Нейтронное оружие это кратко

Обновлено: 05.07.2024

Нейтронная бомба - это ядерный заряд с относительно небольшой силой взрыва, но распространяющий вокруг места взрыва мощную смертельную дозу радиации. Отцом этой технологии является Сэмюэл Т. Коэн , который в 1958 году предложил изменения в конструкции водородной бомбы по проекту Теллера-Улама.

Ученый рекомендовал снять урановую мантию, что увеличивало эффективное поле на месте взрыва. По этой причине нейтронные бомбы производят довольно маленьких размеров, однако их смертоносная сила заключается в расширении зоны радиоактивного выброса. Взрыв снаряда мощностью 1 килотонна может вызвать повреждение в радиусе нескольких сотен метров, но дальность смертельной радиации уже измеряется в километрах.

Таким образом, ионизирующие частицы могут путешествовать на большие расстояния. Наибольший интерес к этому виду оружия пришелся на период холодной войны, когда над его разработкой работали и США, и СССР, и Китай. По данным программы Safeguard , только в Соединенных Штатах было построено более 120 бомб, из которых до недавнего времени 70 находились на вооружении. Только президент Джордж Буш в 2003 году обезвредил последние боеголовки всех типов ракет.

Принцип действия нейтронной бомбы

Остается вопрос: как работает нейтронная бомба? Основную роль в бомбе играет отсутствие упомянутой выше урановой мантии. Конструкция нейтронной бомбы позволяет нейтронным частицам изотопа водорода свободно проходить через материал, окружающий относительно слабый водородный заряд весом всего несколько граммов.

Схема устройства нейтронного боеприпаса. 1 - Корпус боеприпаса с системой удержания в зоне реакции. 2 - Смесь дейтерия и трития.3 - Отражатель нейтронов. 4 - Заряд плутония 239. 5 - Заряд ВВ. 6 - Детонатор. 7 - Источники нейтронов.

Схема устройства нейтронного боеприпаса. 1 - Корпус боеприпаса с системой удержания в зоне реакции. 2 - Смесь дейтерия и трития.3 - Отражатель нейтронов. 4 - Заряд плутония 239. 5 - Заряд ВВ. 6 - Детонатор. 7 - Источники нейтронов.

Принцип действия снаряда очень похож на принцип действия других типов термоядерного оружия. В нейтронной бомбе в результате взрыва обычного взрывчатого вещества происходит реакция деления заряда урана или плутония. Запущенная реакция запускает другую, в которой ядра дейтерия и трития сливаются вместе, образуя гелий, и в то же время выделяют гигантскую энергию. Действие этого вида оружия основано прежде всего на сильном распространении смертельного нейтронного излучения .

Чтобы обезопасить себя от смертельного действия нейтронной бомбы, укрывайтесь в комнате со стенами толщиной не менее 30 см. Бетонное покрытие толщиной в два раза больше может предотвратить облучение даже в самой близкой зоне взрыва!

Как нейтронная бомба убивает? Что ж, ракета уничтожает все живое - и флору, и фауну. Таким образом, оружие особенно хорошо работает против пехоты и механизированных войск. Волна радиации не нанесет слишком большого ущерба бронетехнике (танкам или транспортерам), но находящиеся в них экипажи будут подвержены мощным дозам радиации. В результате лучевой болезни солдаты могут быть уничтожены максимум за двое суток.

Нейтронная бомба и атомная бомба - в чем разница между ними?

Нейтронная бомба - полная противоположность другим видам ядерного оружия. Заряд не предназначен для полного уничтожения всех объектов в зоне действия. Благодаря выпущенной волне ионизирующего излучения нейтронная бомба ориентирована в первую очередь на уничтожение живых организмов, сводя материальный ущерб к минимуму.

Благодаря своей конструкции бомба гораздо эффективнее распространяется по нейтронным частицам. Даже знаменитая советская Царь-бомба мощностью более 50 мегатонн не способна так эффективно распространять радиацию. Более того, ионизация, вызванная детонацией нейтронной бомбы, гораздо лучше распространяется на открытых участках.

Несмотря на общий отход мировых держав от расширения своих ядерных арсеналов, следует помнить, что большая часть хранимых бомб никуда не исчезла. В таких странах, как Китай и Россия, вероятно, еще можно найти боеголовки с нейтронными зарядами. Однако, как и в случае с другим ядерным оружием, использование нейтронной бомбы сегодня также кажется маловероятным - в основном из-за его летального эффекта.

Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 14 мая 2011.

Нейтро́нное ору́жие — разновидность ядерного оружия, у которого искусственно увеличена доля энергии взрыва, выделяющаяся в виде нейтронного излучения для поражения живой силы, вооружения противника и радиоактивного заражения местности при ограниченных поражающих воздействиях ударной волны и светового излучения. Из-за быстрого поглощения нейтронов атмосферой малоэффективны нейтронные боеприпасы большой мощности; эквивалентный тоннаж нейтронных боезарядов обычно не превышает нескольких килотонн [1] и их относят к тактическому ядерному оружию.

Нейтронное оружие, как и другие виды ядерного оружия, является неизбирательным оружием массового поражения.

Содержание

Конструкция

Нейтронный заряд конструктивно представляет собой обычный ядерный заряд малой мощности, к которому добавлен блок, содержащий небольшое количество термоядерного топлива (смесь дейтерия и трития с большим содержанием последнего, как источника быстрых нейтронов). При подрыве взрывается основной ядерный заряд, энергия которого используется для запуска термоядерной реакции. Большая часть энергии взрыва при применении нейтронного оружия выделяется в результате запущенной реакции синтеза. Конструкция заряда такова, что до 80 % энергии взрыва составляет энергия потока быстрых нейтронов, и только 20 % приходится на остальные поражающие факторы (ударную волну, электромагнитный импульс, световое излучение).

Действие, особенности применения

Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье.
На странице обсуждения должны быть пояснения.

Мощный поток нейтронов не задерживается обычной стальной бронёй и намного сильнее проникает сквозь преграды, чем рентгеновское или гамма-излучение, не говоря уже об альфа- и бета- частицах. В частности, 150 мм броневой стали задерживают до 90 % гамма-излучения и лишь 20 % быстрых нейтронов [1] . Благодаря этому нейтронное оружие способно поражать живую силу противника на значительном расстоянии от эпицентра взрыва и в бронетехнике, где обеспечивается надёжная защита от поражающих факторов обычного ядерного взрыва. Наиболее сильными защитными свойствами обладают материалы, в состав которых входит водород - например, вода, парафин, полиэтилен, полипропилен и т.д [2] . По конструктивным и экономическим соображениям защиту часто выполняют из бетона, влажного грунта — 25-35 см этих материалов ослабляют поток быстрых нейтронов в 10 раз, а 50 см — до 100 раз [1] , поэтому стационарные фортификационные сооружения обеспечивают надёжную защиту как от обычных, так и от нейтронных ядерных боеприпасов.

Поражающее действие нейтронного оружия на технику обусловлено взаимодействием нейтронов с конструкционными материалами и радиоэлектронной аппаратурой, что приводит к появлению наведённой радиоактивности и, как следствие, нарушению функционирования. В биологических объектах под действием излучения происходит ионизация живой ткани, приводящая к нарушению жизнедеятельности отдельных систем и организма в целом, развитию лучевой болезни. На людей действует как само нейтронное излучение, так и наведённая радиация. В технике и предметах под действием потока нейтронов могут образовываться мощные и долго действующие источники радиоактивности, приводящие к поражению людей в течение длительного времени после взрыва, на местности наведённая радиоактивность опасна для здоровья человека от нескольких часов до нескольких суток [1] .

Из-за сильного поглощения и рассеивания нейтронов в атмосфере дальность поражения нейтронным излучением, по сравнению с дальностью поражения незащищённых целей ударной волной от взрыва обычного ядерного заряда той же мощности, невелика [1] . Поэтому изготовление нейтронных зарядов высокой мощности нецелесообразно — излучение всё равно не дойдёт дальше, а прочие поражающие факторы окажутся снижены. Реально производимые нейтронные боеприпасы имеют мощность не более 1 кт. Подрыв такого боеприпаса создаёт зону поражения нейтронным излучением радиусом около 1,5 км (незащищённый человек получит опасную для жизни дозу радиации на расстоянии 1350 м). Вопреки распространённому мнению, нейтронный взрыв вовсе не оставляет материальные ценности невредимыми: зона сильных разрушений ударной волной для того же килотонного заряда имеет радиус около 1 км.

Защита

Нейтронные боеприпасы разрабатывались в 1960—1970-х годах, главным образом, для повышения эффективности поражения бронированных целей и живой силы, защищённой бронёй и простейшими укрытиями. Бронетехника 1960-х годов, разработанная с учётом возможности применения на поле боя ядерного оружия, чрезвычайно устойчива ко всем его поражающим факторам. Другим мотивом разработки нейтронных зарядов было их использование в системах противоракетной обороны. Для защиты от массированного ракетного удара в эти годы на вооружение ставились зенитно-ракетные комплексы с ядерной боевой частью, но применение обычного ядерного оружия против высотных целей сочли недостаточно эффективным, поскольку основной поражающий фактор — ударная волна, — в разрежённом воздухе на большой высоте и, тем более, в космосе не образуется, световое излучение поражает боеголовки только в непосредственной близости от центра взрыва, а гамма-излучение поглощается оболочками боеголовок и не может нанести им серьёзного вреда. В таких условиях превращение максимальной части энергии взрыва в нейтронное излучение могло позволить более надёжно поражать ракеты противника.

Нейтронное оружие и политика

Работы над нейтронным оружием велись в нескольких странах с 1960-х годов. Впервые технология его производства была разработана в США во второй половине 1970-х. Сейчас возможностью выпуска такого оружия обладают также Россия и Франция.

Опасность нейтронного оружия, как и вообще ядерного оружия малой и сверхмалой мощности, заключается не столько в возможности массового уничтожения людей (это можно сделать и многими другими, в том числе давно существующими и более эффективными для этой цели видами ОМП), сколько в стирании грани между ядерной и обычной войной при его использовании. Поэтому в ряде резолюций Генеральной Ассамблеи ООН отмечаются опасные последствия появления новой разновидности оружия массового поражения — нейтронного, и содержится призыв к его запрещению. В 1978 г., когда в США ещё не был решён вопрос о производстве нейтронного оружия, СССР предложил договориться об отказе от его применения и внёс на рассмотрение Комитета по разоружению проект международной конвенции о его запрещении. Проект не нашёл поддержки у США и других западных стран. В 1981 г. в США начато производство нейтронных зарядов, но в настоящее время они не стоят на вооружении. [источник не указан 278 дней]

Известно несколько основных разновидностей ядерного оружия, и одним из них является нейтронное (ERW в англоязычной терминологии). Концепция такого вооружения появилась еще в середине прошлого века и затем в течение нескольких десятилетий доводилась до применения в реальных системах. Были получены определенные результаты, но после развитие нейтронного оружия фактически остановилось. Имевшиеся образцы были сняты с вооружения, а разработка новых не осуществлялась. Почему особое вооружение, некогда считавшееся перспективным и необходимым армиям, достаточно быстро сошло со сцены?

История и концепция

Нейтронное оружие. Характеристики и легенды


Тактический ракетный комплекс армии США MGM-52 Lance - первый в мире носитель нейтронной боевой части. Фото US Army

Концепция нейтронной бомбы / ERW предусматривает изготовление ядерного боеприпаса сокращенной мощности с отдельным блоком, служащим источником нейтронов. В реальных проектах в этой роли чаще всего использовался один из изотопов бериллия. Подрыв нейтронной бомбы осуществляется обычным путем. Ядерный взрыв провоцирует термоядерную реакцию в дополнительном блоке, и ее результатом становится выброс потока быстрых нейтронов. В зависимости от конструкции боеприпаса и других факторов, в виде нейтронов может выделяться от 30 до 80% энергии термоядерной реакции.

Поток нейтронов может быть использован для поражения тех или иных целей. Прежде всего, ERW рассматривалось в качестве более эффективного средства поражения живой силы противника. Также в ходе исследований были найдены другие сферы его применения, в которых такое оружие показывало преимущества перед прочими вооружениями.

Ливерморская национальная лаборатория продолжала теоретическую работу по теме ERW в течение нескольких лет. В 1962 году состоялись первые испытания опытного боеприпаса. Позже появился проект заряда, пригодного для реального применения. С 1964 года велось проектирование боевых частей для баллистической ракеты MGM-52 Lance. Годом позже стартовала разработка боеголовки для противоракеты комплекса Sprint. Также предлагались иные проекты нейтронных боезарядов разного рода различного назначения. К середине семидесятых годов США запустили серийное производство нескольких новых боевых блоков типа ERW, предназначенных для ракет ряда типов.

По известным данным, в нашей стране работы по теме нейтронного оружия велись с начала семидесятых годов. Первые испытания бомбы нового типа состоялись в конце 1978 года. Затем разработка боеприпасов продолжилась и привела к появлению нескольких новых изделий. Насколько известно, СССР планировал использовать нейтронные боеприпасы в качестве тактического ядерного оружия, а также на ракетах-перехватчиках противоракетной обороны. Эти планы были успешно реализованы.

Согласно открытой информации, в конце шестидесятых аналогичный проект появился у Франции. Затем к разработке нейтронного оружия присоединились Израиль и Китай. Предположительно, со временем на вооружении этих государств появились те или иные боеприпасы с повышенным выходом быстрых нейтронов. Впрочем, по известным причинам, некоторые из них не спешили раскрывать информацию о своих вооружениях.



Старт ракеты-перехватчика Sprint - носителя нейтронной БЧ. Фото US Army, 28 окт 1970 г.

В начале восьмидесятых годов нейтронное оружие стало одним из поводов для ухудшения отношений между Советским Союзом и Соединенными Штатами. Москва указывала на негуманный характер такого вооружения, а Вашингтон говорил о необходимости симметричного ответа на советскую угрозу. Подобное противостояние продолжалось в течение нескольких следующих лет.

После распада СССР и окончания Холодной войны США приняли решение отказаться от нейтронных вооружений. В других странах, по разным данным, подобные изделия сохранились. Впрочем, согласно некоторым источникам, от нейтронных бомб отказались почти все страны-разработчики. Что касается нейтронных пушек, то подобное оружие так и не вышло за пределы лабораторий.

Сферы применения

Согласно известным заявлениям и легендам прошлых лет, нейтронная бомба является жестоким и циничным оружием: она убивает людей, но не разрушает имущество и материальные ценности, которые затем может присвоить жестокий и циничный противник. Тем не менее, в реальности все было иначе. Высокая эффективность и ценность нейтронного оружия для армий определялись иными факторами. Отказ от такого оружия, в свою очередь, тоже имел причины, далекие от чистого гуманизма.

Таким образом, вопреки устоявшимся стереотипам, поток нейтронов оказывается не заменой прочим поражающим факторам, а дополнением к ним. При использовании нейтронного заряда ударная волна наносит окружающим объектам ощутимый ущерб, и ни о каком сохранении имущества речи не идет. Одновременно с этим специфика рассеивания и поглощения нейтронов ограничивает целесообразную мощность боеприпаса. Тем не менее, и такому оружию с характерными ограничениями нашли применение.

Нейтронные заряды также нашли применение в сфере противоракетной обороны. В свое время несовершенство систем управления и наведения не позволяло рассчитывать на получение высокой точности поражения баллистической цели. В связи с этим противоракеты предлагалось оснащать ядерными боевыми частями, способными обеспечить относительно большой радиус поражения. Однако одним из основных поражающих факторов атомного взрыва является взрывная волна, не образующаяся в безвоздушном пространстве.

Аргументы против

Разработка нового оружия сопровождалась поиском способов защиты от него. По результатам таких исследований, уже в семидесятых-восьмидесятых годах начали внедряться новые методы защиты. Широкое их применение известным образом сказалось на перспективах нейтронного оружия. По всей видимости, именно технические вопросы стали основной причиной постепенного отказа от такого вооружения. В пользу этого предположения говорит тот факт, что изделия типа ERW постепенно вышли из эксплуатации, тогда как противоракеты, по разным данным, до сих пор используют такие боеголовки.

Одной из главных целей для нейтронных бомб была бронетехника, и ее защитили от таких угроз. С определенного времени новые советские танки стали получать специальные покрытия. На внешней и внутренней поверхностях корпусов и башен устанавливались надбои и подбои из специальных материалов, задерживающих нейтроны. Подобные изделия изготавливались с применением полиэтилена, бора и других веществ. За рубежом в качестве средства удержания нейтронов использовались встроенные в броню панели из обедненного урана.

В сфере бронетехники также осуществлялся поиск новых сортов брони, исключающей или сокращающей образование наведенной радиоактивности. Для этого из состава металла удалялись некоторые элементы, способные взаимодействовать с быстрыми нейтронами.

Даже без особой доработки хорошей защитой от потока нейтронов является стационарное сооружение из бетона. 500 мм такого материала ослабляют поток нейтронов до 100 раз. Также достаточно эффективной защитой может быть влажный грунт и другие материалы, применение которых не составляет особой сложности.

По разным данным, не остались без защиты и боевые блоки межконтинентальных баллистических ракет, рискующие столкнуться с нейтронным боезарядом противоракеты. В этой сфере используются решения, аналогичные применяемым на сухопутной технике. Вместе с другой защитой, обеспечивающей стойкость к тепловым и механическим нагрузкам, используются средства поглощения нейтронов.

Сегодня и завтра

По имеющимся данным, тематикой нейтронного оружия занимались всего несколько стран, обладающих развитой наукой и промышленностью. Насколько известно, Соединенные Штаты отказались от продолжения работ по этой тематике в начале девяностых годов. К концу того же десятилетия все запасы нейтронных боезарядов были утилизированы за ненадобностью. Франция, согласно некоторым источникам, тоже не стала сохранять подобное вооружение.

Китай в прошлом декларировал отсутствие необходимости в нейтронном оружии, но при этом указывал на наличие технологий для его скорого создания. Есть ли у НОАК подобные системы в настоящее время – неизвестно. Схожим образом обстоит дело и с израильской программой. Имеются сведения о создании нейтронной бомбы в Израиле, но это государство не раскрывает информацию о своих стратегических вооружениях.

В целом, на данный момент нейтронные бомбы не являются самым популярным и распространенным видом ядерного оружия. Они не смогли найти применение в сфере стратегического ядерного вооружения, а также не сумели заметно потеснить тактические системы. Мало того, к настоящему времени большая часть такого вооружения, по всей видимости, вышла из эксплуатации.

Есть основания полагать, что в ближайшем будущем ученые ведущих стран вновь вернутся к тематике нейтронного вооружения. При этом теперь речь может идти не о бомбах или боевых частях для ракет, но о т.н. нейтронных пушках. Так, в марте прошлого года заместитель министра обороны США по перспективным разработкам Майк Гриффин рассказал о возможных путях развития перспективных вооружений. По его мнению, большое будущее имеют т.н. вооружения на основе направленной энергии, в том числе источники пучков нейтральных частиц. Впрочем, замминистра не раскрыл какие-либо данные о старте работ или о реальном интересе со стороны военных.

В прошлом нейтронное оружие всех основных типов считалось перспективным и удобным средством ведения боевых действий. Однако дальнейшая проработка и освоение таких вооружений была связана с рядом трудностей, накладывавших определенные ограничения на применение и расчетную эффективность. Кроме того, достаточно быстро появились эффективные средства защиты от потока быстрых нейтронов. Все это серьезно ударило по перспективам нейтронных систем, а затем привело к известным результатам.

За 50 лет, начиная с открытия ядерного деления в начале 20 века до 1957 года прогремели десятки атомных взрывов. Благодаря им ученые получили особо ценные знания о физических принципах и модели деления атомов. Стало ясно, что наращивать бесконечно мощность атомного заряда нельзя из-за физических и гидродинамических ограничений к урановой сфере внутри боезаряда.

Поэтому был разработан другой тип ядерного оружия – нейтронная бомба. Главным поражающим фактором при ее взрыве является не взрывная волна и радиация, а нейтронное излучение, которое с легкостью поражает живую силу противника, оставляя в сохранности технику, строения и вообще всю инфраструктуру.

История создания

В 1944 году группа Гейзенберга изготовила урановые плиты для реактора. Планировалось, что эксперименты по созданию искусственной цепной реакции начнутся в начале 1945. Но из-за переноса реактора из Берлина в Хайгерлох график опытов сместился на март. Согласно проведенному эксперименту, реакция деления в установке не началась, т.к. массы урана и тяжелой воды была ниже необходимого значения (1,5т урана при потребности в 2,5т).

Итогом их труда стала разработка двух бомб с использованием урана и плутония.

Работы над созданием своего атомного оружия в СССР начали проводиться с 1943 года. Советская разведка доложила Сталину о разработках в нацисткой Германии сверхмощного оружия, способного изменить ход войны. Также в докладе содержались сведения, что кроме Германии работы над атомной бомбой проводились и в странах союзниках.

Пределом мощности атомной бомбы считается 100 кт.

Наращивание количества урана в заряде приводит к его срабатыванию лишь только достигается критическая масса. Ученые пробовали решить данную проблему путем создания различных компоновок, разделяя уран на множество частей (в виде раскрытого апельсина) которые соединялись воедино при взрыве. Но это не позволило существенно увеличить мощность.В отличие от атомной бомбы топливо для термоядерного синтеза не имеет критической массы.

Бомба состояла из множества слоев урана и дейтрида.Первую термоядерную бомбу РДС-37 мощностью 1,7 Мт взорвали на Семипалатинском полигоне в ноябре 1955 года. Впоследствии ее конструкция с небольшими изменениями стала классической.

Нейтронная бомба

В 50-х годах 20 столетия военная доктрина НАТО в ведении войны опиралась на использование тактического ядерного оружия низкой мощности для сдерживания танковых войск государств Варшавского договора. Однако в условиях высокой плотности населения в районе западной Европы применение этого типа оружия могло привести к таким людским и территориальным потерям (радиоактивное загрязнение), что преимущества, полученные от его использования, становились ничтожными.

Тогда учеными США была предложена идея о ядерной бомбе со сниженными побочными эффектами. В качестве поражающего фактора в новом поколении оружия решили использовать нейтронное излучение, проникающая способность которого превосходила гамма-излучение в несколько раз.

В 1957 году Теллер возглавил группу исследователей, выполняющих разработку нейтронной бомбы нового поколения.

Первый взрыв нейтронного оружия под индексом W-63 произошел в 1963 году в одной из шахт на полигоне в Неваде. Но мощность излучения была гораздо ниже запланированной, и проект отправили на доработку.

В 1976 году на том же самом полигоне были выполнены испытания обновленного нейтронного заряда. Результаты испытаний настолько превзошли все ожидания военных, что решение о серийном производстве данного боеприпаса приняли за пару дней на самом высоком уровне.

Конструкция и принцип действия нейтронной бомбы

Нейтронная бомба – это вид тактического ядерного оружия мощностью от 1 до 10 кт, где поражающим фактором является поток нейтронного излучения. При ее взрыве 25% энергии выделяется в виде быстрых нейтронов (1-14 МэВ), остальная часть расходуется на образование ударной волны и светового излучения.

По своей конструкции нейтронную бомбу можно условно разделить на несколько типов.

Реакция термоядерного синтеза в таком снаряде запускается разогревом действующего вещества до миллиона градусов путем подрыва атомной взрывчатки, внутри которой помещен шар. При этом испускаются быстрые нейтроны с энергией 1-2 МэВ и гамма-кванты.

Нейтронная бомба пушечного типа схема

Также существует и другой тип конструкции, когда дейтерий-тритиевая смесь выведена наружу атомной взрывчатки. При взрыве заряда запускается термоядерная реакция с выделением нейтронов высокой энергии 14 МэВ, проникающая способность которых выше, чем у нейтронов, образующихся при ядерном делении.

Ионизирующая способность нейтронов с энергией 14МэВ в семь раз выше, чем у гамма-излучения.

Т.е. поглощенный живыми тканями нейтронный поток в 10 рад соответствует полученной дозе гамма-излучения в 70 рад. Объяснить это можно тем, что при попадании в клетку нейтрон выбивает ядра атомов и запускает процесс разрушения молекулярных связей с образованием свободных радикалов (ионизация). Почти сразу радикалы начинают хаотично вступать в химические реакции, нарушая работу биологических систем организма.

Еще одним поражающим фактором при взрыве нейтронной бомбы является наведенная радиоактивность. Возникает при воздействии нейтронного излучения на почву, строения, военную технику, различные объекты в зоне взрыва. При захвате нейтронов веществом (особенно металлами) происходит частичное преобразование стабильных ядер в радиоактивные изотопы (активация). Они в течении некоторого времени испускают собственное ядерное излучение, которое также становится опасным для живой силы противника.

Устройство нейтронной бомбы

Из-за этого боевая техника, орудия, танки, подвергшиеся излучению, не могут быть использованы по назначению от пары дней до нескольких лет. Вот почему остро встала проблема по созданию защиты экипажа техники от нейтронного потока.

Увеличение толщины брони военной техники почти не влияет на проникающую способность нейтронов. Улучшение защиты экипажа удалось достичь путем использования в конструкции брони многослойных поглощающих покрытий на основе соединений бора, установкой алюминиевого подбоя с водородосодержащим слоем пенополиуретана, а также изготовлением брони из хорошо очищенных металлов или металлов, которые при облучении не создают наведенную радиоактивность (марганец, молибден, цирконий, свинец, обедненный уран).

Нейтронная бомба имеет один серьезный недостаток – малый радиус поражения, из-за рассеивания нейтронов атомами газов земной атмосферы.

Но нейтронные заряды полезны в ближнем космосе. В связи с отсутствием там воздуха нейтронный поток распространяется на большие расстояния. Т.е. данный тип оружия является эффективным средством ПРО.

Так, при взаимодействии нейтронов с материалом корпуса ракеты создается наведенная радиация, которая приводит к повреждению электронной начинки ракеты, а также к частичной детонации атомного запала с началом реакции деления. Выделяющееся радиоактивное излучение позволяет демаскировать боеголовку, отсеяв ложные цели.

Запуск нейтронной бомбы

Закатом нейтронного оружия стал 1992 год. В СССР, а затем и России был разработан гениальный по своей простоте и эффективности способ защиты ракет – в состав материала корпуса ввели бор и обедненный уран. Поражающий фактор нейтронного излучения оказался бесполезен для вывода из строя ракетного вооружения.

Политические и исторические последствия

Работы по созданию нейтронного оружия начались в 60-ых годах 20 века в США. Через 15 лет технологию производства доработали и создали первый в мире нейтронный заряд, что привело к своеобразной гонке вооружений. На данный момент такой технологией обладают Россия и Франция.

Главной опасностью этого типа оружия при его применении стала не возможность массового уничтожение мирного населения страны противника, а размытие грани между ядерной войной и обычным локальным конфликтом. Поэтому Генеральной Ассамблеей ООН было принято несколько резолюций с призывом к полному запрету нейтронного оружия.

СССР в 1978 году первым предложил США договориться об использовании нейтронных зарядов и разработал проект об их запрещении.

К сожалению, проект остался только на бумаге, т.к. ни одна страна запада и США не приняли его.

Позже, в 1991 году президентами России и США были подписаны обязательства, по которым тактические ракеты и артиллерийские снаряды с нейтронной боеголовкой должны быть полностью уничтожены. Что несомненно не помешает наладить их массовый выпуск за короткое время при изменении военно-политической ситуации в мире.

Видео

Не забывайте оставлять на сайте свои комментарии и делиться своим мнением.

От этой бомбы нельзя было спрятаться, не спасал ни бетонный бункер, ни бомбоубежища, ни другие средства защиты. При этом после взрыва нейтронной бомбы здания, предприятия и прочие объекты инфраструктуры оставались нетронутыми и попадали прямо в лапы американской военщины. Рассказов о новом страшном оружии было так много, что в СССР про него начали сочинять анекдоты.
Что же из этих рассказов правда, а что вымысел? Как работает нейтронная бомба? Есть ли подобные боеприпасы на вооружении российской армии или вооруженных сил США? Ведутся ли разработки в этой области в наши дни?

Как работает нейтронная бомба

Нейтронная бомба – это разновидность ядерного оружия, основным поражающим фактором которого является поток нейтронного излучения. Вопреки распространенному мнению, после взрыва нейтронного боеприпаса образуется и ударная волна, и световое излучение, но большая часть энергии выделяемой энергии превращается в поток быстрых нейтронов. Нейтронная бомба относится к тактическому ядерному оружию.

Принцип действия нейтронных боеприпасов основан на свойстве быстрых нейтронов гораздо сильнее проникать через различные преграды, по сравнению с рентгеновским излучением, альфа, бета и гамма-частицами. Например, 150 мм брони способны удержать до 90% гамма-излучения и только 20% нейтронной волны. Грубо говоря, спрятаться от проникающего излучения нейтронного боеприпаса гораздо сложнее, чем от радиации обычной ядерной бомбы. Именно это свойство нейтронов и привлекло внимание военных.

Нейтронная бомба имеет ядерный заряд небольшой мощности, а также специальный блок (его обычно изготавливают из бериллия), который и является источником нейтронного излучения. После подрыва ядерного заряда большая часть энергии взрыва преобразуется в жесткое нейтронное излучение. На остальные факторы поражения — ударная волна, световой импульс, электромагнитное излучение — приходится лишь 20% энергии.

Однако все вышесказанное всего лишь теория, практическое применение нейтронного оружия имеет некоторые нюансы.

Земная атмосфера очень сильно гасит нейтронное излучение, поэтому дальность действия этого поражающего фактора не больше, чем дистанция поражения ударной волны. По этой же причине нет смысла изготавливать нейтронные боеприпасы большой мощности – излучение все равно быстро затухнет. Обычно нейтронные заряды имеют мощность около 1 кТ. При его подрыве происходит поражение нейтронным излучением в радиусе 1,5 км. На дистанции в 1350 метров от эпицентра оно опасно для жизни человека.

Кроме того, поток нейтронов вызывает в материалах — например, в броне — наведенную радиоактивность. Если посадить в танк, попавший под действие нейтронного оружия (на дистанциях около километра от эпицентра), новый экипаж, то он получит летальную дозу радиации в течение суток.

Не соответствует действительности распространенное мнение о том, что нейтронная бомба не уничтожает материальные ценности. После взрыва подобного боеприпаса образуется и ударная волна, и импульс светового излучения, зона сильных разрушений от которых имеет радиус примерно в один километр.

Нейтронные боеприпасы не слишком подходят для использования в земной атмосфере, зато они могут быть весьма эффективны в космическом пространстве. Там нет воздуха, поэтому нейтроны распространяются беспрепятственно на весьма значительные расстояния. Благодаря этому различные источники нейтронного излучения рассматриваются в качестве эффективного средства противоракетной обороны. Это так называемое пучковое оружие. Правда, в качестве источника нейтронов обычно рассматривается не нейтронные ядерные бомбы, а генераторы направленных нейтронных пучков – так называемые нейтронные пушки.

Использовать их в качестве средства для поражения баллистических ракет и боевых блоков предлагали еще разработчики рейгановской программы Стратегической оборонной инициативы (СОИ). При взаимодействии пучка нейтронов с материалами конструкции ракет и боеголовок возникает наведенная радиация, которая надежно выводит из строя электронику этих устройств.

После появления идеи нейтронной бомбы и начала работ по ее созданию стали разрабатываться методы защиты от нейтронного излучения. В первую очередь они были направлены на уменьшение уязвимости боевой техники и экипажа, находящегося в ней. Основным методом защиты от подобного оружия стало изготовление специальных видов брони, хорошо поглощающих нейтроны. Обычно в них добавляли бор – материал, прекрасно улавливающий эти элементарные частицы. Можно добавить, что бор входит в состав поглощающих стрежней ядерных реакторов. Еще одним способом уменьшить поток нейтронов является добавление в броневую сталь обедненного урана.

Вообще, практически вся боевая техника, созданная в 60-е – 70-е годы прошлого столетия, максимально защищена от большинства поражающих факторов ядерного взрыва.

История создания нейтронной бомбы

Атомные бомбы, взорванные американцами над Хиросимой и Нагасаки, принято относить к первому поколению ядерного оружия. Принцип его работы основан на реакции делений ядер урана или плутония. Ко второму поколению относится оружие, в принцип работы которого положены реакции ядерного синтеза – это термоядерные боеприпасы, первое из них было взорвано США в 1952 году.

К ядерному оружию третьего поколения относятся боеприпасы, после взрыва которых, энергия направляется на усиление того или иного фактора поражения. Именно к таким боеприпасам относятся нейтронные бомбы.
Впервые о создании нейтронной бомбы заговорили в середине 60-х годов, хотя, его теоретическое обоснование обсуждалось гораздо раньше – еще в середине 40-х годов. Считается, что идея создания подобного оружия принадлежит американскому физику Самуэлю Коену. Тактическое ядерное оружие, несмотря на его значительную мощь, не слишком эффективно против бронетехники, броня хорошо защищала экипаж практически от всех поражающих факторов ЯО.

В настоящее время технологиями, которые позволяют создавать нейтронное оружие, владеют США, Россия и Китай (возможно, Франция). Некоторые источники сообщают, что массовый выпуск подобных боеприпасов продолжался примерно до середины 80-х годов прошлого века. В этот момент в броню боевой техники стали повсеместно добавлять бор и обедненный уран, что практически полностью нейтрализовало основной поражающий фактор нейтронных боеприпасов. Это привело к постепенному отказу от этого вида оружия. Хотя, как обстоит ситуация на самом деле — неизвестно. Информация такого рода находится под многими грифами секретности и практически не доступна широкой общественности.

Читайте также: