Назовите стадии звезды кратко

Обновлено: 06.07.2024

Жителям Земли звезды кажутся вечными и неизменными. С первого взгляда они все похожи друг на друга и не имеют никаких отличий. Но по факту все обстоит иначе. Современные астрономы доказали, что жизнь небесного светила состоит из нескольких этапов. Эволюция звезд – это очень долгий и сложный процесс, проследить визуально который просто невозможно. Благодаря уникальным знаниям и технологическому прогрессу, ученые научились определять разновидности звезд, строить модели их развития, объяснять процессы, происходящие в далеком космосе.

План урока:

Этапы эволюции звезд

Теория звездной эволюции рассматривает изменения в физических, химических характеристиках звезд, которые связаны с возрастом светила. Ее основными этапами являются:

  • образование протозвезды из газового облака;
  • формирование звезды разной массы, которая в ходе термоядерных процессов станет либо гигантом, либо сверхгигантом;
  • эволюция звезд с низкой массой заканчивается их превращением в белого карлика;
  • тяжелая звезда в ходе гравитационного коллапса образует нейтронную звезду или черную дыру.

Гравитационным коллапсом называют катастрофически быстрое сжатие космических тел под действием гравитационных сил.

Протозвезда

Жизнь каждой звезды начинается с рождения. На первых этапах формируется большое облако, внутри которого образуются молекулы. В результате гравитационного воздействия облако межзвездного газа начинает сжиматься и постепенно приобретает шарообразную форму. Во время сжатия энергия гравитации переходит в тепло, что приводит к повышению температурных показателей в центральной части звезды. Но при этом температура еще не такая высокая, чтобы запустились термоядерные реакции.

На первой стадии своего эволюционного развития объект принято называть протозвездой. Процесс образования нового тела проходит на протяжении долгого времени и может достигать миллионов лет. Протозвезды со сформированным ядром и оболочкой выделяют в отдельный тип, который называют звезды до главной последовательности. У них низкая температура и высокая светимость. Звезда постепенно начинает двигаться к главной последовательности, а свою энергию она получает благодаря силам гравитации.

Процесс сжатия у протозвезд происходит очень медленно. Например, чтобы Солнце перешло в главную последовательность ему потребовалось 30 млн. лет.

Звезды красных гигантов и сверхгигантов

Как не существует абсолютно идентичных людей, так нет и одинаковых звезд во Вселенной. Среди них выделяют группу звезд-гигантов, которые излучают в тысячи раз больше света, чем Солнце. Такие объекты имеют значительные размеры (от 10 до 1 000 радиусов нашего Светила) и невысокую плотность (около 10 -2 - 10 -4 кг/м 3 ). Кроме того, с поверхности ряда гигантов происходит интенсивное истечение газового вещества.

К одним из самых уникальных и интересных представителей больших звезд относятся красные гиганты. Эти звезды имеют низкую температуру. Температура красных гигантов достигает в среднем 3 000 - 5 000 0 С, а их радиус в сотни раз превосходит радиус Солнца. Отмечено, что светимость красных гигантов где-то в 100 раз больше, чем у нашей Звезды. Максимальное количество энергии излучения такого объекта приходится на красную и инфракрасную части спектра. Как следует из теории звездной эволюции, образование красных гигантов происходит из звезд главной последовательности после того, как в их центральной части произойдет практически полное выгорание водорода.

К тому времени, как вполне обычное светило превратится в красного гиганта, его структура успевает измениться: внутри образуется плотное, богатое гелием ядро. Вокруг ядра тонкий энерговыделяющий слой и протяженная оболочка. Масса красного гиганта составляет от 1,5 до 15 масс Солнца и плотность менее 0,001 г/см 3 , что намного меньше плотности нашей звезды. В астрономии к красным гигантам относятся:

  • Альдебаран;
  • Арктур;
  • Гакрукс;
  • Мира.

Среди этой категории светил встречаются особо крупные объекты, которые были выделены в отдельный класс красных сверхгигантов. Пока что таких звезд обнаружено совсем немного. Они отличаются достаточно большими размерами, а их светимость достигает 105 светимостей Солнца. Интересно, что такие объекты тяжелее нашего светила в 50 раз. Зато их радиусы достигают тысячи радиусов Солнца. Температура красного сверхгиганта 3 000 - 5 000 0 С. Спектры этих объектов имеют молекулярные полосы поглощения, максимальное излучение приходится на спектральные области: красную, а также инфракрасную. Спектральный класс красного сверхгиганта К и М. Самым известным сверхгигантом является Бетельгейзе.

Белые карлики

Одним из этапов звездной эволюции принято считать этап образования белых карликов. Они приходят на смену красным гигантам после потери своей массы, а также после сбрасывания ими оболочки и обнажения ядра. Открытие и изучение этих звезд началось с 1914 года, когда американский астроном У. Адамс открыл Сириус. На данный момент – это самая известная звезда на небосводе. Находится она в созвездии Большого Пса. Это представитель классических белых карликов, которых не так уж и много во Вселенной. Светимость их достаточно маленькая, поэтому их открывали неподалеку от Солнца. И лишь со временем, с появлением мощных космических телескопов, астрономы обнаружили такие тела и в шаровом скоплении, находящемся на достаточно далеком расстоянии от Земного шара.

Ученые подсчитали, что молодые белые карлики на первых этапах своего развития сжимаются. Их радиус уменьшается. И уже в первые миллионы лет своего существования он сокращается до сотен километров. Причиной этому служит постепенное остывание тела. Масса белых карликов составляет всего от 0,6 до 1,44 массы Солнца. Температура поверхности белых карликов может достигать до 200 000 0 С. Плотность вещества достаточно высокая, и равна 10 5 - 10 9 г/см³.

Длительность жизни этих объектов напрямую зависит от времени их полного остывания. Спектральная характеристика белых карликов значительно отличается от звезд главной последовательности и красных гигантов. Их относят к отдельному спектральному классу D.

Пульсары и нейтронные звезды

Когда жизнь звезды заканчивается, на ее месте образуется уникальное космическое тело – нейтронная звезда. Это компактные астрономические объекты, радиус которых не превышает 10 километров. А масса нейтронной звезды составляет около 1,4 массы Солнца. Состоят такие объекты в основном из нейтронов. Эти звезды относятся к самым интересным астрофизическим объектам.

Вещество, из которого состоят эти тела, имеет сверхпроводимость, сверхтекучесть, излучение нейтрино, наличие сверхсильных магнитных полей и прочее. Просто огромна и плотность нейтронной звезды. Именно поэтому она при небольших размерах имеет невероятную массу. Строение нейтронной звезды ни на что не похоже. Внутри нее кипит раскаленное вещество, заключенное в тонкую твердую оболочку, над которой бушует горячая плазма. Это тело имеет магнитное поле, которое превосходит солнечное в триллионы раз.

То, что во Вселенной могут существовать макрообъекты, состоящие в основном из нейтронов, доказал еще академик Л.Д.Ландау. Предположение о том, что нейтронные звезды рождаются во вспышках сверхновых, было сделано в 1934 году американскими учеными Ф. Цвикки и В.Бааде. Но, учитывая их небольшую светимость, обнаружить нейтронные звезды длительное время не удавалось. Такие тела имеют и другое название – пульсары. Их магнитные поля постоянно захватывают электроны из слоя плазмы, которые в результате начинают излучать радиосигналы.

Впервые такие радиоимпульсы были пойманы из определенных участков неба английскими учеными из Кембриджа в 1967 году. В ходе изучения мерцаний космических радиоисточников Д.Белл, работавшая под руководством Э.Хьюшина (первооткрыватель пульсаров, Лауреат Нобелевской премии в области физики за 1974 год), обнаружила строго периодический сигнал. Тогда некоторые исследователи решили, что имеют дело с сигналами внеземной цивилизации. Поэтому работы в данном направлении были засекречены. В дальнейшем было доказано, что это обычное природное явление.

Данные, полученные группой Хьюшина, стали известны другим ученым. И скоро исследователи пришли к выводу, что радиопульсары и нейтронные звезды обозначают одно и то же понятие. Самое интересное, что нейтронные звезды ученые наблюдали еще за пять лет до открытия радиопульсаторов. Вот только сделать это помогли не радиоволны, а рентгеновские лучи.

В 1962 году ученые установили на ракете специальный детектор и с его помощью смогли обнаружить достаточно мощный источник рентгеновского излучения в созвездии Скорпиона. С Земли подобные исследования провести не удавалось, поскольку рентгеновские лучи поглощаются нашей атмосферой.

В 1970 году специалистам был известен уже целый ряд подобных объектов. Причем все они входили в состав двойных тесных систем и забирали себе часть вещества нейтронной звезды, которая находилась по соседству. В этом случае вещество приобретает скорость, близкую к скорости света, и при столкновении с поверхностью нейтронной звезды переходит в тепло (температура достигает нескольких миллионов градусов), которое и излучается в рентгеновском диапазоне.

Современной науке известны интересные тесные двойные системы, состоящие из двух нейтронных звезд. За счет гравитационных волн они довольно быстро сближаются.

В итоге за время, меньше возраста Вселенной, они должны слиться, выделив при этом колоссальное количество энергии, намного превосходящее энергию взрыва сверхновой звезды. За одной из таких систем и наблюдали в 1970 году Р. Халс и Жд.Тейлор, которые за результатами своей работы были удостоены Нобелевской премии в области физики.

Столкновение двух нейтронных звезд Источник

Что такое черные дыры

Нейтронные звезды образуются в результате эволюции звезд с массами от 8 до 40 солнечных масс. А вот из более крупных тел появляются черные дыры. Во Вселенной это самые фантастические объекты. Здесь не имеют силы законы нашего мира, время и пространство меняются местами, и оттуда нет выхода. Это связано с тем, что невероятной гравитации такого тела не может противостоять ничто во Вселенной.

Черные дыры – это звезды, у которых все наоборот. Если обычные светила излучают свет, то эти объекты их поглощают. Как, впрочем, и все, что оказывается поблизости – планеты, звезды, кометы и прочие объекты. Гравитация внутри черных дыр настолько большая, что это с трудом могут представить себе даже ученые.

Черные дыры являются последней стадией эволюции сверхмассивных звезд. В них заключено 0,1% массы всей нашей Галактики.

Поглощение звезды черной дырой Источник

Таинственные объекты активно поглощают вещество своих соседей, нагревая его при этом до температуры миллионов градусов. При таких условиях черная дыра становится источником рентгеновского излучения. Неподалеку от этих объектов отмечается сильное искривление пространства. Здесь даже движение световых лет изменяется. Это помогает найти удивительные образования – гравитационные линзы, которые указывают на то, что в их центре прячутся черные дыры.

Самая знаменитая черная дыра расположена в созвездии Лебедя. Предположительно неизвестный объект тяжелее нашего Солнца в 15 раз.

Двойные, кратные и переменные звезды

С развитием астрономической техники оказалось, что часть звезд, которые мы видим, представляют собой системы из двух объектов разной массы и разного спектрального класса. Обнаружить небольшое расстояние между небесными телами порой бывает достаточно сложно, и часто для этого требуется специальная современная аппаратура и тщательные расчеты.

Двойными звездами ученые называют две звезды, которые под действием тяготения вращаются вокруг общего центра масс по эллиптическим орбитам. Они находятся недалеко друг от друга и поэтому оказываются в плену взаимного притяжения. Соотношения размеров подобных тел может быть различным. Если звезды-близняшки относительно равны, то они движутся вокруг общего центра масс. В том же случае, если одна из них значительно меньше другой, она становится своеобразным спутником своей соседки.

Двойственность космических объектов приходится определять различными способами. Одни из них, визуально-двойные, охотно демонстрируют свою природу даже при обычном наблюдении в телескоп. Другие, спектрально-двойные, требуют тщательного спектрального анализа. Установить, что в некоторых случаях перед нами находится не обычная звезда, а двойная, помогают периодические раздвоения или колебания спектральных линий.

Больше всего хлопот доставляют ученым затменно-двойные звезды. Периодичность их угасания и разгорания часто становится причиной серьезных исследований, в ходе которых выясняется, что данный объект на самом деле двойной. А во время вращения вокруг общего центра одна звезда просто на время заслоняет от нас другую. Поэтому ее блеск изменяется.

Кроме двойных звезд, во Вселенной существует немало систем, в которых три и более звезды вращаются вокруг общего центра масс под воздействием гравитационной силы. Их принято называть кратными звездами.

Чем больше светил входит в систему кратных звезд, тем меньше шансов ее найти. А все потому что она характеризуется нестабильностью. Ведь в любой момент одна из звезд может превратиться в карлика, взорваться сверхновой или вообще стать черной дырой. Все эти процессы приведут к сильному гравитационному возмущению, что нарушит систему из большого количества объектов.

Поэтому кратные звезды практически всегда состоят из 3-х или 4-х тел. На сегодняшний день известны две системы, состоящие из 7 объектов - AR Кассиопея и Ню Скорпиона.

В тройных системах две звезды вращаются вокруг друг друга, а третья находится на большом расстоянии и вращается вокруг них. Пример ближайшей тройной системы кратных звезд – Альфа Центавра. В ней Альфа Центавра А и Альфа Центавра В являются желтыми карликами (похожи на наше Солнце). Они вращаются вокруг барицентра (общего центра) за 79 лет. Третья звезда Проксима Центавра движется по собственной орбите. Для полного оборота вокруг звезд ей необходимо 500 тыс. лет.

Одним из самых интересных явлений на небосводе, за которым можно наблюдать даже невооруженным взглядом, являются переменные звезды – те, которые со временем могут менять свою яркость. Некоторые звезды способны поменять свой блеск за несколько минут, в то время как другим понадобится несколько месяцев.

Причинами звездных мерцаний могут быть активность хромосферы, вспышки сверхновых, затмения в системе двойных звезд и т.д.

В зависимости от них существуют разные типы переменных звезд:

  1. Затменно-переменные звезды – они меняют свою яркость по простой схеме. Дело в том, что такие светила представляют собой не одну звезду, а двойную систему, которая очень тесно связана между собой. Звезды в системе движутся таким образом, что периодически одна закрывает собой другую, происходит что-то наподобие затмения. Яркость таких светил отличается. Если более яркая звезда закрывает слабую, то земной наблюдатель видит увеличение яркости и наоборот. Примеры таких звезд – Алголь, β Лиры, W Большой Медведицы.

Пульсирующие переменные звезды – яркость меняется за счет изменения объема звезды. Светило то расширяется, то сжимается. Причина явления кроется в неустойчивости внутреннего давления и гравитационных сил. В результате пульсации происходит увеличение фотосферы светила, за счет чего растет и площадь излучаемой поверхности. Меняются температурные показатели поверхности и цвет звезды. Первая пульсирующая звезда была открыта в 1596 году – Мира Кита. К пульсирующим переменным светилам также относят цефеиды – гиганты с периодом мерцания 1,5-50 суток. Одна из самых известных переменных звезд - Полярная. Ее период 4 суток. Еще один интересный подпит пульсирующих светил – звезды RV Тельца. Их период длится 30-150 суток.

  1. Неправильные переменные звезды – это большой класс, который относится к пульсирующим. Изменение блеска у таких объектов предвидеть практически невозможно, так как процесс не имеет никакой периодичности. Такие звезды изучены меньше всего. Пример - Бетельгейзе. Изменение блеска объясняется наличием на поверхности светила темных и светлых пятен.

Новые и сверхновые звезды

Новые звезды вспыхивают раз в несколько лет. И даже, несмотря на то, что количество излучаемого света увеличивается в десятки тысяч раз, заметить их невооруженных взглядом невозможно, настолько далеко они расположены.

Вспышка сверхновой звезды – куда более масштабное явление. Энергия, которая образуется при взрыве, сопоставима с солнечной, которую оно излучает за несколько миллиардов лет. Сверхновые звезды вспыхивают еще реже. Данное явление происходит как в нашей Галактике, так и за ее пределами. В 1054 г в китайских и японских хрониках в Галактике был отмечен взрыв сверхновой звезды, который видели даже в дневное время. В 1987 году с помощью современной аппаратуры удалось наблюдать вспышку сверхновой от начала до конца. Произошла она в галактике Большое Магелланово Облако.

Со сверхновыми дела обстоят немного иначе. В созвездии Тельца учеными было обнаружено светящееся газовое облако – Крабовидная туманность. Сейчас оно расширяется и специалистам удается определить скорость этого расширения. Если в течение определенного времени скорость не менялась, то примерно 1000 лет назад, вещество из туманности находилось в одной точке – в том месте, где произошла вспышка сверхновой звезды. Так ученые определили, что Крабовидная туманность – это остатки после вспышки. Позже были обнаружены еще аналогичные туманности. Самое интересное, что в центре Крабовидной туманности находится звезда пульсар. Ее вещество гораздо плотнее, чем у белых карликов. Ели очень массивные светила в конце своей жизни теряют устойчивость, то это становится причиной взрыва сверхновой звезды.

Наблюдать за звездами увлекательно и познавательно. Даже не используя никакой современной аппаратуры, можно для себя сделать много удивительных открытий. На небосводе регулярно появляются новые объекты. Только в нашей Галактике Млечный Путь ежегодно рождается около пяти новых звезд.


Звезды, такие как солнце, - это большие шары плазмы, которые неизбежно заполняют пространство вокруг себя светом и теплом. Звезды приходят в различных массах, и масса определяет, как горячая звезда будет гореть и как она умрет. Тяжелые звезды превращаются в сверхновые, нейтронные звезды и черные дыры, тогда как средние звезды, такие как солнце, заканчивают свою жизнь в виде белого карлика, окруженного исчезающей планетарной туманностью. Однако все звезды следуют примерно одному и тому же базовому семиступенчатому жизненному циклу, начиная с газового облака и заканчивая остатком звезды.

Гигантское Газовое Облако

Звезда начинает свою жизнь как большое облако газа. Температура внутри облака достаточно низкая, чтобы образовались молекулы. Некоторые молекулы, такие как водород, загораются и позволяют астрономам видеть их в космосе. Комплекс облаков Ориона в системе Ориона служит ближайшим примером звезды на этой стадии жизни.


Протозвезда-это младенческая Звезда

Когда частицы газа в Молекулярном облаке сталкиваются друг с другом, создается тепловая энергия, которая позволяет теплому сгустку молекул образоваться в газовом облаке. Этот сгусток называют протозвездой. Поскольку протозвезды теплее других материалов в облаке молекул, эти образования можно увидеть инфракрасным зрением. В зависимости от размера молекулярного облака, несколько Протозвездов могут образоваться в одно облако.

Фаза Т-Таури

В стадии Т-Таури молодая звезда начинает производить сильные ветры, которые отталкивают окружающий газ и молекулы. Это позволяет формирующейся звезде стать видимой впервые. Ученые могут обнаружить звезду в стадии T-Tauri без помощи инфракрасных или радиоволн.


Звезды Главной Последовательности

В конце концов молодая звезда достигает гидростатического равновесия, в котором ее гравитационное сжатие уравновешивается внешним давлением, придавая ей твердую форму. Затем звезда становится звездой главной последовательности. На этой стадии он проведет 90 процентов своей жизни, сплавляя молекулы водорода и образуя гелий в своем ядре. Солнце нашей Солнечной системы в настоящее время находится в фазе своей главной последовательности.


Экспансия в красный гигант

Как только весь водород в ядре звезды превращается в гелий, ядро сжимается само по себе, заставляя звезду расширяться. Расширяясь, она сначала становится субгигантской звездой, а затем красным гигантом. Красные гиганты имеют более холодные поверхности, чем звезды главной последовательности, и из-за этого они будут выглядеть красными, а не желтыми. Если звезда достаточно массивна, она может стать достаточно большой, чтобы быть классифицированной как сверхгигант.


Синтез более тяжелых элементов

По мере расширения звезда начинает сплавлять молекулы гелия в своем ядре, и энергия этой реакции предотвращает коллапс ядра. Как только слияние гелия заканчивается, ядро сжимается, и звезда начинает плавить углерод. Этот процесс повторяется до тех пор, пока железо не начнет появляться в ядре. Сплав железа поглощает энергию, поэтому присутствие железа приводит к разрушению ядра. Если звезда достаточно массивна, имплозия создает сверхновую звезду. Более мелкие звезды, такие как солнце, мирно сжимаются в белые карлики, а их внешние оболочки расходятся в виде планетарных туманностей.


Сверхновые и планетарные туманности

Взрыв сверхновой-одно из самых ярких событий во Вселенной. Большая часть материала звезды уносится в космос, но ядро быстро взрывается в нейтронную звезду или сингулярность, известную как черная дыра. Менее массивные звезды так не взрываются. Их ядра сжимаются в крошечные, горячие звезды, называемые белыми карликами, в то время как внешний материал дрейфует прочь. Звезды меньшего размера, чем Солнце, не имеют достаточной массы, чтобы гореть чем-либо, кроме красного свечения во время их главной последовательности. Эти красные карлики, которые трудно обнаружить, но которые могут быть самыми обычными звездами, могут гореть триллионы лет. Астрономы подозревают, что некоторые красные карлики были в их главной последовательности вскоре после Большого Взрыва.

Практически любо тело во Вселенной имеет свой жизненный цикл. Собственно говоря, светила не исключения. Они также рождаются и умирают, как и другие тела. Правда, жизненный путь звезд, то есть последовательные изменения в течение всей её жизни, очень долгий. Ниже мы как раз рассмотрим какие основные этапы включает в себя эволюция звёзд.

Как известно, звезда — это гигантский раскаленный газовый шар, находящийся в состоянии равновесия. Внутри этого шара происходят термоядерные реакции, в результате которых вырабатывается энергия и излучается свет.

Проксима Центавра

Проксима Центавра

Стадии эволюции звезд

Как и мы отличаемся друг от друга, так и звёзды. Под влиянием разных факторов их жизненный путь у каждого свой. Всё как у людей. Нас даже создала одна природа и сила — сила нашей Вселенной.

Из них, главным образом, выделяют:

  • Рождение,
  • Молодость,
  • Средний возраст,
  • Старость,
  • Смерть.

Как появляются звёзды

Сначала в космическом пространстве образуются огромные газовые облака. На самом деле, эти холодные разреженные облака межзвёздного газа сжимаются под силой гравитации. Так начинается процесс звёздного формирования.

На его конечном этапе объект называют протозвездой. Вроде уже и не просто облако, но еще и не полноценное светило. Во время сжатия температура таких газовых облаков резко увеличивается. Из-за чего, в свою очередь, внутри них начинают происходить термоядерные реакции синтеза гелия из водорода.

Главная последовательность

Именно в это время, то есть с началом ядерных процессов, рождается звезда. На данном этапе, чаще всего, она является представителем главной последовательности звезд. Правда, бывают и исключения. Например, субкарлики и коричневые карлики. Они отличаются небольшой массой и слабым ядерным синтезом.

Коричневый карлик

Коричневый карлик

Между прочим стадия главной последовательности самая длинная в жизни светил (около 90% от общей продолжительности). Остальные же их этапы существования длятся значительно меньше. Вероятно, по этой причине во Вселенной преобладают звёзды, находящиеся именно на этой стадии развития. А вот как после неё будет проходить развитие напрямую зависит от массы тела.

Эволюция звёзд различной массы

Стоит отметить, что звездные тела имеют разные характеристики.

Низкая масса

Если начальная масса светила меньше 0.08 солнечной массы, то в недрах таких звезд не возникнет сгорание водорода. Проще говоря, в них отсутствует ядерный синтез, а энергия вырабатывается благодаря сжатию ядра. Примером подобных светил являются коричневые карлики. Их конечный этап — превращение в чёрный карлик, то есть остывшую звезду, которая не выделяет энергию.

К сожалению, такая же участь уготовлена красным карликам с подобной массой. Но в отличие от коричневых собратьев, внутри них происходит горение водорода.

Правда, в слоевом источнике в районе гелиевого ядра водород уже не горит. В результате светило сжимается и нагревается. Затем наступает последний этап эволюции красного карлика малой массы — вырожденный гелиевый карлик. В это время практически всё звёздное тело состоит из гелия с водородной оболочкой, а равновесие удерживается вырожденным электронным газом.

Средняя масса

Как оказалось, эволюция звёзд при средней массе тела проходит по следующему пути.
Для светил с массой от 0.5 до 8 солнечных масс путь один — это превращение в углеродно-кислородный белый карлик, который будет состоять из вырожденного газа.

Когда у звёзд с данными значениями массы в ядре заканчивается водород (он же сжигается, как мы помним), начинается его горение в слоевом источнике вокруг гелиевого ядра. В результате светило эволюционирует в стадию красного гиганта.

Красный гигант

Красный гигант

Правда, процесс перевоплощения немного отличается при определенном весе. Так, если весовой показатель звезды находится в пределах от 0.5 до 3 солнечных масс, то в её ядре гелий взорвётся. Потому как в нём располагается вырожденный газ, произойдёт так называемая гелиевая вспышка.

Массивные звезды

А вот для светил с большей массой (от 3 до 8 солнечных) гелий будет гореть, но не взорвется. Поскольку газ не успевает выродиться из-за постоянной высокой ядерной температуры. Вместе с гелиевым сгоранием начинается рост конвективного ядра (то есть области, где происходит перенос энергии путём перемешивания веществ), а вокруг него горит оболочка из водорода. Что также приводит к превращению звезды в красный гигант.

Конвективная зона

Конвективная зона

Как происходит эволюция звёзд на последнем этапе

Конечно, спустя какое-то время, запасы гелия иссякнут. И он начнёт сгорать в слоевом источнике около ядра. Которое, в свою очередь, будет сжиматься и нагреваться. В это время водородная оболочка, наоборот, расширяется и остывает. Таким образом звезда трансформируется из красного карлика в сверхгигант.

На следующем этапе своей жизни в центрах звезд с массой от 0.5 до 8 солнечных масс образуется углеродно-кислородное ядро, наполненное вырожденным газом. Собственно, вот и сформировался белый карлик. Но его оболочка всё продолжает расширяться и, наконец, она отделяется от светила.

Более того, уже отделившаяся оболочка не прекращает увеличиваться и, в конце концов, превращается в планетарную туманность. А звезда, как уже было сказано, остаётся белым карликом с вырожденным газом.

Планетарная туманность Глаз Бога

Планетарная туманность Глаз Бога

Жизнь светил с высокой массой

Эволюция светил с высокой массой (от 8 до 10 солнечных) происходит по тому же сценарию, как и со средней. Но у них не успевает образоваться углеродно-кислородное ядро. Потому как оно сжимается и вырождается, а лишь затем начинает гореть углерод.
И вместо гелиевой вспышки происходит углеродная. Её также называют углеродной детонацией.

Иногда подобная детонация приводит к взрыву звезды как сверхновой. А иногда светило эволюционирует в неё без взрыва (при увеличении температуры в недрах газ может не вырождаться) и продолжает свою жизнь.

Во Вселенной есть очень массивные звёзды (около 10 солнечных масс). В результате того, что они очень горячие, внутри их ядра гелий начинает гореть, а они не успевают достигнуть стадии красного гиганта. Под действием различных факторов и процессов такие светила вырабатывают тяжёлые элементы.

Таким образом происходит ядерный коллапс (разрушение), которое в зависимости от ядерной массы может сформировать либо нейтронную звезду, либо даже чёрную дыру.

Эволюция звёзд

Эволюция звёзд

Можно сказать, что рождение и эволюция звезд начинается в результате ядерных реакций. А также заканчивается, когда они прекращаются.

Конечно, развитие и длительность жизни звёзд разная, так как процессы в них протекают по-разному. Более того, конечные стадии их эволюции также отличаются. Да, есть определённые закономерности, но будущее неизвестно никому. Ведь, например, при расширении одного светила, оно может зацепить другое. Почему бы нет? Наверное, вы поняли, что большую роль играет масса тела и процессы, в нём протекающие.

В любом случае, происхождение таких различных между собой космических объектов, таких красивейших и прекрасных, является одним из чудес Вселенной. А их бесчисленное множество, участие в образовании других, не менее восхитительных объектов, играет огромную роль в развитии нашего космоса.

Все в этом мире развивается. Любой цикл начинается с рождения, роста и завершается смертью. Конечно, у звезд эти циклы проходят по-особенному. Вспомним хотя бы, что временные рамки у них более масштабные и измеряются миллионами и миллиардами лет. Кроме того, их смерть несет определенные последствия. Как же выглядит жизненный цикл звезд?

Молекулярные облака

Начнем с рождения звезды. Представьте себе огромное облако холодного молекулярного газа, которое может спокойно существовать во Вселенной без всяких изменений. Но вдруг недалеко от него взрывается сверхновая или же оно наталкивается на другое облако. Из-за такого толчка активируется процесс разрушения. Оно делится на небольшие части, каждая их которых втягивается в себя. Как вы уже поняли, все эти кучки готовятся стать звездами. Гравитация накаляет температуру, а сохраненный импульс поддерживает процесс вращения. Нижняя схема наглядно демонстрирует цикл звезд (жизнь, этапы развития, варианты трансформации и смерть небесного тела с фото).

Жизненный цикл звезды

Протозвезда

Материал сгущается плотнее, нагревается и отталкивается от гравитационного коллапса. Такой объект называют протозвездой, вокруг которого формируется диск материала. Часть притягивается к объекту, увеличивая его массу. Остальные же обломки сгруппируются и создадут планетарную систему. Дальше развитие звезды все зависит от массы.

Т Тельца

При попадании материала на звезду, высвобождается огромное количество энергии. Новый звездный этап назвали в честь прототипа – Т Тельца. Это переменная звезда, расположенная в 600 световых годах (недалеко от скопления Гиад).

Она может достигать большой яркости, потому что материал разрушается и освобождает энергию. Но в центральной части не хватает температуры, чтобы поддерживать ядерный синтез. Эта фаза длится 100 миллионов лет.

Главная последовательность

В определенный момент температура небесного тела поднимается к необходимой отметке, активируя ядерный синтез. Через это проходят все звезды. Водород трансформируется в гелий, выделяя огромный тепловой запас и энергию.

Энергия высвобождается как гамма-лучи, но из-за медленного движение звезды она падает с длиной волны. Свет выталкивается наружу и вступает в конфронтацию с гравитацией. Можно считать, что здесь создается идеальное равновесие.

Сколько она пробудет в главной последовательности? Нужно исходить из массы звезды. Красные карлики (половина солнечной массы) способны тратить топливный запас сотни миллиардов (триллионы) лет. Средние звезды (как Солнце) живут 10-15 миллиардов. А вот наиболее крупные – миллиарды или миллионы лет. Посмотрите, как выглядит эволюция и смерть звезд различных классов на схеме.

Жизненный цикл звезды

Красный гигант

В процессе плавления водород заканчивается, а гелий накапливается. Когда водорода совсем не остается, все ядреные реакции замирают, и звезда начинает сжиматься из-за силы тяжести. Водородная оболочка вокруг ядра нагревается и зажигается, заставляя объект вырастать в 1000-10000 раз. В определенный момент и наше Солнце повторит эту судьбу, увеличившись до земной орбиты.

Температура и давление достигают максимума, и гелий сплавляется в углерод. В этой точке звезда сжимается и перестает быть красным гигантом. При большей массивности объект будет сжигать другие тяжелые элементы.

Белый карлик

Звезда с солнечной массой не располагает достаточным гравитационным давлением, чтобы сплавить углерод. Поэтому смерть наступает с окончанием гелия. Происходит выброс внешних слоев и появляется белый карлик. Сначала он горячий, но через сотни миллиардов лет остынет.


Звезды для жителей Земли представляются вечными и неизменными. Однако современная астрономия доказывает, что звезды медленно эволюционируют. Рассмотрим кратко эволюцию звезд.

Этапы звездной эволюции

Любая эволюция происходит под действием некоторых факторов, заставляющих систему меняться. Для звезд основными факторами являются два: гравитация и энергия термоядерных реакций в недрах. Теория учит, что состояние любой звезды определяется их балансом.

В результате глобальных космологических процессов во Вселенной образовались неоднородности вещества: в одних областях его почти нет, а в других вещество образует разреженные облака газа. Поскольку наиболее распространенным элементом во Вселенной является водород, то эти облака в основном состоят из него.

Образование конвективной звезды

Чем больше вещества собирается в протозвезде, тем больше ее гравитация, тем быстрее происходит образование плотного объекта.

По мере сжатия газа его температура, в соответствии с газовыми законами, возрастает. В протозвезде образуется заметная неоднородность температуры, которая приводит к интенсивной конвекции газа. Горячий газ из ядра поднимается к поверхности, а остывший газ опускается к ядру. Источником энергии на этом этапе является в основном гравитационное сжатие.

Звезда главной последовательности


Рис. 1. Диаграмма Герцшпрунга — Рассела.

Красный гигант

Типичный красный гигант имеет размер 100–1000 солнечных радиусов. Если поместить такую звезду в солнечную систему, ее поверхность может находиться около орбиты Юпитера. Однако средняя плотность красного гиганта зачастую меньше плотности воздуха.

Размеры красных гигантов

Рис. 2. Размеры красных гигантов.

Завершающие стадии эволюции

Стадия красного гиганта со всё более уплотняющимся ядром и раздувающейся внешней оболочкой продолжается от 10 до 100 млн лет. Далее в зависимости от конкретных условий внешние слои могут просто разлететься, а могут взорваться, образуя туманность различной формы.

В центре туманности остается ядро — белый карлик, нейтронная звезда или черная дыра, в зависимости от массы. Это конечный этап эволюции звезды.

Стадии эволюции Солнца

Рис. 3. Стадии эволюции Солнца.

Что мы узнали?

Главными факторами эволюции звезды являются гравитация и энергия термоядерного синтеза. Под их влиянием звезда проходит стадии протозвезды, конвективной звезды, звезды главной последовательности и красного гиганта. Красный гигант сбрасывает внешние оболочки при взрыве, а оставшееся ядро представляет собой белый карлик, нейтронную звезду или черную дыру.

Читайте также: