Назначение перекрытий клапанов кратко

Обновлено: 05.07.2024

Это когда один клапан ещё не закрыт, а другой уже открылся.
Это зависит от распредвала и задумки конструктора.
Для того чтобы улучшить наполняемость цилиндра горючей смесью..

Перекрытие фаз. Один клапан еще не закрылся а другой уже открылся.
Для 4-тактного двигателя это неприятность, т. к. противодавлением выбивает смесь назад в коллектор.
Именно по этому у спортивных автомобиле на холостых и на малых-средних оборотах пердеж и огонь из трубы.

Для 2-х тактного двигателя вполне нормальное явление (т. н продувка) без нее он работать не сможет. (правда у 2-х тактных клапанов нет, но эт не важно)

перекрытие клапанов испо́льзуют для изменения характеристик двигателя, можно сдвинуть пик крутящего момента на более низкие или более высокие обороты. при этом незначительно падает КПД двигателя. Если в авто стоит резонансный глушитель и специальный входной патрубок то можно настроить перекрытие таким образом что коэффициент наполнения цилиндров будет выше 100%, по сути это заменяет турбонаддув . например в формуле 1 запрещено использовать турбонаддув но там стоят специальные резонаторы которые позволяют повысить коэффициент наполнения цилиндров до 115-125%. Например, Максимальный коэффициент наполнения серийного двигателя ВАЗ 21083 примерно равен 75% если на двигателе ВАЗ 21083 мы повышаем коэффициент наполнения до 100% на 3000 об. /мин. , то мощность возрастает с 48 до 62 - на 14 л. с. , а если на 6000 об. /мин. до тех же 100%, то мощность возрастает с 67 до 133 - на 66 л. с. Именно этим объясняются высокие обороты двигателей формулы 1 (17000-18000 об. мин)

Когда впускной клапан открывается раньше, а выпускной клапан закрывается поздно, имеется период времени, когда оба клапана открыты. Этот период перекрытия клапанов имеет место, когда поршень находится около ВМТ. Открываниеобоихкла-панов одновременно может не показаться хорошей идеей, однако, такая технология сжимает движущуюся массу потока выхлопных газов как своеобразный "пылесос", чтобы вытянуть оставшиеся газы. Фактически, этот эффект пылесоса такой сильный, что он также помогает начать впуск потока. Этот более ранний впускной поток, вызванный энергией выхлопных газов, называется продувкой, и он улучшает наполнение цилиндра и увеличивает мощность, особенно на высоких оборотах. Тогда как чрезмерное перекрытие клапанов уменьшает крутящий момент на низких оборотах, потери уменьшаются, когда продолжительность перекрытия настраивается в соответствии с применением - примерно от 400 для обычного распредвала и примерно до 850 для специального профиля. Распределительные валы с короткой продолжительностью тактов, разработанные для работы при низких оборотах двигателя, почти всегда имеют короткие периоды перекрытия клапанов. Эти распределительные валы обеспечивают хорошие значения мощности двигателя на низких оборотах, так как фазы работы клапанов не слишком удалены от фаз ВМТ/НМТ. Это ище не все.

Правильная работа клапонов зависит от их регулировки Влияет на всю работу двигателя Это мощность Расход топлива и Ровная работа двигателя Главное не перетянуть клапана ПРОГОРЯТ

Лучше всех ответил Яковченко, единственно хочу дополнить за счет эффекта эжекции быстрее и более полно очищается камера сгорания, а таким "знатокам" как Алекс, да ещё с лучшим и самоуверенным ответом впрочем я сам только к 40 годам стал знать, что ничего не знаю.

У меня на сайте большое количество полезного материала касательно системы ГРМ двигателя, начиная от ремня или цепи ГРМ, заканчивая — зачем нужно регулировать клапана. Статьи действительно полезные почитайте. НО недавно мне задали такой вопрос – а что такое перекрытие клапанов? Как оно регулируется и можно ли самому как-то все это выставить? Как я считаю очень интересная тема. Как обычно будет текстовая версия + видео в конце (для тех, кто не хочет читать) …

Перекрытие клапанов

СОДЕРЖАНИЕ СТАТЬИ

Про перекрытие клапанов я говорил много, хотя вот в этой статье и видео про фазорегуляторы. Да и по сути это понятие очень простое.

Что такое перекрытие клапанов?

Это процесс, когда оба клапана открыты, на очень короткий промежуток времени. Впускной открывается раньше, а выпускной закрывается позже. Обычно такое происходит, когда поршень находится в ВМТ (верхней мертвой точке).

В основном это делается для того чтобы цилиндры двигателя лучше наполнялись на средних и высоких оборотах (на низких этот эффект не так сильно выражен). Когда обороты высокие тогда и поток воздушно топливной смеси намного больше, его как-то нужно запихнуть в цилиндры, но и отводить отработанные газы нужно также быстрее.

Перекрытие клапана

Баланс фаз газораспределения

Сейчас многие могут сказать — ну круто, нужно дольше делать перекрытие клапанов. Почему короткий промежуток? Ведь продувка лучше, наполняемость больше, мощность растет.

Но не все так просто. Если взять рядовые автомобили, со старыми технологиями, где нет фазорегуляторов, то здесь делают усредненные значения – как для высоких, так и для низких оборотов.

Смотрите в чем смысл:

Если сделать большое перекрытие клапанов. То есть впускные клапана будут открываться намного больше и раньше, как собственно и выпускные. То на низких оборотах такой двигатель будет работать нестабильно или даже вообще будет глохнуть. НО почему? Да все просто — отработанные газы смогут выходить во впуск и там смешиваться с новой топливной смесью, обедняя ее, ведь большого потока нет! Таким образом работать мотор на низах будет хуже. Однако на высоких оборотах продувка будет действительно лучше.

газы могут попасть во впуск

Однако если у вас есть фазовращатели, либо один (обычно на впуске), либо два (впуск и выпуск). Тогда вы можете менять фазы исходя из ваших потребностей.

Простыми словами:

Фазовращатели

Как видите все очень просто.

Сейчас современные иномарки идут как минимум с одной фазокрутилкой (на впуске). Этот мотор при высоких оборотах получается мощнее и зачастую экономичнее.

Цикл ОТТО – МИЛЛЕРА

Цикл ОТТО - МИЛЛЕРА

А что же с нашими ВАЗ?

Как я уже писал сверху, старые моторы (и ВАЗ тут не исключение), имели просто обычную звездочку, на которую одевалась либо цепь, либо ремень ГРМ. Сейчас речь не про новые, а именно про старые.

Как вы догадываетесь, у них были усредненные значения фаз (ну и соответственно перекрытия).

Заводским методом фазы практически никак не настраивались, я сейчас молчу о регулировки клапанов. Также здесь не будет затрагивать спортивные распределительные валы (это уже немного другая тема).

Разрезные валы

Внешней части — которая соединяется с цепью – ремнем ГРМ.

Друг с другом они стягиваются болтами, отверстия для этих болтов имеют небольшой ход. То есть эти части могут немного вращаться (на небольшой угол) относительно друг друга. Таким образом можно было изменять угол и методом подбора установить нужную мощность, расход и работу мотора.

НО это скорее исключение из правил, и сейчас современные моторы скажем, на ЛАДА ВЕСТА уже имеют фазовращатели (так что с правильным перекрытием клапанов нет проблем).

Сейчас смотрим видео версию

На этом заканчиваю, думаю, мои материалы были вам полезны. Подписывайтесь на канал, читайте наш АВТОСАЙТ


Статья, которая рассеивает любые сомнения о необходимости вмешательства в систему газораспределения. Приведу самый простой пример, когда у владельцев классики возникает вопрос целесообразности замены стандартного распредвала на р-л "от Нивы" 21213 — "что даёт, есть ли смысл, какие нюансы?"
Неважно, какой автомобиль, важно то, что принцип работы лежит в основе работы двигателей внутреннего сгорания.
Когда я работал на СТО, из любопытства задавал слесарям вопрос "как выставить ГРМ, если нет меток?" — ответ приблизительно один — "а никак!"
Ответ на подобные вопросы как понимание работы газораспредлительного механизма лежит в статье, на которую я наткнулся в ходе поиска конкретной информации на эту тему. Без воды, без отсебятины. Вникаем, критикуем, делимся…

Все знают, что распредвалы это очень важный элемент тюнинга и тем более спортивного мотора. Многие часто слышали о фазах, времени открытия клапанов и т.д. Очень часто, многие могли слушать разговоры типа: а какой мне лучше поставить распредвал 264 или 272, а может 290. На самом деле, это разговор ни о чем.

Распредвалы бывают разные — сток, тюнинг, тюнинг-спорт, полный спорт (кольцо, драг), турбо… У них разные задачи и цели. У всех у них разный диапазон работы. Грубо, возьмём DOHC мотор. Тюнинговый вал с фазами 25-65/70-20 (duration 270) улучшит характеристики мотора с небольшой потерей на низких оборотах, диапазон работы 2500-7200 оборотов. Более широкий вал, который возможно использовать на машине, не предназначенной только для гонок будет 40-70/75-35 (duration 290) — 4000-8200 оборотов. Если возьмём мотор SOCH, то 280 duration (тюнинг вал) не плохо работает в режиме 2500-6600 оборотов, а 310 duration — 4000-7800 это, наверное, уже оптимальный максимум для полного спорта.

Те, кто действительно желает в этом вопросе разобраться, предлагаю забыть то что я выше написал.

Что бы лучше все это понять давайте виртуально увеличим мощность, к примеру, стандартного 2.0 литра Дуратек мотор Форд фокус, который в стоке имеет мощность 145 лошадиных сил.

Представьте, мотор — это черный ящик, к которому подведены две трубы, в одну подается топливо, а в другую воздух. В черном ящике топливо смешивается с воздухом, сжимается, поджигается, короче происходит реакция, в следствии чего выделяется энергия и на выходе эта проделанная работа (момент)передается на коленвал.

Количество энергии зависит от массы сгоревшего топлива и его калорийности. Но для повышения мощности мы не можем просто увеличить подачу топлива т.к. для полного сгорания его, необходимо 14.6 частей массы воздуха (на 1 единицу массы топлива 14.6 единиц массы воздуха). У нас нет проблем с увеличением топлива, но вот с подачей воздуха, если мы не собираемся подключить к черному ящику компрессор, есть определенные трудности.

1 ватт определяется как мощность, при которой за 1 секунду времени совершается работа в 1 джоуль. или это равняется 1 Дж = 1 кг•м²/с² = 1 Н•м. С учетом того что в нашем черном ящике при сгорании топлива выделятся энергия и конечно производится работа — коленвал передает момент, для того, чтобы это перевести в момент (усилие передается через плечо) то мы можем просто работу *на 2Пи (2*3.14159), потом разделим на количество оборотов в секунду и получим момент.

ИЛИ МОЩНОСТЬ (кВт) = МОМЕНТ (N-M) * N (обороты двигателя в секунду) /159.2

МОЩНОСТЬ = МОМЕНТ * 2Пи * N


не пугайтесь этого уравнения, сегодня мы из него рассмотрим только 2 значения (этого будет достаточно для понимания сути), остальное пусть будет неизменным

Для чего я все это написал. Главное, чтобы Вы поняли от чего зависит момент и мощность:

Момент зависит от количества выделенной энергии при сгорании топлива (конечно пока опустим всевозможные потери, эффективность, калорийность, КПД — не в этом суть). А количество топлива напрямую зависит от поступившего воздуха.
Мощность зависит от момента и оборотов двигателя. Если момент останется неизменным, но мы повысим обороты то мощность возрастет.

Есть такое понятие объёмная эффективность VE (Volumetric efficiency), это значение равняется массе воздуха, поступающего в двигатель по отношению к его рабочему объёму. Мотор дюратек, это современный с хорошей ГБЦ (головкой блока цилиндров) DOCH. В стоке, его максимальное VE равняется 95% в точке максимального момента. Это значит, что максимум в двигатель попадает только 95% от объёма 2 литра. Вообще VE оно не постоянно для двигателя, на моторе Дюратек на 2000 оборотах оно равняется 84% потом растёт до своего максимума 95% и начинает опять понижаться, на 6500 уже 88%, а на 7500 всего 75%.

Так как же нам повысить мощность на этом моторе? Если вы просто будете крутить ваш мотор, то мощность от этого только уменьшится т.к. VE (Volumetric efficiency) уменьшатся и после 6000 оборотов падение коэффициента наполнения составляет ниже 88% — это как объём Вашего мотора с повышением оборотов уменьшится.

Да конечно можно установить нагнетатель воздуха, можно физически увеличить размер мотора (рабочий объём), но сегодня будем делать по-другому. Давайте для начала просто передвинем VE (Volumetric efficiency) с точки максимального момента, скажем на 6500 оборотов. Раньше у нас там было значение 88%, следовательно, оно станет 95%. В результате мы без проблем получим 170 сил на 6500 оборотах (не плохо).

Вообще какие бывают максимальные значения объёмной эффективности у атмосферных моторов? Современные 4 клапана на цилиндр моторы: 92-95%. Тюнинг легкий до 105%. NASCAR — 110%. Моторы со свободным впуском (Weber карбюраторы, заслонка на каждый цилиндр) отличный выпускной коллектор -110-115%. Гоночный мотор — 120-125%.

Что влияет на VE (Volumetric efficiency)? почему она на сток машинах такая не большая (2 клапана на цилиндр максимум 80-85%) на сток моторах:

— Потери в системе впуска, чем больше всевозможных препятствий, изгибов тем больше потери. На турбо моторах (из-за интеркулера, пайпинга) нормальное явление потери в пределах 0.2 бара, если сравнить эффективность турбо мотора 4 клапана на цилиндр, без учета избыточного давления, то оно составим не более чем на моторе с 2 клапанами на цилиндр.

— Повышение температуры поступающего воздуха и как следствие уменьшение плотности воздуха и конечно его массы.

— цилиндры не полностью очищаются от отработанных газов, их объём может составлять более 5%. Соответственно уменьшатся в таком же количестве и поступление свежего воздуха.

— Обратное давление в системе впуска

Если сложить все эти потери, то они составят намного больше чем 5%, которых нам не достает до 100% на моторе форд фокус. А вот за это и отвечает настройка системы впуска/ выпуска и распредвал. На сток моторах она настроена на режим круиз и максимального момента. Поэтому именно там обычно и есть максимальные значения VE (Volumetric efficiency).

Ну вот, теперь поговорим о распредвалах. Что и зачем вообще распредвал в моторе делает? делает он простую и не сложную работу — открывает и закрывает в нужный момент клапана. Чтобы лучше понять его работу давайте вспомним что значит 4 тканый мотор.


Все очень просто: 1 такт — впускной, 2 такт — сжатие, 3 такт — рабочий ход и 4 такт — выпуск.

Теперь добавим к этим 4 тактам еще 4 очень важных процесса:

Впускной клапан открыт — ВКО
Выпускной клапан открыт — ВыКО
Впускной клапан закрыт — ВКЗ
Выпускной клапан закрыт — ВыКЗ

Но чтобы понять, как добиться 125% VE (Volumetric efficiency) на атмосферном моторе этого нам мало. Поэтому рассмотрим 7 тактов (событий) которые связаны между собой, которые отвечают за наполняемость цилиндров, за все процессы, связанные с воздухом и газами.

ПРОЦЕСС 1 — ВПУСК (ВСАСЫВАНИЕ) (INTAKE PUMPING)

Начинается сразу после того как выпускной клапан закрывается (ВыКЗ) в момент перекрытия клапанов (overlap) несколько градусов после верхней мертвой точки ВМТ цилиндра. Впускной клапан (ВК) уже частично открыт и быстро двигающийся поршень вниз начинает всасывать топливо воздушную смесь через впускной канал. Поршень набирает скорость и где-то около 75* после ВМТ достигает своего максимума и поэтому в цилиндре создается низкое давление. ВК полностью открывается около 108* (градусов) после ВМТ. Процесс впуска (всасывания) заканчивается, когда поршень останавливается в своей нижней мертвой точке (НМТ). В это момент ВК все еще полностью открыт.

ПРОЦЕСС 2 — ВПУСК (УТРАМБОВКА) (INTAKE RAMMING)

Начинается в момент, когда поршень меняет свое направление, начинает двигаться вверх, но при этом ВК начинает закрываться. Топливно-воздушная смесь продолжает поступать в цилиндр (утрамбовываться). С движением поршня вверх, давление в цилиндре начинает возрастать, но смесь продолжает поступать. Около 60* после НМТ ВК закрывается и на этом этот процесс заканчивается. Это одно из важнейших событий благодаря которому удается увеличить VE (Volumetric efficiency) до 110% в современных гоночных моторах.

Необходимо этот процесс обсудить более подробно.

Здесь важны два момента: вовремя закрыть впускной клапан, пока возрастающее давление в цилиндре не начало превышать давление в впускном канале и как следствие выталкивать свеже поступившую топливовоздушную смесь обратно.
Организовать давление как можно больше и дольше во впускном тракте цилиндра.

Это называется инерционный тюнинг или organ pipe tuning, Принцип работы органа (музыкальный инструмент). Для доходчивости я воспользуюсь не совсем верным методом объяснения, но зато очень понятным. Надеюсь все помнят, что такое слинки, это такая игрушка

Вот примерно так ведут себя и газы, жидкости в трубах, это как бы пневмапружина. Воздух, газ или топливовоздушная смесь имеет массу, а значит и кинетическую энергию. Если мы потянем за один край этой игрушки, то со временем этот пульс дойдет и до другого края. Так и воздух, он разгоняется в впускном канале, соответственно имеет инерцию, он не может сразу остановится, за волной разряжения обязательно последует волна давления. Чем быстрее мы организуем скорость потока в канале, тем больше воздуха поступит в цилиндр т.к. будет больше давление. Воздух будет поступать в цилиндр до тех пор, пока давление в канале будет выше чем в цилиндре и вот тут главное вовремя закрыть канал, чтобы поршень, идущий вверх (при этом повышающий давление в цилиндре) не начал выталкивать воздух.

На скорость потока заряда влияет скорость поршня (обороты двигателя), проходное сечение впускного тракта (канал и ранер) и тормозящие процессы, вызванные сопротивлением. Теперь становится понятно, что если мы увеличим канал, установим большего размера клапан то скорость потока уменьшится, кинетической энергии будет меньше — меньше давление, меньше поступит воздуха — меньше мощность. Но если мы увеличим скорость поршня за счет увеличения оборотов двигателя, то тем самым добьемся компромисса. Закон простой — уменьшаем диаметр или увеличиваем обороты двигателя — повышаем скорость потока (воздушного заряда) НО ПРИ ЭТОМ УВЕЛИЧИВАЕТСЯ СОПРОТИВЛЕНИЕ и на оборот.
Длина определят момент, когда процесс должен произойти. Длиннее ранер с каналом — дольше время необходимо для волны — меньше обороты двигателя и наоборот.

ПРОЦЕСС 3 — СЖАТИЕ

Здесь все просто. Начинается после закрытия ВК в то время пока поршень продолжает двигаться вверх сжимая при этом топливовоздушную смесь в цилиндре. Заканчивается в момент, когда свеча зажигает смесь — где-то 30 градусов перед ВМТ. Для постройки гоночного мотора — Ваша задача добиться наименьшего оптимального угла опережения зажигания. Много есть способов (в другой раз)

ПРОЦЕСС 4 — ЗАЖИГАНИЕ И РАСШИРЕНИЕ

маленькое отступление. Кто не знает, я много лет не живу в России и технический русский язык плохо знаю, поэтому много использую английские выражения. Просьба — если что не так, то поправьте.

Fuel Burning and Expansion. Процесс начинается сразу после зажигания, поршень продолжает двигаться вверх. Температура и давление повышается. пик приходится на 12-15 градусов после ВМТ. Это большое давление давит на верх поршня и толкает его вниз, газы продолжают расширятся. Процесс заканчивается сразу после того как выпускной клапан начинает открываться (exhaust valve cracks open) где-то 120* после ВМТ.

ПРОЦЕСС 5 — EXHAUST BLOWDOWN (ПРОДУВКА)

Начинается сразу после того, как выпускной клапан начинает открываться (exhaust valve cracks open) как раз в этот момент и происходит этот звук (который мы потом заглушаем). температура и давление все еще в цилиндре высокое, часть смеси продолжает еще гореть. В данный момент, при таком высоком давлении система выпуска не настраивается (продувка все снесёт на своем пути). Процесс важный (поговорим позднее), раньше открыл меньше мощность (эффект как от настройки опережения зажигания) … Заканчивается в момент, когда поршень достигает НМТ.

ПРОЦЕСС 6 — EXHAUST PUMPING (ОТКАЧКА)

Откачка. очень похож на ПРОЦЕСС 1 -. Только в обратном направлении. Начинается в момент, когда поршень меняет свое направление и начинает двигаться вверх. Выпускной клапан продолжает открываться и достигает своего максимума где-то 70* после НМТ. Поршень набирает свою максимальную скорость около 105* после НМТ. Выпускные газы благодаря процессу продувки уже не имеют такого высокого давления. Поршень выталкивает через выпускной канал и при этом разгонят отработанные газы, они опять начинают набирать кинетическую энергию. Процесс заканчивается в момент, когда впускной клапан начинает открываться где-то около ВМТ.

ПРОЦЕСС 7 — перекрытие (OVERLAP)

Процесс начинается, когда ВК открывается, а выпускной еще не закрыт. Очень важный процесс (рассмотрим внимательнее позднее). Процесс заканчивается в момент, когда выпускной клапан полностью закрывается.

В это момент настраивается два процесса для очищения и наполнения цилиндра. Цель создать давление на впуске и разрежение на выпуске.

Поршень разогнал выпускные газы, они набрали энергию и поэтому даже когда поршень начинает свое движение вниз, в выпускном коллекторе давление меньше чем в цилиндре и поэтому продолжается процесс высасывания, очищение камеры сгорания, цилиндров. Также это низкое давление помогает всасывать свежий заряд через открывающейся ВК. Часть этого заряда остается в цилиндре, а часть выходит с отработанными газами (очищение, ну и правда повышенный расход вам будет обеспечен)

Выпуск здесь необходимо настроить — организовать скорость потока в выпускных каналах, ранерах. Пик разрежения (и как следствие точка максимального момента или мощности) определяется длиной. С пиком здесь можно поиграть. Можем его сделать очень сильным или " размазать". За это отвечает коллектор, точнее его размер, длина, да или просто наличие. Скажем на дрегстерах часто можно встретить просто трубы от каждого цилиндра в воздух.

Но на этом настройка в 7 процессе не заканчивается. Здесь появляется еще один вид — резонансный тюнинг в момент открытия впускного клапана.

Как только выпускной клапан закрывается нам необходимо добиться чтобы в впускном канале образовалось давление. поймать, настроится на одну из волн, амплитуд с положительным экстримом. Это похоже на эхо, вот его нам и надо настроить.

Если все сделать правильно то можно добиться эффективной наполняемости до 130%.

К ПРИМЕРУ: если мы продолжим делать наш мотор форда дюратек. ГБЦ у него не плохая, впускной клапан 35 мм (это с потенциалом до 8200 оборотов двигателя) . Нет, не будем сильно модернизировать. Поршневая сток позволят крутить мотор до 7200 оборотов. Но для безопасности поменяем только шатунные болты на усиленные и тем самым сдвинем порог до 7700 оборотов. Теперь установим хорошие дросселя (свободный впуск) скажем проверенный и хорошо себя зарекомендовавший кит от Jenvey. Изготовим выпускной специально настроенный коллектор и конечно всю систему выпуска поменяем. Установим новые распредвалы. И без проблем мы получим 220 сил на 7200 оборотах, обыкновенном бензине, можно и больше, но это обороты повышать.

От чего оно зависит и как влияет на работу двигателя?

от распредвала очевидно же

Правильная работа клапонов зависит от их регулировки Влияет на всю работу двигателя Это мощность Расход топлива и Ровная работа двигателя Главное не перетянуть клапана ПРОГОРЯТ

Это когда один клапан ещё не закрыт, а другой уже открылся.
Это зависит от распредвала и задумки конструктора.
Для того чтобы улучшить наполняемость цилиндра горючей смесью..

перекрытие клапанов испо́льзуют для изменения характеристик двигателя, можно сдвинуть пик крутящего момента на более низкие или более высокие обороты. при этом незначительно падает КПД двигателя. Если в авто стоит резонансный глушитель и специальный входной патрубок то можно настроить перекрытие таким образом что коэффициент наполнения цилиндров будет выше 100%, по сути это заменяет турбонаддув . например в формуле 1 запрещено использовать турбонаддув но там стоят специальные резонаторы которые позволяют повысить коэффициент наполнения цилиндров до 115-125%. Например, Максимальный коэффициент наполнения серийного двигателя ВАЗ 21083 примерно равен 75% если на двигателе ВАЗ 21083 мы повышаем коэффициент наполнения до 100% на 3000 об. /мин. , то мощность возрастает с 48 до 62 - на 14 л. с. , а если на 6000 об. /мин. до тех же 100%, то мощность возрастает с 67 до 133 - на 66 л. с. Именно этим объясняются высокие обороты двигателей формулы 1 (17000-18000 об. мин)

Когда впускной клапан открывается раньше, а выпускной клапан закрывается поздно, имеется период времени, когда оба клапана открыты. Этот период перекрытия клапанов имеет место, когда поршень находится около ВМТ. Открываниеобоихкла-панов одновременно может не показаться хорошей идеей, однако, такая технология сжимает движущуюся массу потока выхлопных газов как своеобразный "пылесос", чтобы вытянуть оставшиеся газы. Фактически, этот эффект пылесоса такой сильный, что он также помогает начать впуск потока. Этот более ранний впускной поток, вызванный энергией выхлопных газов, называется продувкой, и он улучшает наполнение цилиндра и увеличивает мощность, особенно на высоких оборотах. Тогда как чрезмерное перекрытие клапанов уменьшает крутящий момент на низких оборотах, потери уменьшаются, когда продолжительность перекрытия настраивается в соответствии с применением - примерно от 400 для обычного распредвала и примерно до 850 для специального профиля. Распределительные валы с короткой продолжительностью тактов, разработанные для работы при низких оборотах двигателя, почти всегда имеют короткие периоды перекрытия клапанов. Эти распределительные валы обеспечивают хорошие значения мощности двигателя на низких оборотах, так как фазы работы клапанов не слишком удалены от фаз ВМТ/НМТ. Это ище не все.

Перекрытие фаз. Один клапан еще не закрылся а другой уже открылся.
Для 4-тактного двигателя это неприятность, т. к. противодавлением выбивает смесь назад в коллектор.
Именно по этому у спортивных автомобиле на холостых и на малых-средних оборотах пердеж и огонь из трубы.

Для 2-х тактного двигателя вполне нормальное явление (т. н продувка) без нее он работать не сможет. (правда у 2-х тактных клапанов нет, но эт не важно)

Главными задачами системы изменения фаз газораспределения являются:

- улучшение качества работы двигателя на холостом ходу;

- снижение расхода топлива;

- оптимизация крутящего момента в области средних и высоких частот вращения коленчатого вала;

- увеличение внутренней рециркуляции отработавших газов с сопутствующим ей снижением температуры газов при сгорании и уменьшением выброса оксидов азота;

- увеличение мощности в области высоких частот вращения коленчатого вала.

19. Что дает опережение открытия выпускного клапана?

В чем назначение перекрытие фаз?

Когда впускной клапан открывается раньше, а выпускной клапан закрывается поздно, имеется период времени, когда оба клапана открыты. Этот период перекрытия клапанов имеет место, когда поршень находится около ВМТ. Открывание обоихкла-панов одновременно может не показаться хорошей идеей, однако, такая технология сжимает движущуюся массу потока выхлопных газов как своеобразный "пылесос", чтобы вытянуть оставшиеся газы. Фактически, этот эффект пылесоса такой сильный, что он также помогает начать впуск потока. Этот более ранний впускной поток, вызванный энергией выхлопных газов, называется продувкой, и он улучшает наполнение цилиндра и увеличивает мощность, особенно на высоких оборотах. Тогда как чрезмерное перекрытие клапанов уменьшает крутящий момент на низких оборотах, потери уменьшаются, когда продолжительность перекрытия настраивается в соответствии с применением - примерно от 400 для обычного распредвала и примерно до 850 для специального профиля.Распределительные валы с короткой продолжительностью тактов, разработанные для работы при низких оборотах двигателя, почти всегда имеют короткие периоды перекрытия клапанов. Эти распределительные валы обеспечивают хорошие значения мощности двигателя на низких оборотах, так как фазы работы клапанов не слишком удалены от фаз ВМТ/НМТ.

Какие силы действуют вдоль оси распределительного вала?

Преимущества и недостатки косозубых шестерен в приводе распределительного вала

-практически неограниченная передаваемая мощность

-малые габариты и вес

-стабильное передаточное отношение

Высокий КПД, который составляет в среднем 0,97 – 0,98

шум в работе на высоких скоростях (может быть снижен при применении зубьев соответствующей геометрической формы и улучшении качества обработки профилей зубьев)

Преимущественное распространение получили передачи с зубьями эвольвентного профиля, которые изготавливаются массовым методом обкатки на зубофрезерных или зубодолбежных станках. Достоинство эвольвентного зацепления состоит в том, что оно мало чувствительно к колебанию межцентрового расстояния

При высоких угловых скоростях вращения рекомендуется применять косозубые шестерни, в которых зубья входят о зацепление плавно, что и обеспечивает относительно бесшумную работу.

Недостатком косозубых шестерен является наличие осевых усилий, которые дополнительно нагружают подшипники. Этот недостаток можно устранить, применив сдвоенные шестерни с равнонаправленными спиралями зубьев или шевронные шестерни.

Шевронные шестерни, ввиду высокой стоимости и трудности изготовления применяются сравнительно редко – лишь для уникальных передач большой мощности.

При малых угловых скоростях вращения применяются конические прямозубые шестерни, при больших – шестерни с круговым зубом, которые в настоящее время заменили конические косозубые шестерни, применяемые ранее.

Конические гипоидные шестерни тоже имеют круговой зуб, однако оси колес в них смещены, что создает особенно плавную и бесшумную работу. Передаточное отнесение в зубчатых парах колеблется в широких пределах, однако обычно оно равно 3 – 5

Преимущества и недостатки цепной и ременной передач в приводе распределительного вала

Преимуществами являются возможность осуществлять передачу на значительные расстояния, эластичность привода, смягчающая колебания и нагрузки и предохраняющая от значительных перегрузок (за счет проскальзывания), плавность хода и бесшумность работы.

К недостаткам относятся меньшая компактность, непостоянство передаточного отношения (из-за скольжения ремня на шкивах), большое давление на валы и подшипники, немного меньший коэффициент полезного действия.

Способы осевой фиксации распределительного вала

Фиксация вала в осевом направлении осуществляется специальными торцевыми ограничителями. У большинства двигателей осевые перемещения ограничиваются упорным фланцем, укрепленным болтами к блок-картеру. Распорное кольцо 6, зажатое между ступицей шестерни и передней опорной шейкой, толще

упорного фланца, что обеспечивает необходимый осевой зазор между торцом шейки и ступицей шестерни.

С какой целью на деталях привода распределительного вала ставят метки?

метка на шкиве коленчатого вала совмещена с меткой на крышке масляного насоса). При этом метка 8 должна совпадать с меткой на задней крышке зубчатого ремня, а метка на маховике должна находиться против среднего деления шкалы на картере сцепления.

Если метки не совпадают, то ослабляют ремень натяжным роликом, снимают со шкива распределительного вала, корректируют положение шкива, снова надевают ремень на шкив и слегка натягивают натяжным роликом. Опять проверяют совпадение установочных меток, провернув коленчатый вал на два оборота по часовой стрелке.

Назначение теплового зазора в приводе клапана, почему его необходимо регулировать в процессе эксплуатации двигателя?

Читайте также: