Назовите типы взаимодействий существующих в природе кратко

Обновлено: 05.07.2024

В последнее время второй и третий типы объединены в электро-слабые, но это еще до конца не подтверждено экспериментально .
В повседневной жизни мы имеем дело с двумя типами: гравитационным и электро-магнитным.

  • Написать правильный и достоверный ответ;
  • Отвечать подробно и ясно, чтобы ответ принес наибольшую пользу;
  • Писать грамотно, поскольку ответы без грамматических, орфографических и пунктуационных ошибок лучше воспринимаются.

Мореплаватель — имя существительное, употребляется в мужском роде. К нему может быть несколько синонимов.
1. Моряк. Старый моряк смотрел вдаль, думая о предстоящем опасном путешествии;
2. Аргонавт. На аргонавте были старые потертые штаны, а его рубашка пропиталась запахом моря и соли;
3. Мореход. Опытный мореход знал, что на этом месте погибло уже много кораблей, ведь под водой скрывались острые скалы;
4. Морской волк. Старый морской волк был рад, ведь ему предстояло отчалить в долгое плавание.

Гравитационное взаимодействие.Гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, который гласит, что сила гравитационного притяжения между двумя телами массы m1 и m2, разделённых расстоянием R есть


.


Здесь G — гравитационная постоянная, равная м 3 /(кг с 2 ). Знак минус означает, что сила, действующая на тело, всегда противоположна по направлению радиус-вектору, направленному на тело, т. е. гравитационное взаимодействие приводит всегда к притяжению любых тел.

Поле тяжести потенциально. Это значит, что можно ввести потенциальную энергию гравитационного притяжения пары тел, и эта энергия не изменится после перемещения тел по замкнутому контуру.

Гравитация - дальнодействующая сила природы. Это означает, что, хотя интенсивность гравитационного взаимодействия убывает с расстоянием, оно распространяется в пространстве и может сказываться на весьма удаленных от источника телах. Благодаря дальнодействию гравитация удерживает планеты на орбитах, звезды в галактиках, галактики в скоплениях, скопления в Метагалактике.

Гравитация — слабейшее взаимодействие. Однако, поскольку оно действует на любых расстояниях и все массы положительны, это тем не менее очень важная сила во Вселенной. Также гравитация, в отличие от других взаимодействий, универсальна в действии на всю материю и энергию. Не обнаружены объекты, у которых вообще отсутствует гравитация.

Гравитация ответственна и за такие крупномасштабный эффекты, как структура галактик, черные дыры и расширение Вселенной, и за элементарные астрономические явления — орбиты планет, и за простое притяжение к поверхности Земли и падения тел.

Электромагнитное взаимодействие. Электромагнитное взаимодействие существует между частицами, обладающими электрическим зарядом, а также между электрически нейтральными составными частицами, части которых обладают зарядом. В электромагнитном взаимодействии участвуют кварки, электрон, мюон и тау-частица, а также заряженые бозоны.

С точки зрения квантовой теории поля электромагнитное взаимодействие переносится фотоном.

Электромагнитное взаимодействие заряженных частиц намного сильнее гравитационного, и единственная причина, по которой электромагнитное взаимодействие не проявляется с большой силой на космических масштабах — электрическая нейтральность материи, то есть наличие в каждой области Вселенной равных количеств положительных и отрицательных зарядов.


На проводник с током, помещенный в магнитное поле, действует сила Ампера:


На заряженную частицу, движущуюся в магнитном поле, действует сила Лоренца:

Сильное взаимодействие (ядерное взаимодействие). Сильное взаимодействие действует в масштабах атомных ядер и меньше, отвечая за притяжение между нуклонами в ядрах и между кварками в адронах.

В сильном взаимодействии участвуют кварки и глюоны, а также составленные из них элементарные частицы, называемые адронами.

Наиболее характерный пример энергии, высвобождаемой сильным взаимодействием, - Солнце.

По своей величине сильное взаимодействие существенно превосходит все остальные фундаментальные взаимодействия, но за пределами ядра оно не ощущается. Сильное взаимодействие проявляется на расстоянии, определяемом размерами ядра, т.е. примерно 10 -13 см. Сильное взаимодействие испытывают не все частицы. Так, его испытывают протоны и нейтроны, но электроны, нейтрино и фотоны неподвластны ему. В сильном взаимодействии участвуют обычно только тяжелые частицы. Оно ответственно за образование ядер и многие взаимодействия элементарных частиц.

Слабое взаимодействие, или слабое ядерное взаимодействие.Оно ответственно за бета-распад ядра. Это взаимодействие называется слабым, поскольку два других взаимодействия, значимые для ядерной физики (сильное и электромагнитное), характеризуются значительно большей интенсивностью. Однако оно значительно сильнее гравитационного. Слабое взаимодействие является короткодействующим — оно проявляется на расстояниях, меньших размера атомного ядра.

В слабом взаимодействии участвуют все фундаментальные фермионы (лептоны и кварки). Это единственное взаимодействие, в котором участвуют нейтрино. Слабое взаимодействие позволяет лептонам, кваркам и их античастицам обмениваться энергией, массой, электрическим зарядом и квантовыми числами — то есть превращаться друг в друга.




Таким образом, в фундаментальных физических взаимодействи­ях четко прослеживается различие сил дальнодействующих и близко­действующих. С одной стороны, взаимодействия неограниченного радиуса действия (гравитация, электромагнетизм), а с другой - малого радиуса (сильное и слабое).

Гравитационное взаимодействие.Гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, который гласит, что сила гравитационного притяжения между двумя телами массы m1 и m2, разделённых расстоянием R есть


.


Здесь G — гравитационная постоянная, равная м 3 /(кг с 2 ). Знак минус означает, что сила, действующая на тело, всегда противоположна по направлению радиус-вектору, направленному на тело, т. е. гравитационное взаимодействие приводит всегда к притяжению любых тел.

Поле тяжести потенциально. Это значит, что можно ввести потенциальную энергию гравитационного притяжения пары тел, и эта энергия не изменится после перемещения тел по замкнутому контуру.

Гравитация - дальнодействующая сила природы. Это означает, что, хотя интенсивность гравитационного взаимодействия убывает с расстоянием, оно распространяется в пространстве и может сказываться на весьма удаленных от источника телах. Благодаря дальнодействию гравитация удерживает планеты на орбитах, звезды в галактиках, галактики в скоплениях, скопления в Метагалактике.

Гравитация — слабейшее взаимодействие. Однако, поскольку оно действует на любых расстояниях и все массы положительны, это тем не менее очень важная сила во Вселенной. Также гравитация, в отличие от других взаимодействий, универсальна в действии на всю материю и энергию. Не обнаружены объекты, у которых вообще отсутствует гравитация.

Гравитация ответственна и за такие крупномасштабный эффекты, как структура галактик, черные дыры и расширение Вселенной, и за элементарные астрономические явления — орбиты планет, и за простое притяжение к поверхности Земли и падения тел.

Электромагнитное взаимодействие. Электромагнитное взаимодействие существует между частицами, обладающими электрическим зарядом, а также между электрически нейтральными составными частицами, части которых обладают зарядом. В электромагнитном взаимодействии участвуют кварки, электрон, мюон и тау-частица, а также заряженые бозоны.

С точки зрения квантовой теории поля электромагнитное взаимодействие переносится фотоном.

Электромагнитное взаимодействие заряженных частиц намного сильнее гравитационного, и единственная причина, по которой электромагнитное взаимодействие не проявляется с большой силой на космических масштабах — электрическая нейтральность материи, то есть наличие в каждой области Вселенной равных количеств положительных и отрицательных зарядов.


На проводник с током, помещенный в магнитное поле, действует сила Ампера:


На заряженную частицу, движущуюся в магнитном поле, действует сила Лоренца:

Сильное взаимодействие (ядерное взаимодействие). Сильное взаимодействие действует в масштабах атомных ядер и меньше, отвечая за притяжение между нуклонами в ядрах и между кварками в адронах.

В сильном взаимодействии участвуют кварки и глюоны, а также составленные из них элементарные частицы, называемые адронами.

Наиболее характерный пример энергии, высвобождаемой сильным взаимодействием, - Солнце.

По своей величине сильное взаимодействие существенно превосходит все остальные фундаментальные взаимодействия, но за пределами ядра оно не ощущается. Сильное взаимодействие проявляется на расстоянии, определяемом размерами ядра, т.е. примерно 10 -13 см. Сильное взаимодействие испытывают не все частицы. Так, его испытывают протоны и нейтроны, но электроны, нейтрино и фотоны неподвластны ему. В сильном взаимодействии участвуют обычно только тяжелые частицы. Оно ответственно за образование ядер и многие взаимодействия элементарных частиц.

Слабое взаимодействие, или слабое ядерное взаимодействие.Оно ответственно за бета-распад ядра. Это взаимодействие называется слабым, поскольку два других взаимодействия, значимые для ядерной физики (сильное и электромагнитное), характеризуются значительно большей интенсивностью. Однако оно значительно сильнее гравитационного. Слабое взаимодействие является короткодействующим — оно проявляется на расстояниях, меньших размера атомного ядра.

В слабом взаимодействии участвуют все фундаментальные фермионы (лептоны и кварки). Это единственное взаимодействие, в котором участвуют нейтрино. Слабое взаимодействие позволяет лептонам, кваркам и их античастицам обмениваться энергией, массой, электрическим зарядом и квантовыми числами — то есть превращаться друг в друга.

Таким образом, в фундаментальных физических взаимодействи­ях четко прослеживается различие сил дальнодействующих и близко­действующих. С одной стороны, взаимодействия неограниченного радиуса действия (гравитация, электромагнетизм), а с другой - малого радиуса (сильное и слабое).


В природе ни один вид не существует в полной изоляции – все организмы взаимодействуют как с абиотической средой, так и с другими организмами.

Существуют следующие типы влияния одних организмов на другие:

  • Положительные (+) – взаимодействие организмов в общей среде, при котором один организм получает выгоду от другого;
  • Отрицательные (–) – взаимодействие организмов, при котором одному организму наносится вред из-за другого;
  • Нейтральные (0) – когда организмы из общей среды обитания не оказывают никакого влияния друг на друга.

Основные типы отношений между организмами

Симбиотические отношения


Симбиоз (+ / +) описывает тесное и постоянное (долгосрочное) взаимодействие между двумя видами.

Симбиотические отношения подразделяются на облигатные (нужны для выживания) или факультативные (выгодные, но не строго необходимые).

Симбиотические отношения могут быть полезны как для одного, так и для обоих организмов в партнерстве:

  • Мутуализм (+ / +) – оба вида извлекают выгоду от взаимодействия (анемон защищает рыбу-клоуна, рыба-клоун обеспечивает анемон питательными фекалиями);
  • Комменсализм (0 / +) – один вид получает выгоду, а другой остается невредим (ракообразные прикрепляются к китам, чтобы добраться до мест богатых планктоном);
  • Паразитизм (– / +) – один из видов получает выгоду в ущерб другому (например, клещи и блохи питаются кровью своего хозяина).

Хищник-Жертва


Хищничество (– / +) – это биологическое взаимодействие, при котором один организм (хищник) охотится и питается другим организмом (добычей).

Поскольку хищник полагается на добычу как на источник пищи, численность их популяций неразрывно связана между собой:

  • Если численность популяции добычи сокращается (например, из-за чрезмерной охоты), численность хищников будет сокращаться по мере усиления внутривидовой конкуренции;
  • Если численность популяция добычи растет, численность хищников будет увеличиваться в результате изобилия источника пищи.

Нейтрализм


Нейтрализм (0 / 0) описывает взаимосвязь между двумя видами , которые взаимодействуют, но никак не влияют друг на друга. Примеры истинного нейтрализму практически невозможно доказать. На практике термин используется для описания ситуаций, где взаимодействия пренебрежимо малы или незначительны.

Аменсализм


Аменсализм (– / 0) – межвидовые отношения, при которых одному организму наноситься вред, а другой остается невредимым. Хорошим примером аменсализма является крупный рогатый скот, который во время передвижения затаптывает копытами траву.

Конкуренция


Конкуренция (– / –) описывает взаимодействие между двумя организмами, при котором приспособленность одного снижается из-за присутствия другого.

Конкуренция может быть внутривидовой (между представителями одного вида) или межвидовой (между представителями разных видов).

Нехватка ресурсов (например, еды, воды или территории) обычно вызывают один из двух типов конкуренции:

vedro-compota

Фундамента?льные взаимоде?йствия — качественно различающиеся типы взаимодействия элементарных частиц и составленных из них тел.

На сегодня достоверно известно существование четырех фундаментальных взаимодействий:

  1. гравитационного
  2. электромагнитного
  3. сильного
  4. слабого

При этом электромагнитное и слабое взаимодействия являются проявлениями единого электрослабого взаимодействия.

1) Гравитационное взаимодействие

Гравитационное взаимодействие - универсальное фундаментальное взаимодействие между всеми материальными телами. В приближении малых скоростей и слабого гравитационного взаимодействия описывается теорией тяготения Ньютона, в общем случае описывается общей теорией относительности Эйнштейна. Гравитация является самым слабым из четырех типов фундаментальных взаимодействий. В квантовом пределе гравитационное взаимодействие должно описываться квантовой теорией гравитации, которая ещё полностью не разработана.

В частности - квант гравитационного поля не выявлен

2) Электромагнитное взаимодействие

Электромагнитное взаимодействие - одно из четырёх фундаментальных взаимодействий. Электромагнитное взаимодействие существует между частицами, обладающими электрическим зарядом[1]. С современной точки зрения электромагнитное взаимодействие между заряженными частицами осуществляется не прямо, а только посредством электромагнитного поля.

С точки зрения квантовой теории поля электромагнитное взаимодействие переносится безмассовым бозоном — фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля).

Сам фотон электрическим зарядом не обладает, а значит не может непосредственно взаимодействовать с другими фотонами.

3) Сильное взаимодействие

Сильное взаимодействие (тоже самое что - Си?льное ядерное взаимоде?йствие -цветово?е взаимоде?йствие- я?дерное взаимоде?йствие) — одно из четырёх фундаментальных взаимодействий в физике. В сильном взаимодействии участвуют кварки и глюоны и составленные из них частицы, называемые адронами (барионы и мезоны).

Оно действует в масштабах порядка размера атомного ядра и менее, отвечая за связь между кварками в адронах и за притяжение между нуклонами (разновидность барионов — протоны и нейтроны) в ядрах.

4) Слабое взаимодействие

Слабое взаимодействие (слабое ядерное взаимодействие ) - одно из четырёх фундаментальных взаимодействий в природе. Оно ответственно, в частности, за бета-распад ядра. Это взаимодействие называется слабым, поскольку два других взаимодействия, значимые для ядерной физики (сильное и электромагнитное), характеризуются значительно большей интенсивностью.

В слабом взаимодействии участвуют все фундаментальные фермионы (лептоны и кварки)


Все события, происходящие в Природе, совершаются в результате сил, источниками которых является взаимное влияние друг на друга частиц материи. Такое влияние осуществляется четырьмя способами. Рассмотрим их кратко.

Фундаментальные взаимодействия в Природе

Виды фундаментальных взаимодействий

Всего в Природе существуют четыре вида фундаментальных взаимодействий.


Рис. 1. Таблица фундаментальных взаимодействий.

Гравитационное взаимодействие

С силами гравитации человек был знаком всегда. Изначально сила притяжения приписывалась исключительно Земле. Однако, с развитием науки было открыто притяжение между небесными телами, а в XVIIв И. Ньютон распространил действие гравитации на любые объекты, имеющие массу.

Можно указать лишь некоторые свойства гравитонов. В частности, гравитоны не имеют массы, и движутся со скоростью света. Поэтому радиус действия гравитационного поля бесконечен, а его интенсивность убывает пропорционально квадрату расстояния.

Электромагнитное взаимодействие

С проявлением электромагнетизма человечество также было знакомо с древности. Однако, первоначально к этому взаимодействию были отнесены лишь явления электризации и природного электричества. Развитие теории электродинамики показало, что абсолютное большинство сил, окружающих нас, имеют под собой именно электромагнитную природу, поскольку большинство элементарных частиц обладают электрическим зарядом.

Частицей-переносчиком электромагнитного взаимодействия является фотон, не имеющий массы и движущийся со скоростью света. То есть, радиус действия электромагнитных сил также бесконечен, а интенсивность убывает пропорционально квадрату расстояния.

Сильное взаимодействие

Переносчиками сильного взаимодействия являются особые кванты – глюоны. Однако, в отличие от фотонов, глюоны, во-первых, обладают массой, а во-вторых – сами участвуют в сильном взаимодействии, и сами способны взаимодействовать друг с другом.

Это приводит к двум важным следствиям. Во-первых, глюоны не дают сами себе уходить далеко от источника, радиус сильного взаимодействия имеет порядок $10^$м. Во-вторых, кварки, частицы, из которых сложены протоны и нейтроны (нуклоны), также не могут удалиться друг от друга.

Слабое взаимодействие

Для объяснения радиоактивного распада было предположено (а потом доказано) существование четвертого взаимодействия, суть которого, как и в других, состоит в обмене частицей-переносчиком (ее назвали W-бозоном) между кварками внутри элементарной частицы. Пример слабого взаимодействия – внутри нейтрона d-кварк превращается в u-кварк с испусканием W-бозона. Последний распадается на электрон и антинейтрино. Нейтрон превращается в протон, а электрон и антинейтрино – вылетают из ядра.

Что мы узнали?

В Природе существует четыре фундаментальных взаимодействия. Гравитационное, электромагнитное, сильное и слабое. Фундаментальное взаимодействие заключается в обмене между частицами материи квантом-переносчиком взаимодействия. У каждого взаимодействия имеется свой квант, свойства которого определяют характер взаимодействия.

Читайте также: