафиолетовые, солнечного света и фотохимические лампы. Средний срок службы ртутных ламп общего назначения составляет 6000–12 000 ч.

После того как ртутная лампа включена и в ней установился дуговой разряд, ток разряда через пары ртути сам по себе непрерывно нарастает. Поэтому его приходится ограничивать внешним балластным устройством.

Достоинства и недостатки.

Ртутные лампы отличаются высоким световым КПД (в 2–3 раза большим, чем у ламп накаливания общего назначения), большим сроком службы и компактностью, благодаря чему они хорошо подходят для регулирования светового потока. Их недостатки – высокая стоимость лампы и вспомогательного оборудования, синевато-зеленый оттенок свечения и медленный повторный пуск. Цветность ртутной лампы исправляется применением внутреннего люминофорного покрытия.

Люминесцентные лампы.

Люминесцентные лампы состоят из следующих основных деталей (рис. 3): стеклянного баллона, двух цоколей (с выводными контактами) на обоих концах баллона и двух подогревных катодов (электронных эмиттеров) из вольфрамовой нити или стальной трубки. Баллон наполнен парами ртути и инертным газом (аргоном); на внутренние стенки баллона нанесено люминофорное покрытие, преобразующее ультрафиолетовое излучение газового разряда в видимый свет. Конструкция лампы, представленная на рис. 3, типична для самых распространенных 40-Вт ламп.

Лампа действует следующим образом. Электрод на одном из концов лампы испускает электроны, которые с большой скоростью летят вдоль лампы, пока не произойдет столкновение со встретившимся атомом ртути. При этом они выбивают электроны атома на более высокую орбиту. Когда выбитый электрон возвращается на прежнюю орбиту, атом испускает ультрафиолетовое излучение. Последнее, проходя через люминофор, преобразуется в видимый свет.

Типы ламп.

Люминесцентные лампы делятся на две группы соответственно типу электродов: с подогревными катодами и с холодными катодами. В лампах с подогревными катодами, которые рассчитываются на большие токи (1–2 А), как правило, используются спиральные активированные вольфрамовые нити накала. В лампах же с холодными катодами предусматриваются цилиндрические электроды с покрытием из эмиттерных материалов, и они рассчитываются на меньшие токи. Средний срок службы ламп с подогревными катодами зависит от наработки на один пуск: 7500 ч при 3 ч наработки на один пуск и более 18 000 ч в непрерывном режиме. Для ламп же с холодными катодами срок службы не зависит от числа пусков и достигает 25 000 ч.

Лампы с подогревными катодами по способу их пуска делятся на лампы с предварительным прогревом, быстрого и моментального пуска. Как и все другие газоразрядные приборы, лампы с подогревными катодами нельзя присоединять к источнику питания без балластного устройства, ограничивающего ток (рис. 4). Лампы с предварительным прогревом нуждаются также в стартере; при пуске такой лампы замыкается стартер, и катоды, соединенные последовательно, подключаются к сети питания, так что по ним проходит ток. После того как катоды разогреются настолько, что могут эмиттировать электроны, стартер автоматически размыкается, и лампа загорается. В благоприятных условиях весь пуск занимает несколько секунд. В лампах быстрого пуска катоды нагреваются постоянно, а разряд возникает при повышении напряжения. Стартеры не требуются, и время пуска значительно меньше, чем у ламп с предварительным прогревом. В лампах моментального пуска не требуется ни прогрева катодов, ни стартера. Просто на катод подается повышенное напряжение, которое вызывает эмиссию электронов и зажигание разряда в лампе.

Достоинства и недостатки.

К достоинствам люминесцентных ламп относятся высокая световая отдача (до 77 лм/Вт) и большая долговечность. Недостатки – высокая начальная стоимость лампы и светильника, шум дросселя стартера и мерцание. Хотя перечень недостатков обширнее, достоинства столь велики, что уже к 1952 лампы накаливания в США были вытеснены люминесцентными лампами в качестве основного электрического источника света.

Электролюминесцентные лампы.

В отличие от люминесцентных ламп (в которых свет испускается при возбуждении люминофора ультрафиолетовым излучением газового разряда), в электролюминесцентных лампах, изобретенных в 1936, электроэнергия преобразуется непосредственно в свет благодаря применению специальных люминофоров. Лампа представляет собой многослойную конструкцию из слоя люминофора (цинк-сульфидного, активированного медью или свинцом) и двух электропроводящих пластин, одна из которых прозрачна. Устройство электролюминесцентных ламп двух типов показано на рис. 5. Цвет свечения лампы (синий, зеленый, желтый или розовый) зависит от частоты напряжения питания, а яркость – от частоты и напряжения. Электролюминесцентные лампы пока что не отличаются большой световой отдачей. См. также ЭЛЕКТРОВАКУУМНЫЕ И ГАЗОРАЗРЯДНЫЕ ПРИБОРЫ.

 IGDA/W. Buss ПИКАДИЛЛИ-СЕРКУС – одна из центральных площадей Лондона.

Епанешников М.М. Электрическое освещение. М., 1973
Кнорринг Г.М. и др. Справочная книга для проектирования электрического освещения. Л., 1976
Лозовский Л.И. Проектирование электрического освещения. Минск, 1976
Кунгс Я.А., Фаермарк М.А. Экономия электрической энергии в осветительных установках. М., 1984

Читайте также: