Назовите элементную базу компьютеров разных поколений кратко

Обновлено: 04.07.2024

Можно выделить \(5\) основных поколений ЭВМ . Но деление компьютерной техники на поколения — весьма условная.

1. Элементная база: электронно-вакуумные лампы.
2. Соединение элементов: навесной монтаж проводами.
3. Габариты: ЭВМ выполнена в виде громадных шкафов.

Эти компьютеры были огромными, неудобными и слишком дорогими машинами, которые могли приобрести крупные корпорации и правительства.

Лампы потребляли большое количество электроэнергии и выделяли много тепла.
4. Быстродействие: \(10-20\) тыс. операций в секунду.
5. Эксплуатация: сложная из-за частого выхода из строя электронно-вакуумных ламп.
6. Программирование: машинные коды. При этом надо знать все команды машины, двоичное представление, архитектуру ЭВМ. В основном были заняты математики-программисты. Обслуживание ЭВМ требовало от персонала высокого профессионализма.
7. Оперативная память: до \(2\) Кбайт.
8. Данные вводились и выводились с помощью перфокарт, перфолент.

В \(1948\) году Джон Бардин, Уильям Шокли, Уолтер Браттейн изобрели транзистор, за изобретение транзистора они получили Нобелевскую премию в \(1956\) г.

В \(1958\) году создана машина М-20 , выполнявшая \(20\) тыс. операций в секунду — самая мощная ЭВМ \(50-х\) годов в Европе.

1. Элементная база: полупроводниковые элементы (транзисторы, диоды).
2. Соединение элементов: печатные платы и навесной монтаж.

3. Габариты: ЭВМ выполнена в виде однотипных стоек, чуть выше человеческого роста, но для размещения требовался специальный машинный зал.
4. Быстродействие: \(100-500\) тыс. операций в секунду.
5. Эксплуатация: вычислительные центры со специальным штатом обслуживающего персонала, появилась новая специальность — оператор ЭВМ .
6. Программирование: на алгоритмических языках, появление первых операционных систем .
7. Оперативная память: \(2-32\) Кбайт.
8. Введён принцип разделения времени — совмещение во времени работы разных устройств.

Уже начиная со второго поколения, машины стали делиться на большие, средние и малые по признакам размеров, стоимости, вычислительных возможностей.

В \(1958\) году Джек Килби и Роберт Нойс , независимо друг от друга, изобретают интегральную схему (ИС).

В \(1965\) году начат выпуск семейства машин третьего поколения IBM-360 (США). Модели имели единую систему команд и отличались друг от друга объёмом оперативной памяти и производительностью.

В \(1968\) году сотрудник Стэндфордского исследовательского центра Дуглас Энгельбарт продемонстрировал работу первой мыши.

Firstmouseunderside.jpg

В \(1969\) году фирма IBM разделила понятия аппаратных средств (hardware) и программные средства (software). Фирма начала продавать программное обеспечение отдельно от железа, положив начало индустрии программного обеспечения.

\(29\) октября \(1969\) года проходит проверка работы самой первой глобальной военной компьютерной сети ARPANet , связывающей исследовательские лаборатории на территории США.

В \(1971\) году создан первый микропроцессор фирмой Intel . На \(1\) кристалле сформировали \(2250\) транзисторов.

1. Элементная база: интегральные схемы.
2. Соединение элементов: печатные платы.
3. Габариты: ЭВМ выполнена в виде однотипных стоек.
4. Быстродействие: \(1-10\) млн. операций в секунду.
5. Эксплуатация: вычислительные центры, дисплейные классы, новая специальность — системный программист .
6. Программирование: алгоритмические языки, операционные системы.
7. Оперативная память: \(64\) Кбайт.

При продвижении от первого к третьему поколению радикально изменились возможности программирования. Написание программ в машинном коде для машин первого поколения (и чуть более простое на Ассемблере) для большей части машин второго поколения является занятием, с которым подавляющее большинство современных программистов знакомятся при обучении в вузе.

Появление процедурных языков высокого уровня и трансляторов с них было первым шагом на пути радикального расширения круга программистов. Научные работники и инженеры сами стали писать программы для решения своих задач.

В их основу были положены американские прототипы фирм IBM и DEC (Digital Equipment Corporation). Были созданы и выпущены десятки моделей ЭВМ, различающиеся назначением и производительностью. Их выпуск был практически прекращен в начале \(90\)-х годов.

В \(1982\) году фирма IBM приступила к выпуску компьютеров IBM РС с процессором Intel 8088 , в котором были заложены принципы открытой архитектуры, благодаря которому каждый компьютер может собираться как из кубиков, с учётом имеющихся средств и с возможностью последующих замен блоков и добавления новых.

1. Элементная база: большие интегральные схемы (БИС).
2. Соединение элементов: печатные платы.
3. Габариты: компактные ЭВМ, ноутбуки.
4. Быстродействие: \(10-100\) млн. операций в секунду.
5. Эксплуатация: многопроцессорные и многомашинные комплексы, любые пользователи ЭВМ.
6. Программирование: базы и банки данных.
7. Оперативная память: \(2-5\) Мбайт.
8. Телекоммуникационная обработка данных, объединение в компьютерные сети.

Элементной базой являются сверхбольшие интегральные схемы (СБИС) с использованием оптоэлектронных принципов (лазеры, голография).

Как правило, границы поколений четко не определены, так как в один и тот же период выпускались машины разного уровня.

Первое поколение ЭВМ (1948 - 1958)

Первое поколение ЭВМ создавалось на основе вакуумных электроламп, машина управлялась с пульта и перфокарт с использованием машинных кодов. Эти ЭВМ размещались в нескольких больших металлических шкафах, занимавших целые залы.

Элементной базой машин этого поколения были электронные лампы – диоды и триоды. Машины предназначались для решения сравнительно несложных научно-технических задач.

Второе поколение ЭВМ (1959–1967)

Появилось в 60-е гг. ХХ века. Элементной базой машин этого поколения были полупроводниковые приборы. Появление полупроводниковых элементов в электронных схемах существенно увеличило емкость оперативной памяти, надежность и быстродействие ЭВМ.

Картинки по запросу полупроводниковые приборы

Третье поколение ЭВМ (1968–1973)

Элементная база ЭВМ – малые интегральные схемы (МИС), содержавшие на одной пластинке сотни или тысячи транзисторов. Управление работой этих машин происходило с алфавитно-цифровых терминалов. Для управления использовались языки высокого уровня и Ассемблер.



Четвертое поколение ЭВМ (1974 — 1982 гг.)

Элементная база ЭВМ - большие интегральные схемы (БИС). Машины предназначались для резкого повышения производительности труда в науке, производстве, управлении, здравоохранении, обслуживании и быту.

Заполняем пробелы — расширяем горизонты!

Компьютерная грамотность предполагает наличие представления о пяти поколениях ЭВМ, которое Вы получите после ознакомления с данной статьей.

Когда говорят о поколениях, то в первую очередь говорят об историческом портрете электронно-вычислительных машин (ЭВМ).

Фотографии в фотоальбоме по истечении определенного срока показывают, как изменился во времени один и тот же человек. Точно так же поколения ЭВМ представляют серию портретов вычислительной техники на разных этапах ее развития.

Всю историю развития электронно-вычислительной техники принято делить на поколения. Смены поколений чаще всего были связаны со сменой элементной базы ЭВМ, с прогрессом электронной техники. Это всегда приводило к росту быстродействия и увеличению объема памяти. Кроме этого, как правило, происходили изменения в архитектуре ЭВМ, расширялся круг задач, решаемых на ЭВМ, менялся способ взаимодействия между пользователем и компьютером.

ЭВМ первого поколения

Они были ламповыми машинами 50-х годов. Их элементной базой были электровакуумные лампы. Эти ЭВМ были весьма громоздкими сооружениями, содержавшими в себе тысячи ламп, занимавшими иногда сотни квадратных метров территории, потреблявшими электроэнергию в сотни киловатт.

Например, одна из первых ЭВМ – ENIAC представляла собой огромный по объему агрегат длиной более 30 метров, содержала 18 тысяч электровакуумных ламп и потребляла около 150 киловатт электроэнергии.

Для ввода программ и данных применялись перфоленты и перфокарты. Не было монитора, клавиатуры и мышки. Использовались эти машины, главным образом, для инженерных и научных расчетов, не связанных с переработкой больших объемов данных. В 1949 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор.

ЭВМ второго поколения

Транзисторы

В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения. Машины стали компактнее, надежнее, менее энергоемкими. Возросло быстродействие и объем внутренней памяти. Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах.

В этот период стали развиваться языки программирования высокого уровня: ФОРТРАН, АЛГОЛ, КОБОЛ. Составление программы перестало зависеть от конкретной модели машины, сделалось проще, понятнее, доступнее.

В 1959 г. был изобретен метод, позволивший создавать на одной пластине и транзисторы, и все необходимые соединения между ними. Полученные таким образом схемы стали называться интегральными схемами или чипами. Изобретение интегральных схем послужило основой для дальнейшей миниатюризации компьютеров.

В дальнейшем количество транзисторов, которое удавалось разместить на единицу площади интегральной схемы, увеличивалось приблизительно вдвое каждый год.

ЭВМ третьего поколения

Это поколение ЭВМ создавалось на новой элементной базе – интегральных схемах (ИС).

ЭВМ третьего поколения начали производиться во второй половине 60-х годов, когда американская фирма IBM приступила к выпуску системы машин IBM-360. Немного позднее появились машины серии IBM-370.

В Советском Союзе в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая система ЭВМ) по образцу IBM 360/370. Скорость работы наиболее мощных моделей ЭВМ достигла уже нескольких миллионов операций в секунду. На машинах третьего поколения появился новый тип внешних запоминающих устройств – магнитные диски.

Успехи в развитии электроники привели к созданию больших интегральных схем (БИС), где в одном кристалле размещалось несколько десятков тысяч электрических элементов.

В 1971 году американская фирма Intel объявила о создании микропроцессора. Это событие стало революционным в электронике.

Микропроцессор – это миниатюрный мозг, работающий по программе, заложенной в его память.

Соединив микропроцессор с устройствами ввода-вывода и внешней памяти, получили новый тип компьютера: микро-ЭВМ.

ЭВМ четвертого поколения

Микро-ЭВМ относится к машинам четвертого поколения. Наибольшее распространение получили персональные компьютеры (ПК). Их появление связано с именами двух американских специалистов: Стива Джобса и Стива Возняка. В 1976 году на свет появился их первый серийный ПК Apple-1, а в 1977 году – Apple-2.

ЭВМ пятого поколения

Они будут основаны на принципиально новой элементной базе. Основным их качеством должен быть высокий интеллектуальный уровень, в частности, распознавание речи, образов. Это требует перехода от традиционной фон-неймановской архитектуры компьютера к архитектурам, учитывающим требования задач создания искусственного интеллекта.

Таким образом, для компьютерной грамотности необходимо понимать, что на данный момент создано четыре поколения ЭВМ:

  • 1-ое поколение: 1946 г. создание машины ЭНИАК на электронных лампах.
  • 2-ое поколение: 60-е годы. ЭВМ построены на транзисторах.
  • 3-ье поколение: 70-е годы. ЭВМ построены на интегральных микросхемах (ИС).
  • 4-ое поколение: Начало создаваться с 1971 г. с изобретением микропроцессора (МП). Построены на основе больших интегральных схем (БИС) и сверх БИС (СБИС).

Пятое поколение ЭВМ строится по принципу человеческого мозга, управляется голосом. Соответственно, предполагается применение принципиально новых технологий. Огромные усилия были предприняты Японией в разработке компьютера 5-го поколения с искусственным интеллектом, но успеха они пока не добились.

Фирма IBM тоже не намерена сдавать свои позиции мирового лидера, например, Японии. Мировая гонка за создание компьютера пятого поколения началась еще в 1981 году. С тех пор еще никто не достиг финиша. Поживем – увидим.


Элементной базой в ЭВМ называется их основная электронная составляющая. Эта составляющая меняется в зависимости от поколения компьютеров. Поколения элементной базы ЭВМ объясняют историю развития компьютеров на основе эволюционирующих технологий. С каждым новым поколением компьютерные схемы, их размеры становились все миниатюрнее, скорость обработки информации удваивалась, память стала больше, а удобство и надежность улучшались. Временная шкала, заданная для определения каждого поколения, важна для понимания того, что является элементной базой ЭВМ. Но она не определена до конца и считается довольно условной. Поколения элементной базы фактически основаны на эволюционирующей технологии чипов, а не на каких-либо конкретных временных рамках.

что является элементной базой эвм поколения

Первое поколение ЭВМ

Пять поколений компьютеров можно охарактеризовать электрическим током, протекающим:

  • в вакуумных трубках;
  • в транзисторах;
  • в интегральных схемах;
  • в микропроцессорных чипах;
  • в интеллектуальных устройствах, способных к искусственному интеллекту.

Первое поколение ЭВМ появилось в 1940-е-1950-е годы. Компьютеры первого поколения на самом деле были первыми универсальными и настоящими цифровыми компьютерами. Они появились, чтобы заменить электромеханические системы, которые были слишком медленными для назначенных задач. Первые компьютерные генераторы использовали вакуумные трубки для коммутации. Запечатанное стекло позволяло, чтобы ток протекал по беспроводной сети от нитей к металлическим пластинам.

Как работали первые компьютеры

элементная база

Элементную базу ЭВМ первого поколения было сложно использовать. Техники соединяли электрические цепи, подключив многочисленные кабели к разъемам. Затем они использовали специальные перфокарты и ждали несколько часов, чтобы получить результат для какой-либо формы вычислений. Первые ЭВМ были настолько большими, что занимали целые комнаты. Язык ассемблера и программное обеспечение операционной системы еще отсутствовали. Системы могли решать только одну проблему за раз. Эти машины были предназначены для операций низкого уровня, и программирование выполнялось с использованием только двоичных цифр 0 и 1.

ENIAC — самый мощный из первых компьютеров

Одним из самых выдающихся компьютеров в эту эпоху был ENIAC (Electronic Numerical Integrator and Computer), спроектированный и построенный инженером Джоном Мокли и Джоном Преспером Эккертом из Университета Пенсильвании. Его сборка была выполнена командой из пятидесяти человек. ENIAC был в 1000 раз быстрее, чем предыдущие электромеханические компьютеры , но гораздо более медленным при перепрограммировании.

Среди прочего, ENIAC использовался для изучения возможностей термоядерного оружия, стрельбы баллистической артиллерией и термическим зажиганием двигателя, а иногда для прогнозов погоды. Эти системы были огромны по размеру и занимали целые комнаты, используя много электроэнергии, что сделало их источником невыносимого тепла.

поколение эвм элементная база

Универсальный автоматический компьютер

UNIVAC (универсальный автоматический компьютер) был создан все теми же инженерами — Джоном Мокли и Джоном Преспером Эккертом. Компьютер был первым в той же эпохе, который был разработан для коммерческих целей, помимо военного использования. Используя свою элементную базу, он довольно хорошо манипулировал алфавитом и цифрами и использовался Бюро переписи населения США для перечисления общего населения.

Позднее он применялся для составления отчетов по продажам компаний и даже для предсказаний результатов президентских выборов в 1952 году. В отличие от более 17 000 вакуумных труб в ENIAC, UNIVAC I использовал чуть более 5000 вакуумных ламп. Он был также вдвое меньше своего предшественника. Было продано более 46 этих ЭВМ.

Компьютеры второго поколения: 1950-1960-е годы

ЭВМ второго поколения представляли собой компьютеры, в которых вместо вакуумных ламп использовались транзисторы. Это и была элементная база второго поколения. Новые компьютеры были лучше, чем их предшественники во многом из-за сравнительно небольшого размера, скорости и более низкой стоимости. Транзисторы являются строительными блоками практически любого микрочипа, а также они более надежные, энергоэффективные и способны проводить электричество быстрее и лучше, чем вакуумные трубки.

Как и трубки, элементная база ЭВМ второго поколения, включавшая транзисторы, являлась переключателями или электронными затворами, которые используются для усиления или управления током или включения или выключения электрических сигналов. Транзисторы называются полупроводниками, поскольку они содержат элементы, которые находятся между проводниками и изоляторами.

элементная база второго поколения

Изобретение транзисторных полупроводников

Транзисторные полупроводники были изобретены в Bell Laboratories в 1947 году учеными Уильямом Шокли, Джоном Бардином и Уолтером Браттентом, но не выпускались до середины 1950-х годов. Инженеры и создатели новой элементной базы видели будущее компьютеров второго поколения в совершенствовании процедур ввода и вывода данных.

Первоначально эти процессы были похожи на последние модели компьютеров первого поколения. Работа являлась довольно трудоемкой и утомительной, потому что включала в себя труд несколько сотрудников, которые носили перфокарты из комнаты в комнату.

Пакетная система передачи данных

Для того чтобы ускорить процесс, была создана и реализована пакетная система. Она включала сбор нескольких заданий данных на несколько перфокарт и подачу их в магнитные ленты с использованием сравнительно небольшой и недорогой системы. IBM-1401 был одним из таких компьютеров. Для него использовалась операционная система IBM-7094 и Fortran Monitor System.

Когда обработка данных была завершена, файлы переносились обратно на магнитную ленту. Используя меньшую систему, например, IBM-1401, данные можно было распечатать на несколько перфокарт в качестве вывода информации. Это были предвестники программного обеспечения операционной системы.

Характеристики компьютеров второго поколения

Затем начался процесс обновления ограничительного двоичного машинного кода до языков, которые полностью поддерживали символическое и буквенно-цифровое кодирование. Программисты теперь могли писать на ассемблерах и языках высокого уровня, таких как FORTRAN, COBOL, SNOWBALL и BASIC.

элементная база эвм

Ранние суперкомпьютеры были лишь некоторыми из машин, которые использовали транзисторы. Примерами этих систем были универсальный блок UNIVAC LARC от Sperry Rand (1960) и IBM-7030 Stretch supercomputer (1961) и мэйнфрейм CDC 6600 (1963).

Третье поколение компьютеров: 1960-1970-е годы

Элементная база третьего поколения ЭВМ — это интегральные схемы и многопрограммное программирование. Компьютеры третьего поколения использовали микросхему интегральной схемы (ИС) вместо транзисторов. Реализация этих компьютеров также соответствовала Закону Мура, в котором отмечалось, что размеры транзисторов снижались настолько быстро, что их количество на схеме удваивалось каждые 2 года.

Преимущества интегральных схем

Полупроводниковая ИС включала огромное количество транзисторов, конденсаторов и диодов. Затем они были напечатаны на отдельных частях платы. Ручное подключение конденсаторов и диодов в транзисторах было трудоемким и не полностью надежным. Джек Килби из Texas Instruments и Роберт Нойс из Fairchild Corporation отдельно друг от друга обнаружили преимущества интегральных схем в 1958 и 1959 годах соответственно. Килби построил свою ИС на германии, в то время как Noyce - на кремниевой микросхеме.

Первой системой, использующими ИС, была IBM 360, применявшаяся для обработки как коммерческих, так и научных заданий. После размещения нескольких транзисторов на одном чипе, помимо снижения стоимости, скорость и производительность любого одного компьютера также значительно увеличились. С момента своего изобретения скорость ИС удваивалась каждые два года, что еще больше сократило размер и стоимость компьютеров.

Использование интегральных схем в современных компьютерах

Сегодня почти все электронные устройства используют некоторые формы интегральных схем, размещенных на печатных платах. В отличие от схемы ИС, взаимодействие с компьютерами улучшилось. Вместо перфокарт для ввода и вывода данных, отображение информации происходит через визуальные дисплеи, применяются клавиатуры, а также улучшенные периферийные устройства ввода.

Компьютеры теперь используют программное обеспечение операционной системы для управления оборудованием и ресурсами, что позволило системам одновременно запускать разные приложения. Это произошло из-за централизованных приложений, которые контролировали распределение памяти. Компьютеры стали доступны широкой аудитории из-за размера и справедливой стоимости.

Это поколение также открыло концепцию “компьютерного семейства”, которая побудила производителей придумать компьютерные компоненты, совместимые с другими системами. Примерами этих систем были суперкомпьютеры Scientific Systems Systems Sigma 7 (1966) и суперкомпьютеры IBM-360 (1964) и CDC 8600 (1969).

Четвертое поколение компьютеров: от 1970-х до настоящего времени

Микропроцессор, ОС и графический интерфейс — элементная база современных компьютеров. Рождение микропроцессора было в то же время рождением микрокомпьютера. Это также соответствовало закону Мура, который предсказал экспоненциальный рост транзистора и микрочипов, начиная с 1965 года. Компания Intel, ее инженеры Тед Хофф, Федерико Фаггин и Стэн Мазор в ноябре 1971 года представили первый в мире одночиповый микропроцессор Intel 4004.

То, что в первом поколении заполняло всю комнату, теперь можно было установить на ладони. Само собой, новый микрочип был таким же мощным, как компьютер ENIAC с 1946 года. Четвертое поколение и его элементарная база играет важную роль в создании различных устройств.

Процессор Intel 4004

Первый домашний персональный компьютер

В 1981 году International Business Machine представила свой первый компьютер для дома, в котором работал процессор 4004. Он был известен как IBM PC. Компания сотрудничала с Биллом Гейтсом, который купил Disk Operating System из Seattle Computer Product и распространил его с нового компьютера IBM. Архитектура IBM PC стала стандартной моделью рынка.

элементная база компьютера

Создание операционной системы Windows

Apple под руководством Стива Джобса изменила программную игру, когда в 1984 году выпустила компьютер Apple Macintosh с улучшенным графическим интерфейсом (графический интерфейс пользователя), используя идею интерфейса, полученную от Xerox PARC. Обе программы управления для микрокомпьютера и операционной системы диска были операционными системами на основе командной строки, когда пользователь должен взаимодействовать с компьютером с помощью клавиатуры.

После успеха графического интерфейса Apple Microsoft интегрировала оболочную версию Windows в версии DOS 1985 года. Windows использовалась в течение следующих 10 лет, пока она не была заново изобретена как Windows 95. Это было настоящее программное обеспечение для операционной системы со всеми необходимыми утилитами.

Появление Linux

В то время как программное обеспечение стало обычным делом и корпорации начали брать за него деньги, новое движение программистов запустило Linux в 1991 году. Во главе с Linux Torvalds они стали инициаторами бесплатного проекта операционной системы с открытым исходным кодом под названием Linux. Помимо Linux, другие операционные системы с открытым исходным кодом и бесплатное программное обеспечение были распространены для обслуживания офисных, сетевых и домашних компьютеров.

поколения элементной базы

Распространение мобильных устройств

В 1980-х и 2000-х годах персональные компьютеры и настольные компьютеры стали обычным явлением. Они были установлены в офисах, школах и домах, их стоимость стала приемлемой, а размер — компактным. Программное обеспечение, работающее на этих компьютерах, также стали доступнее. Вскоре микропроцессоры вышли из под монополизации настольными компьютерами и перешли на другие платформы.

Сначала появился ноутбук, а затем планшеты и смартфоны, консоли, встроенные системы, смарт-карты, которые стали популярными из-за необходимости использования Интернета во время движения. Согласно недавним исследованиям, мобильные телефоны составляли 60% всех цифровых устройств по всему миру.

Пятое поколение компьютеров: настоящее и будущее

Компьютеры пятого поколения построены на технологическом прогрессе, полученном в предыдущих поколениях компьютеров. Современные инженеры надеются на улучшение взаимодействия между людьми и машиной путем использования человеческого интеллекта и больших данных, накопленных с самого начала эпохи цифровых технологий. Они исходят из теории концепции и реализации искусственного интеллекта (AI) и машинного обучения (ML).

AI - вот что является элементной базой ЭВМ поколения 5. Это реальность, которая стала возможной благодаря параллельной обработке и сверхпроводникам. Компьютерные устройства с искусственным интеллектом все еще находятся в разработке, но некоторые из этих технологий начинают появляться и использоваться, например, распознавание голоса. AI и ML могут быть неодинаковыми, но используются взаимозаменяемо, чтобы создать устройства и программы, которые достаточно интеллектуальны для взаимодействия с людьми, другими компьютерами, средой и программами.

Суть пятого поколения будет заключаться в использовании этих технологий, чтобы в конечном итоге создать машины, которые могут обрабатывать и реагировать на естественный язык, а также иметь возможность учиться и самостоятельно организовываться.

Распространение вычислительных устройств с возможностью их самообучения, реагирования и взаимодействия различными способами, основанными на приобретенном опыте и окружающей среде, также придало импульс концепции IoT (Интернет вещей). На своем пике и с правильными алгоритмами компьютеры, вероятно, будут демонстрировать высокие уровни обучения, превосходя интеллект людей. Многие проекты Искусственного интеллекта уже внедряются, а другие все еще находятся на стадии развития.

Пионерами в этой сфере являются Google, Amazon, Microsoft, Apple, Facebook и Tesla. Первые реализации начались на интеллектуальных домашних устройствах, которые предназначены для автоматизации и интеграции действий в доме, аудио и визуальных устройствах, а также автомобилей с автопилотом.

Элементная база – это компоненты, из которых состоят абсолютно все электронные приборы и устройства. Чтобы грамотно спланировать прибор, необходимо знать технические характеристики, а также как использовать те или иные электронные компоненты. Если на этом этапе допустить ошибку, весь прибор будет неработоспособен, так как содержит в себе ошибку.

Компоненты электроники

Что такое микроэлектроника

Электроника прошла несколько этапов развития, за время которых сменилось несколько поколений элементной базы: дискретная электроника электровакуумных приборов, дискретная электроника полупроводниковых приборов, интегральная электроника микросхем (микроэлектроника), интегральная электроника функциональных микроэлектронных устройств (функциональная микроэлектроника).

Что такое элементная база и где она применяется

Элементная база электроники развивается непрерывно возрастающими темпами. Каждое из приведенных поколений, появившись в определенный момент времени, продолжает совершенствоваться в наиболее оправданных направлениях. Развитие изделий электроники от поколения к поколению идет в направлении их функционального усложнения, повышения надежности и срока службы, уменьшения габаритных размеров, массы, стоимости и потребляемой энергии, упрощения технологии и улучшения параметров электронной аппаратуры.

Современный этап развития электроники характеризуется широким применением интегральных микросхем (ИМС). Это связано со значительным усложнением требований и задач, решаемых электронной аппаратурой, что привело к росту числа элементов в ней. Число элементов постоянно увеличивается. Разрабатываемые сейчас сложные системы содержат десятки миллионов элементов. В этих условиях исключительно важное значение приобретают проблемы повышения надежности аппаратуры и ее элементов, микроминиатюризация электронных компонентов и комплексной миниатюризации аппаратуры. Все эти проблемы успешно решает микроэлектроника.

Становление микроэлектроники как самостоятельной науки стало возможным благодаря использованию богатого опыта и базы промышленности, выпускающей дискретные полупроводниковые приборы. Однако по мере развития полупроводниковой электроники выяснились серьезные ограничения применения электронных явлений и систем на их основе. Поэтому микроэлектроника продолжает продвигаться быстрыми темпами как в направлении совершенствования полупроводниковой интегральной технологии, так и в направлении использования новых физических явлений.

Разработка любых ИМС представляет собой довольно сложный процесс, требующий решения разнообразных научно-технических проблем. Вопросы выбора конкретного технологического воплощения ИМС решаются с учетом особенностей разрабатываемой схемы, возможностей и ограничений, присущих различным способам изготовления, а также технико-экономического обоснования целесообразности массового производства.

ЭВМ

Эти вопросы находят решение путем использования двух основных классов микросхем — полупроводниковых и гибридных. Оба эти класса могут иметь различные варианты структур, каждый из которых с точки зрения проектирования и изготовления обладает определенными преимуществами и недостатками. По своим конструктивным и электрическим характеристикам полупроводниковые и гибридные интегральные схемы дополняют друг друга и могут одновременно применяться в одних и тех же радиоэлектронных комплексах.
При массовом выпуске различных ИМС малой мощности, особенно предназначенных для ЭВМ, используются, в основном, полупроводниковые ИМС. Гибридные микросхемы заняли доминирующее положение в схемах с большими электрическими мощностями, а также в устройствах СВЧ, в которых можно применять как толстопленочную технологию, не требующую жестких допусков и высокой точности нанесения и обработки пленок, так и тонкопленочную технологию для обеспечения нанесения пленочных элементов очень малых размеров.

Элементная база радиолюбителя

Интересный исторический факт: когда еще не было электрических паяльников, то выручала обычная пятикопеечная монета. Ее определенным образом затачивали и приклепывали к железной проволоке с деревянной ручкой. Будучи нагретой в пламени спиртовки монета вполне справлялась с функцией паяльника. Сейчас, конечно, такой совет кажется просто нелепым, но ведь было же!

Достаточно просто и наглядно развитие элементной базы можно проследить на различных поколениях ЭВМ, по современной терминологии компьютеров. Вот уже почти сорок лет развивающийся рынок персональных компьютеров как локомотив тащит за собой кремниевые технологии, что вызывает появление все новых и новых электронных компонентов.

Таблица элементная база в поколениях ЭВМ

Электромеханические вычислительные машины

Еще до создания ЭВМ использовались электромеханические вычислительные устройства – табуляторы. Первый табулятор был изобретен еще в 1890 году Германом Хопперитом в США, для подсчета результатов переписи населения. Ввод информации осуществлялся с перфокарт, а результаты обработки выдавались в виде распечатки на бумаге. Табуляторы были основным оборудованием машиносчетных станций – МСС. В СССР МСС дожили до семидесятых годов двадцатого столетия, по крайней мере, в составе крупных госпредприятий.

Ее элементной базой были электромеханические реле. Сложение двух чисел она выполняла за 0,3 сек, а умножение за 3. Mark 1 предназначалась для расчета баллистических таблиц. Компьютер Mark 1 содержал около 750 тысяч деталей, для соединения которых потребовалось 800 км проводов. Его размеры: высота 2,5м, длина 17 м.

Поколения ЭВМ и элементная база

Первое поколение ЭВМ было построено на электронных лампах. Так в Великобритании в 1943 году была создана ЭВМ Colossus. Правда, она была узкоспециализированная, ее назначение состояло в расшифровке немецких кодов путем перебора разных вариантов. Устройство содержало 2000 ламп, при этом скорость работы составляла 500 знаков в секунду.

Что такое элементная база и где она применяется

Первым универсальным ламповым компьютером считается ENIAC, созданный в 1946 году в США по заказу военных. Размеры этой ЭВМ очень впечатляют: 25 м в длину и почти 6 м в высоту. Машина содержала 17000 электронных ламп и выполняла в секунду около 300 операций умножения, что намного больше, чем у релейной машины Mark 1. Потребляемая мощность была около 150 КВт. С помощью расчетов на ЭВМ ENIAC была доказана теоретическая возможность создания водородной бомбы.

В Советском Союзе в период с 1948…1952 год также проводились разработки ламповых ЭВМ, как и в США, использовавшихся в основном военными. Одной из лучших ламповых ЭВМ советского производства следует признать машины серии БЭСМ (большая электронная счетная машина). Всего было выпущено шесть моделей БЭСМ-1 … БЭСМ-2 (ламповые) БЭСМ-3 … БЭСМ-6 уже на транзисторах. На момент создания каждая модель этой серии была лучшей в мире в классе универсальных ЭВМ.

Второе поколение ЭВМ 1955 – 1970 гг

Элементной базой второго поколения были транзисторы и полупроводниковые диоды. По сравнению с ламповыми, транзисторные ЭВМ были менее габаритны, потребляемая мощность также была намного ниже. Быстродействие ЭВМ второго поколения достигало до полумиллиона операций в секунду, появились внешние запоминающие устройства на магнитных носителях – магнитные ленты и магнитные барабаны, были созданы алгоритмические языки и операционные системы.

Второе поколение ЭВМ

Третье поколение ЭВМ 1965 – 1980 гг

Для третьего поколения в качестве элементной базы использовались микросхемы малой и средней степени интеграции – в одном корпусе содержалось до нескольких десятков полупроводниковых элементов. Прежде всего это были микросхемы серий К155, К133. Быстродействие таких ЭВМ достигало 1 млн. операций в секунду, появились монохромные алфавитно – цифровые видеотерминалы (у машин второго поколения использовались телетайпы и специальные пишущие машинки).

Дальнейшее развитие элементной базы привело к созданию микросхем большой (БИС) и сверхбольшой (СБИС) степени интеграции. В одном корпусе таких микросхем содержится несколько сотен элементов. Эти микросхемы в СССР были представлены серией К580.

Третье поколение ЭВМ

Четвертое поколение ЭВМ 1980 – настоящее время

Это поколение появилось на свет благодаря созданию фирмой Intel в 1971 году микропроцессора, что было явлением просто революционным. Чип Intel 4004 при размерах кристалла 3,2*4,2 мм, содержал 2300 транзисторов и имел тактовую частоту 108 КГц. Его вычислительная мощность была эквивалентна ЭВМ ENIAC. На базе этого устройства был создан новый тип компьютера микро – ЭВМ. Первые персональные компьютеры (ПК) были выпущены в 1976 году фирмой Apple, но в 1980 году фирма IBM перехватила инициативу, создав свой ПК IBM PC, архитектура которого стала международным стандартом профессиональных ПК. Современные процессоры второго поколения Core i7 фирмы Intel содержат свыше миллиарда транзисторных структур.

Элементная база бытовой электроники

Как уже было сказано выше, локомотивом развития элементной базы электроники стал быстро растущий, развивающийся рынок ПК. Благодаря этому современная бытовая техника напоминает специализированный компьютер. Телевизоры, домашние кинотеатры, проигрыватели DVD дисков имеют такие эксплуатационные параметры, которые лет двадцать назад просто невозможно было представить.

Даже стиральные машины, холодильники, простые новогодние гирлянды управляются микроконтроллерами. Современные поющие и говорящие детские игрушки, сделанные в Китае, также с микроконтроллерным управлением. Кстати, поразительный факт: еще в шестидесятые годы двадцатого столетия китайцы не могли наладить даже выпуск детекторных приемников, а теперь почти вся электроника делается в Китае.

В промышленности также любое современное устройство управления техпроцессом, даже не очень сложное построено на основе микроконтроллеров и, как правило, имеет интерфейс для подключения к ПК. Такой интерфейс имеют, например, электронные счетчики электроэнергии, что позволяет использовать их в системах автоматического учета.

Современный ПК

Надежность современных электронных компонентов достаточно высока. Тем не менее, нередки случаи, когда любая электронная техника приходит в негодность, нуждается в ремонте. В случае поломки бытовой электронной техники не всегда возможно отнести неисправное устройство в специализированную мастерскую, просто не везде они есть. Тогда на помощь приходят радиолюбители, ремонтирующие технику в своих домашних мастерских.

Квалификация таких домашних мастеров, как правило, очень высокая, ведь ремонтируется весьма широкий спектр электронной техники: от простых дверных звонков до спутниковых систем телевидения. Об устройстве и организации таких мастерских на дому будет рассказано в следующей статье.

Читайте также: