Научные революции кратко и понятно

Обновлено: 04.07.2024

Выделяют следующие условные рамки периодов становления естествознания: до 1900 гг. – классическое, 1900-1960 гг. – неклассическое (квантовое), начиная с 1960-70-х гг. – постнеклассическое.

Первой в истории человечества формой существования естествознания была так называемая натурфилософия (от лат. natura — природа), или философия природы, которая характеризовалась абстрактностью, т.е. отвлеченностью от конкретных фактов. Натурфилософия должна была служить доказательством теологических (религиозных) истин. Приоритет в натурфилософии был отдан астрономии, т.к. натурфилософов интересовало небо как место обитания Богов.

Важным этапом развития естествознания является становление механистической картины мира в рамках так называемого аналитического естествознания (XVII – XIX в.). Отличительными особенностями этого этапа являются: дифференциация наук; преобладание эмпирических знаний; преимущественное исследование объектов природы, а не процессов.

С конца XIX и до конца XX в. продолжается синтетическая стадия развития естествознания, где возрастает роль теории, преобладает изучение процессов, учитывается целостность природы, взаимосвязь ее частей (комплексное изучение природы), появляются синтетические дисциплины (на стыке смежных наук).

Начало XXI века ознаменовалось переходом естествознания в интегральную стадию, в рамках которой произошло масштабное объединение дисциплин и направлений исследований, их математизация, преобладание системных исследований, результатом чего явилось возникновение новых наук, в частности кибернетики и синергетики – теории управления системами.

Если этапы развития естествознания сменяли друг друга постепенно, то научные революции приводили к радикальной смене научных картин мира. В истории развития естествознания можно выделить три научные революции глобального масштаба: аристотелевскую, ньютоновскуюи эйнштейновскую.

Вторая глобальная научная революция приходится на XVI— XVIII вв. Ее исходным пунктом считается переход от геоцентрической модели мира к гелиоцентрической. Здесь уместно вспомнить великие имена - Н. Коперник, Г. Галилей, И. Кеплер, Р. Декарт, И. Ньютон. Благодаря их трудам классическое естествознание стало использовать математику и методы экспериментальных исследований явлений в строго контролируемых условиях. Основой классического естествознания стала механика, а также сформированный четкий подход: раз и навсегда установленную абсолютно истинную картину природы можно подправлять в деталях, но радикально переделывать уже нельзя.

Предпосылкой третьей научной революции является создание электромагнитной картины мира М. Фарадеем и Д. Максвеллом (втор. половина 19 в.), в результате чего в физику вошло понятие поля.

Третья научная революция случилась на рубеже XIX—XX вв., когда последовала целая серия блестящих открытий в физике (открытие сложной структуры атома, явления радиоактивности, дискретного характера электромагнитного излучения и т.д.). Их общим мировоззренческим итогом явилось понимание того, что с помощью простых сил, действующих между неизменными объектами, нельзя описать все явления природы.

Наиболее значимыми теориями, составившими основу новой парадигмы научного знания, стали теория относительности (специальная и общая) и квантовая механика. Теорию относительности можно квалифицировать как новую общую теорию пространства, времени и тяготения. Квантовая механика обнаружила вероятностный характер законов микромира, а также корпускулярно-волновой дуализм как фундаментальное свойство материи.

Особый статус имеет четвертая научная революция– научно-техническая. НТР – коренное преобразование производительных сил общества на основе превращения науки в ведущий фактор развития общественного производства и всей жизни общества. Эта научная революция коренным образом отличается от предыдущих соединением науки и техники в единую систему, в результате чего наука стала непосредственной производительной силой. Итогом НТР явились огромные изменения природной среды и самого человека как части природы. НТР означает перестройку всего технологического базиса и способа производства, начиная с использования материалов и энергетических процессов, и заканчивая системой машин и формами организации и управления, отношением человека к процессу производства.

НТР не может быть связана с именем одного или нескольких ученых, так как в ее осуществление внесли вклад ученые всего мира.

Научные революции (в отличие от социально-политических) ученый мир не пугают, так как, согласнопринципусоответствия, сформулированному Н.Бором,всякая новая научная теория не отвергает предшествующую, а включает ее в себя на правах частного случая, т.е. устанавливает для прежней теории ограниченную область применимости. И при этом обе теории (и старая, и новая) прекрасно могут сосуществовать.

Выводы

1. Естествознание - система наук о природных явлениях и процессах - ставит своей целью познание законов природы для предвидения или создания новых явлений, способных использоваться в практической деятельности современного человека.

3. Наука— особый рациональный способ познания мира, основанный на эмпирической проверке или математическом доказательстве. Выделяют фундаментальные и прикладные науки; естественные, общественные и технические.

4. Одним из основных внутренних факторов развития любой науки является динамика развития науки Т.Куна: старая парадигма – нормальная стадия развития науки – революция в науке – новая парадигма. Истинность научного знания устанавливается с помощью принципов верификации (эмпирической проверки) и фальсификации (попыток опровергнуть научное утверждение).

5. Научное познание осуществляется на двух уровнях – эмпирическом (чувственного познания) и более высоком теоретическом (преимущественно рационального познания, то есть построенного с учетом логики).

6. В истории естествознания выделяют следующие периоды: до 1900 гг. – классическое, 1900-1960 гг. – неклассическое (квантовое), начиная с 1960-70-х гг. – постнеклассическое. Другой подход разбивает историю естествознания на этапы натурфилософии, аналитического, синтетического и интегрального естествознания.

7. Глобальные научные революции осуществляли радикальную смену научных картин мира благодаря трудам целого ряда ученых, наиболее значимыми из которых признаются Аристотель, И.Ньютон, А.Эйнштейн. Четвертая научная революция – научно-техническая – носит особый статус ввиду превращения науки в ведущий фактор развития современного общества.

Научные революции — это те этапы развития науки, когда происходит смена исследовательских стратегий, задаваемых ее основаниями. Основания науки включают несколько компонентов. Главные среди них: идеалы и методы исследования (представления о целях научной деятельности и способах их достижения); научная картина мира (целостная система представлений о мире, его общих свойствах и закономерностях, формирующаяся на основе научных понятий и законов); философские идеи и принципы, обосновывающие цели, методы, нормы и идеалы научного исследования.

Например, в классической науке XVII—XVIII вв. идеалом было получение абсолютно истинных знаний о природе; метод познания сводился к поиску механических причин, детерминирующих наблюдаемые явления; научная картина мира носила механический характер, так как любое знание о природе и человеке редуцировалось к фундаментальным законам механики; классическая наука на­ходила свое обоснование в идеях и принципах материалистической философии, которая рассматривала познание как отражение в разуме познающего субъекта свойств объектов, существующих вне и независимо от субъекта.

Можно выделить четыре научные революции.

Первой из них была революция XVII в., ознаменовавшая собой становление классической науки. Вторая произошла в конце XVIII — первой половине XIX вв. и ее результатом был переход от классической науки, ориентированной в основном на изучение механических и физических явлений, к дисциплинарно организованной науке. Появление таких наук, как биология, химия, геология и др., способствует тому, что механическая картина мира перестает быть общенаучной и общемировоззренческой. Биология и геология вносят в картину мира идею развития, которой не было в механической картине мира.

Специфика объектов, изучаемых в биологии, геологии не могла быть выражена с помощью методов исследования классической науки: нужны были новые идеалы объяснения, учитывающие идею развития.

Происходят изменения и в философских основаниях науки. Центральные проблемы философии в этот период: вопросы дифференциации и интеграции научного знания, полученного в разных научных дисциплинах, соотношения различных методов научного исследования, классификация наук и поиск ее критериев.

Эта революция была вызвана появлением принципиально новых, не имеющих места в классической науке объектов исследования, что и повлекло изменения норм, идеалов, методов. Что же касается познавательных установок классической науки, то, как считает современный отечественный философ В. С. Степин, в период становления дисциплинарно организованной науки они не претерпели существенных изменений.

Третья революцияохватывает период с конца XIX до середины XX в. Революционные преобразования произошли сразу во многих науках: в физике были разработаны релятивистская и квантовая теории, в биологии — генетика, в химии — квантовая химия и т. д. Возникают новые отрасли научного знания — кибернетика и теория систем. В результате сформировалось новое, неклассическое, естествознание, основания которого радикально отличались от оснований классической науки.

Идеалы и нормы неклассической науки базировались на отрицании разумнологического содержания онтологии, способности разума строить единственно верную идеальную модель реальности, позволяющую получать единственно истинную теорию. Допускалась возможность признавать истинность сразу нескольких теорий.




Возникла соответствующая неклассическому естествознанию картина мира, в которой появилось представление о природе как сложном динамическом и иерархизированном единстве саморегулирующихся систем.

Четвертая научная революция началась в последней трети XX вв. и сопровождалась появлением постнеклассической науки. Объектами исследования на этом этапе развития науки становятся сложные системные образования, которые характеризуются уже не только саморегуляцией (с такими объектами имела дело и неклассическая наука), но и саморазвитием. Научное исследование таких систем требует принципиально новых стратегий, которые частично разработаны в синергетике. Синергетика (греч. synergeia — совместный, согласованно действующий) — это направление междисциплинарных исследований, объектом которых являются процессы саморазвития и самоорганизации в открытых системах (физических, химических, биологических, экологических, когнитивных и т. д.). Было выявлено, что материя в ее форме неорганической природы способна при определенных условиях к самоорганизации. Синергетика впервые открыла механизм возникновения порядка из хаоса, беспорядка.

Сказанное позволяет сделать вывод, что постнеклассическая наука имеет дело с системами особой сложности, требующими принципиально новых познавательных стратегий. Здесь картина мира строится на основе идей эволюции и исторического развития природы и человека. Все специальные картины мира, которые формируются в различных науках, уже не могут претендовать на адекватность. Они становятся лишь относительно самостоятель­ными фрагментами общенаучной картины мира.

Для изучения и описания саморазвивающихся систем с вариабельным поведением не пригодны статические идеальные модели. Требуется строить сценарии, включая в них точки бифуркации и возможные пути развития систем. Это привело к существенной перестройке норм и идеалов исследования.

Так, осуществить построение идеальной модели уже невозможно без использования компьютерных программ, которые позволяют вводить большое число переменных и цель исторической реконструкции изучаемого объекта.

ВЫВОДЫ

1. Научное познание является особым видом социальной деятельности. Его первоочередная задача — установление объективных законов природы и общества, изучение специфики их проявления. Конечная цель — создание на основе изученных законов необходимых способов, приемов и средств практического преобразования мира.

2. Научные знания и сам процесс их получения характеризуются системностью и структурированностью. Прежде всего, в структуре научного знания выделяются эмпирический и теоретический уровни. Основными формами научного познания являются: факт, проблема, гипотеза, теория.

3. Научный метод — это единство объективного и субъективного. Объект обуславливает, а субъект формирует метод, поэтому в определенной степени и сам объект может направлять процесс познания на верный путь. Но такой путь познания не является оптимальным (он сложен, иногда запутан). Задача науки — ускорить переход процесса познания на оптимальный путь, получение знаний об окружающем нас мире.

4. Наука как форма общественного сознания и сфера профессиональной деятельности постоянно развивается усложняется и изменяется.. Этапы постепенного накопления знаний и обогащения методов и экспериментального инструментария, сменяются научными революциями и заменой общепринятых среди ученых парадигм..это приводит к смене типов научной рациональности и построению новой картины мира.

1. Какие черты присущи научному познанию?

3. В чем состоит взаимосвязь и чем отличаются эмпирический и теоретический уровни научного познания?

4. Назовите формы эмпирического и теоретического знания.

5. Чем отличается научный факт от факта действительности?

6. Что такое проблема?

7. Что такое гипотеза и теория?

9. Зачем нужна при проведении эксперимента теория?

10. Что такое метод, методика, методология?

11. Раскройте диалектику формирования научного метода.

12. Классифицируйте методы.

13. Какие методы используются на эмпирическом уровне научного познания.

14. Что такое научная революция?

15. Сколько и каких было научных революций?

1. Айзенк Г., Сарджен Г. Н. Объяснимое необъяснимого. Тайны паранормальных явлений. - М., 2001.

2. Введение в философию: В 2 ч.. - М., 1989. Ч. 2. Гл. 13.

3. Гайденко П. П. Эволюция понятия науки - М., 1980. Знание за пределами науки.. - М., 1996.

4. Границы науки: о возможностях альтернативных моделей познания. - М., 1991.

5. Заблуждающийся разум?: Многообразие вненаучного знания. - М., 1990.

6. Знание за пределами науки. - М., 1996.

7. Злобин Н. С. Культурные смыслы науки. - М., 1997. Концепция самоорганизации: становление нового образа научного мышления. - М., 1994

8. Ильенков Э. В. Философия и культура - М., 1991. Разд. 1, 4.

9. Кохановский В. П. Философия и методология науки. - Ростов н/Д, 1999.

10. Кун Т. Структура научных революций. - М., 1975

11. Лакатос И. Методология научных исследовательских программ // Вопросы философии. 1995. № 4.

12. Лешкевич Т. Г. Философия науки: мир эпистемологов. - Ростов н/Д, 1999.

13. Лешкевич Т. Г., Мирская Л. А. Философия науки: интерпретация забытой традиции. - Ростов н/Д, 2000.

14. Микешина Л. А. Методология научного познания в контексте культуры. - М., 1992.

Научные революции — это те этапы развития науки, когда происходит смена исследовательских стратегий, задаваемых ее основаниями. Основания науки включают несколько компонентов. Главные среди них: идеалы и методы исследования (представления о целях научной деятельности и способах их достижения); научная картина мира (целостная система представлений о мире, его общих свойствах и закономерностях, формирующаяся на основе научных понятий и законов); философские идеи и принципы, обосновывающие цели, методы, нормы и идеалы научного исследования.

Например, в классической науке XVII—XVIII вв. идеалом было получение абсолютно истинных знаний о природе; метод познания сводился к поиску механических причин, детерминирующих наблюдаемые явления; научная картина мира носила механический характер, так как любое знание о природе и человеке редуцировалось к фундаментальным законам механики; классическая наука на­ходила свое обоснование в идеях и принципах материалистической философии, которая рассматривала познание как отражение в разуме познающего субъекта свойств объектов, существующих вне и независимо от субъекта.

Можно выделить четыре научные революции.

Первой из них была революция XVII в., ознаменовавшая собой становление классической науки. Вторая произошла в конце XVIII — первой половине XIX вв. и ее результатом был переход от классической науки, ориентированной в основном на изучение механических и физических явлений, к дисциплинарно организованной науке. Появление таких наук, как биология, химия, геология и др., способствует тому, что механическая картина мира перестает быть общенаучной и общемировоззренческой. Биология и геология вносят в картину мира идею развития, которой не было в механической картине мира.

Специфика объектов, изучаемых в биологии, геологии не могла быть выражена с помощью методов исследования классической науки: нужны были новые идеалы объяснения, учитывающие идею развития.

Происходят изменения и в философских основаниях науки. Центральные проблемы философии в этот период: вопросы дифференциации и интеграции научного знания, полученного в разных научных дисциплинах, соотношения различных методов научного исследования, классификация наук и поиск ее критериев.

Эта революция была вызвана появлением принципиально новых, не имеющих места в классической науке объектов исследования, что и повлекло изменения норм, идеалов, методов. Что же касается познавательных установок классической науки, то, как считает современный отечественный философ В. С. Степин, в период становления дисциплинарно организованной науки они не претерпели существенных изменений.

Третья революцияохватывает период с конца XIX до середины XX в. Революционные преобразования произошли сразу во многих науках: в физике были разработаны релятивистская и квантовая теории, в биологии — генетика, в химии — квантовая химия и т. д. Возникают новые отрасли научного знания — кибернетика и теория систем. В результате сформировалось новое, неклассическое, естествознание, основания которого радикально отличались от оснований классической науки.

Идеалы и нормы неклассической науки базировались на отрицании разумнологического содержания онтологии, способности разума строить единственно верную идеальную модель реальности, позволяющую получать единственно истинную теорию. Допускалась возможность признавать истинность сразу нескольких теорий.

Возникла соответствующая неклассическому естествознанию картина мира, в которой появилось представление о природе как сложном динамическом и иерархизированном единстве саморегулирующихся систем.

Четвертая научная революция началась в последней трети XX вв. и сопровождалась появлением постнеклассической науки. Объектами исследования на этом этапе развития науки становятся сложные системные образования, которые характеризуются уже не только саморегуляцией (с такими объектами имела дело и неклассическая наука), но и саморазвитием. Научное исследование таких систем требует принципиально новых стратегий, которые частично разработаны в синергетике. Синергетика (греч. synergeia — совместный, согласованно действующий) — это направление междисциплинарных исследований, объектом которых являются процессы саморазвития и самоорганизации в открытых системах (физических, химических, биологических, экологических, когнитивных и т. д.). Было выявлено, что материя в ее форме неорганической природы способна при определенных условиях к самоорганизации. Синергетика впервые открыла механизм возникновения порядка из хаоса, беспорядка.

Сказанное позволяет сделать вывод, что постнеклассическая наука имеет дело с системами особой сложности, требующими принципиально новых познавательных стратегий. Здесь картина мира строится на основе идей эволюции и исторического развития природы и человека. Все специальные картины мира, которые формируются в различных науках, уже не могут претендовать на адекватность. Они становятся лишь относительно самостоятель­ными фрагментами общенаучной картины мира.

Для изучения и описания саморазвивающихся систем с вариабельным поведением не пригодны статические идеальные модели. Требуется строить сценарии, включая в них точки бифуркации и возможные пути развития систем. Это привело к существенной перестройке норм и идеалов исследования.

Так, осуществить построение идеальной модели уже невозможно без использования компьютерных программ, которые позволяют вводить большое число переменных и цель исторической реконструкции изучаемого объекта.

ВЫВОДЫ

1. Научное познание является особым видом социальной деятельности. Его первоочередная задача — установление объективных законов природы и общества, изучение специфики их проявления. Конечная цель — создание на основе изученных законов необходимых способов, приемов и средств практического преобразования мира.

2. Научные знания и сам процесс их получения характеризуются системностью и структурированностью. Прежде всего, в структуре научного знания выделяются эмпирический и теоретический уровни. Основными формами научного познания являются: факт, проблема, гипотеза, теория.

3. Научный метод — это единство объективного и субъективного. Объект обуславливает, а субъект формирует метод, поэтому в определенной степени и сам объект может направлять процесс познания на верный путь. Но такой путь познания не является оптимальным (он сложен, иногда запутан). Задача науки — ускорить переход процесса познания на оптимальный путь, получение знаний об окружающем нас мире.

4. Наука как форма общественного сознания и сфера профессиональной деятельности постоянно развивается усложняется и изменяется.. Этапы постепенного накопления знаний и обогащения методов и экспериментального инструментария, сменяются научными революциями и заменой общепринятых среди ученых парадигм..это приводит к смене типов научной рациональности и построению новой картины мира.

1. Какие черты присущи научному познанию?

3. В чем состоит взаимосвязь и чем отличаются эмпирический и теоретический уровни научного познания?

4. Назовите формы эмпирического и теоретического знания.

5. Чем отличается научный факт от факта действительности?

6. Что такое проблема?

7. Что такое гипотеза и теория?

9. Зачем нужна при проведении эксперимента теория?

10. Что такое метод, методика, методология?

11. Раскройте диалектику формирования научного метода.

12. Классифицируйте методы.

13. Какие методы используются на эмпирическом уровне научного познания.

14. Что такое научная революция?

15. Сколько и каких было научных революций?

1. Айзенк Г., Сарджен Г. Н. Объяснимое необъяснимого. Тайны паранормальных явлений. - М., 2001.

2. Введение в философию: В 2 ч.. - М., 1989. Ч. 2. Гл. 13.

3. Гайденко П. П. Эволюция понятия науки - М., 1980. Знание за пределами науки.. - М., 1996.

4. Границы науки: о возможностях альтернативных моделей познания. - М., 1991.

5. Заблуждающийся разум?: Многообразие вненаучного знания. - М., 1990.

6. Знание за пределами науки. - М., 1996.

7. Злобин Н. С. Культурные смыслы науки. - М., 1997. Концепция самоорганизации: становление нового образа научного мышления. - М., 1994

8. Ильенков Э. В. Философия и культура - М., 1991. Разд. 1, 4.

9. Кохановский В. П. Философия и методология науки. - Ростов н/Д, 1999.

10. Кун Т. Структура научных революций. - М., 1975

11. Лакатос И. Методология научных исследовательских программ // Вопросы философии. 1995. № 4.

12. Лешкевич Т. Г. Философия науки: мир эпистемологов. - Ростов н/Д, 1999.

13. Лешкевич Т. Г., Мирская Л. А. Философия науки: интерпретация забытой традиции. - Ростов н/Д, 2000.

14. Микешина Л. А. Методология научного познания в контексте культуры. - М., 1992.

НТР (расшифровка-научно-техническая революция) – это бурный скачок в развитии техники, науки, который радикально преобразовал производительные силы.

НТР

В ходе НТР наука превратилась в мощный производственный фактор. Это способствовало переходу индустриального общества в постиндустриальное.

Значение понятия и основные черты НТР

В эпоху научно-технической революции происходит скачкообразное развитие науки, техники, которые существенно меняет производственные силы. Начало этого процесса приходится на середину 20 века.

Характерные черты НТР

Основные черты (составные части) НТР такие:

Опережающее развитие науки и превращение ее в производительную силу. Особенно заметно это в развитых странах, где возрастают денежные траты на научно-исследовательские и опытно-конструкторские виды деятельности. Наука является катализатором совершенствования производства и мощной социальной силой.

Изменения в технической базе промышленности. Для НТР характерно применение робототехники, ЭВМ, внедрение новейших технологий, применение нетрадиционных источников энергии. Производительность труда повышается за счет квалифицированных работников.

Изменения в структуре производства. В нем растет часть промышленного производства. Особое значение в развитии промышленности имеет наукоемкое машиностроение.

Усложнение управления производственными процессами.

Этапы НТР

Принято различать 2 этапа развития НТР.

ЭВМ

На первом этапе (с 1940 до конца 1960-х гг.) происходит бурное развитие индустриальных стран. В это время на Западе и в СССР распространяются транзисторы, телевизионные вычислительные машины, спутниковые системы и проч. Происходит освоение космоса.

Производственный робот

Промышленные роботы на заводе Mercedes-Benz

На втором этапе (с 1970-х гг. и до сегодняшнего дня) происходит стремительное развитие микропроцессоров, производственных роботов, оптоволоконных сетей и информационных технологий.

Этапы НТР

Некоторые исследователи выделяют третий этап НТР, который начался с массовым внедрением нанотехнологий в производство. Четвертого этапа НТР нет.

Робот

На сегодняшнем этапе прослеживаются такие основные направления:

сокращение энергоемкости и ресурсоемкости производства;

повышение производительности труда;

повышение наукоемкости производства;

освоение новых материалов и видов энергии;

образование новых отраслей промышленности;

изменение в структуре занятости.

БМВ

БМВ Vision next 100

Результаты научно-технической революции в XX веке

Все результаты НТР можно кратко представить в виде таблицы. Её особенно удобно использовать ученикам 10 - 11 классов.

Развитие логистики, расширение знаний о Земле.

Повышение мобильности человека.

Обострение экологических проблем.

Использование Интернета для проведения исследований.

Открытость и доступность информации.

Доступность и открытость научных теорий и идей.

Дифференциация знаний об обществе.

Изменения в социальной структуре населения, приводящие к девиантному (отклоняющемуся от общепринятого) поведению.

Использование достижений науки для исследования экосистем, их очищения.

Внедрение экологичных материалов, широкое использования вторичного сырья.

Развитие нетрадиционной энергетики из возобновляемых источников.

Загрязнение окружающей среды из-за бесконтрольного использования природных ресурсов.

Исчерпание запасов полезных ископаемых.

Исчезновение видов животных и растений.

Изменение климата из-за повышения выбросов парниковых газов.

Накопление токсичных отходов, пластика в окружающей среде.

Широкое распространение социальных сетей.

Повышение уровня социальной защиты благодаря внедрению цифровых и интернет-технологий.

Отрицательные социальные последствия - уязвимость человека в социальных сетях, связанная с приватностью, хранением личной информации.

Изменение социальной структуры, социальных связей и связанный с этим риск развития одиночества и возникновения суицидов.

Активное развитие глобализационных процессов, влияющих на воспроизводство населения.

Быстрое распространение городов и городского стиля жизни, упрощение доступа населения к основным достижениям научно-технического прогресса.

Стремительное увеличение количества и размеров городов, численности городского населения и связанное с этим обострение экологических проблем.

Депопуляция в развитых странах и в России.

Стремительное старение населения, снижение процентной доли молодежи.

Повышение производительности труда ведет к росту благосостояния населения.

Это улучшает уровень жизни, делает ее более интересной.

У человека появляется возможность работать на дому в сфере информационных технологий.

Автоматизация и роботизация производства неизбежно приводят к росту безработицы.

Глобализация приводит к уязвимости мирового хозяйства.

Рост благосостояния населения неизбежно приводит к истощению природных ресурсов.

Благодаря успехам НТР в области медицины отступили неизлечимые в прошлом заболевания - столбняк, полиомиелит, оспа.

Применение последних результатов научных исследований повышает результативность диагностики.

Развитие генной инженерии повышает риск возникновения смертельно опасных болезней, биоразнообразия, снижают резистентность организма к инфекциям.

Идея клонирования человека противоречит его сущности и нарушает главные нравственные принципы.

Научно-техническая революция в корне изменила жизнь человека, улучшив качество его жизни. Вместе с тем она привела к загрязнению окружающей среды, исчерпанию природных ресурсов. Разумное использование ее достижений снижает риски для человечества.


Необходимо проверить точность фактов, изложенных в этом разделе.
На странице обcуждения могут быть пояснения.

Революция в науке — период развития науки, во время которого старые научные представления замещаются частично или полностью новыми, появляются новые теоретические предпосылки, методы, материальные средства, оценки и интерпретации, плохо или полностью несовместимые со старыми представлениями.

Содержание

Научные революции

Первая научная революция XVII / XVIII веков

Это была революция метода познания и обхождения с полученным знанием, и она была тесно связана с духом просвещения.

Это было связано с тем, что знание, полученное опытом, низко ценилось. Человеческие органы чувств считались плохим прибором для его получения – уж очень они обманчивы. Истинным и имеющим всеобщую силу считалось знание, полученное чистой логикой. Знание же, идущее из наблюдения, считалось частичным, не имеющим всеобщей действительности. Индуктивный метод – заключение об общем по частным наблюдениям – приживался лишь очень постепенно [4] .

Сейчас науки занимаются получением знания. Тогда они занимались его бережным хранением и передачей дальше. Оно хранилось в канонических текстах, которые трактовались определённым способом и постоянно зубрились. Такими текстами были Библия и античные авторы: в первую очередь Аристотель, важный для логики и схоластики, римское право (кодекс Юстиниана), труды Гиппократа. Но все они не давали ответа на новые вопросы, поставленные наблюдениями. Современные научные исследования не находили себе места в системе университетских дисциплин, ибо те были традиционными местами передачи знания, а не исследований, и преподавали они теоретическое знание, не практическое [5] .

Вот что писал английский историк Эдвард Гиббон (Edward Gibbon, 1737-1794) про современные ему университеты:

Одновременно с общими энциклопедиями появляются и специальные, и для разных отдельных наук, которые тогда переросли в отдельный жанр литературы [12] .

Открытия

Как уже говорилось, большие открытия случились ещё до первой научной революции. Они связаны среди прочего с именами: Коперника, Галилея, Кеплера, Ньютона.

    (1473—1543): наиболее известен как автор гелиоцентрической системы мира, положившей начало первой научной революции. (1564—1642): изучал проблему движения, открыл принцип инерции, закон свободного падения тел; сделал ряд астрономических открытий с помощью телескопа. (1571—1630): установил три закона движения планет вокруг Солнца, создал первую механистическую теорию движения планет, внес существенный вклад в развитие геометрической оптики. (1643—1727): сформулировал понятия и законы классической механики, математически сформулировал закон всемирного тяготения, теоретически обосновал законы Кеплера о движении планет вокруг Солнца, создал небесную механику (Закон всемирного тяготения был незыблем до конца 19 в.), создал дифференциальное и интегральное исчисление как язык математического описания физической реальности, автор многих новых физических представлений (о сочетании корпускулярных и волновых представлений о природе света и т. д.), разработал новую парадигму исследования природы (метод принципов)— мысль и опыт, теория и эксперимент развиваются в единстве, разработал классическую механику как систему знаний о механическом движении тел, механика стала эталоном научной теории, сформулировал основные идеи, понятия, принципы механической картины мира.
  • Механическая картина мира Ньютона:
    • Вселенная от атомов до человека — совокупность неделимых и неизменных частиц, взаимосвязанных силами тяготения, мгновенное действие сил в пустом пространстве.
    • Любые события предопределены законами классической механики.
    • Мир, все тела построены из твердых, однородных, неизменных и неделимых корпускул — атомов.
    • Основа механистической картины мира: движение атомов и тел в абсолютном пространстве с течением абсолютного времени. Свойства тел неизменны и независимы от самих тел.
    • Природа — машина, части которой подчиняются жесткой детерминации.
    • Синтез естественно-научного знания на основе редукции (сведения) процессов и явлений к механическим.

    Механическая картина мира дала естественно-научное понимание многих явлений природы, освободив их от мифологических и религиозных схоластических толкований. Её недостаток — исключение эволюции, пространство и время не связаны. Экспансия механической картины мира на новые области исследования (химия, биология, знания о человеке и обществе). Синонимом понятия науки стало понятие механики. Однако накапливались факты, не согласовывающиеся с механистической картиной мира и к середине 19 в. она утратила статус общенаучной.

    Джероламо Кардано внёс значительный вклад в развитие алгебры, Франсуа Виет основоположник символической алгебры, Рене Декарт и Пьер Ферма внесли свой вклад в развитие математики.

    Вторая научная революция конца XVIII века — 1-я половина XIX века

    Третья научная революция конец XIX века — середина XX века

      — понятия электромагнитного поля — электродинамика, статистическая физика — и как вещество и как электромагнитное поле
    • Электромагнитная картина мира, законы мироздания — законы электродинамики — о медленном непрерывном изменении земной поверхности — целостная концепция эволюции живой природы , Шванн — теория клетки — о единстве происхождения и развития всего живого , Джоуль, Ленц — закон сохранения и превращения энергии — теплота, свет, электричество, магнетизм и т. д. переходят одна в другую и являются формами одного явления, эта энергия не возникает из ничего и не исчезает. — материальные факторы и причины эволюции — наследственность и изменчивость — радиоактивность — Лучи — элементарная частица электрон — планетарная модель атома — квант действия и закон излучения — квантовая модель атома Резерфорда-Бора — общая теория относительности — связь между пространством и временем — все материальные микрообъекты обладают как корпускулярными, так и волновыми свойствами (квантовая механика)
    • Зависимость знания от применяемых исследователем методов
    • Расширение идеи единства природы — попытка построить единую теорию всех взаимодействий — необходимость применять взаимоисключающие наборы классических понятий (например, частиц и волн), только совокупность взаимоисключающих понятий дает исчерпывающую информацию о явлениях. Это совершенно новый метод мышления, диктующий необходимость освобождения от традиционных методологических ограничений
    • Появление неклассического естествознания и соответствующего типа рациональности
    • Мышление изучает не объект, а то, как явилось наблюдателю взаимодействие объекта с прибором
    • Научное знание характеризует не действительность как она есть, а сконструированную чувствами и рассудком исследователя реальность
    • Тезис о непрозрачности бытия, блокирующий возможности субъекта познания реализовывать идеальные модели и проекты, вырабатываемые рациональным сознанием.
    • Допущение истинности нескольких отличных друг от друга теорий одного и того же объекта
    • Относительная истинность теорий и картины природы, условность научного знания.

    Об относительной истине и условности научного знания писал американский физик Ричард Фейнман:

    vedro-compota

    16. Понятие научной революции. Эволюции и революции в развитии науки

    Эволюция науки – экстенсивный способ развития научного знания (в частности, конкретизация фундаментальных теорий посредством расширения сферы их приложения).
    Эволюция науки – это этап количественных изменений науки − постепенное накопление новых фактов, наблюдений, экспериментальных данных в рамках существующих научных концепций.

    Научные революции – это вид новаций, которые отличаются от других видов не столько характером и механизмами своего генезиса, сколько своей значимостью, своими последствиями для развития науки и культуры.

    Примерами таких революций являются:

    1. создание гелиоцентрической системы мира (Коперник),
    2. формирование классической механики и экспериментального естествознания (Галилей, Кеплер и особенно Ньютон),
    3. революция в естествознании конца XIX − начала XX в. − возникновение теории относительности и квантовой механики (А. Эйнштейн, М. Планк, Н. Бор, В. Гейзенберг и др.).

    Крупные изменения происходят в современной науке, особенно связанные с формированием и бурным развитием синергетики (теории самоорганизации целостных развивающихся систем), электроники, генной инженерии и т.п.

    В философии науки принято выделять три типа глобальных научных революций, обусловленных появлением трех типов рациональности – классической, неклассической и постнеклассической.

    1-ая научная революция

    Первая научная революция произошла в XVII в. Ее результатом было возникновение классической европейской науки, прежде всего, механики, а позже физики. В ходе этой революции сформировался особый тип рациональности, получивший название научного.

    • 1. Бытие перестало рассматриваться как Абсолют, Бог, Единое. Величественный античный Космос был отождествлен с природой, которая рассматривалась как единственная истинная реальность, из которой был вытеснен духовный компонент. Первые естественные науки − механика и физика − изучали этот вещественный универсум как набор статичных объектив, которые не развиваются, не изменяются.
    • 2. Восторжествовал объективизм, базирующийся на представлении о том, что знание о природе не зависит от познавательных процедур, осуществляемых исследователем. Разум человеческий дистанцировался от вещей.
    • 3. Не отказываясь от открытой античной философией способности мышления работать с идеальными объектами, наука Нового времени признавала правомерность только тех идеальных конструктов, которые можно контролируемо воспроизвести, сконструировать бесконечное количество раз в эксперименте.
    • 4. Основным содержанием тождества, мышления и бытия становится признание возможности отыскать такую одну единственную идеальную конструкцию, которая полностью соответствовала бы изучаемому объекту, обеспечивая тем самым однозначность содержания истинного знания.
    • 5. Наука отказалась вводить в процедуры объяснения не только конечную цель в качестве главной в мироздании и в деятельности разума, но и цель вообще. Изъятие целевой причины превратило природу в незавершенный ряд явлений и событий, не связанных внутренним смыслом, создающим органическую целостность. Научная рациональность стала объяснять все явления путем, установления между ними механической причинно-следственной связи.

    2-ая научная революция

    Вторая научная революция произошла в конце XVIII − первой половине XIX в.

    3-я научная революция

    Третья научная революция охватывает период с конца XIX в. до середины .XX в. и характеризуется появлением неклассического естествознания и соответствующего ему типа рациональности. Революционные преобразования произошли сразу во многих науках:

    • в физике были разработаны релятивистская и квантовая теории,
    • в биологии − генетика,
    • в химии − квантовая химия и т.д.

    В центр исследовательских программ выдвигается изучение объектов микромира.

    4-я научная революция

    Четвертая научная революция совершилась в последнюю треть XX столетия.
    Она связана с появлением особых объектов исследования, что привело к радикальным изменениям в основаниях науки. Рождается постнеклассическая наука, объектами изучения которой становятся исторически развивающиеся системы. Ее основные характеристики состоят в следующем.

    Читайте также: