Научно технический прогресс 19 века кратко

Обновлено: 05.07.2024

Современная научно-техническая революция, начавшаяся в начале XX в., представляет собой совокупность коренных качественных изменений в средствах, технологии, организации и управлении производством на основе новых научных принципов. Эта революция подготовлена не только развитием науки и производительных сил, но и теми социальными изменениями, которые произошли в обществе в результате мирового революционного процесса.

В отличие от промышленного переворота XVIII в., ознаменовавшего переход от мануфактурного к крупному машинному производству, современная научно-техническая революция — это переход к качественно новой высшей ступени машинного производства — к крупному автоматизированному машинному производству.

В отличие от системы машин XIX в., состоявшей из трех элементов: машины-орудия, машины-двигателя и передаточного механизма, современная автоматическая система машин включает помимо указанных трех звеньев еще качественно новое — управляющее звено. В последние десятилетия на основе управляющего звена была создана принципиально новая машина — управляющая, которая постепенно превращается в самостоятельный тип системы машин. Переход к четырехзвенной структуре машин, содержащих автоматическое устройство, моделирующее некоторые мыслительно-логические функции человека, является исходным пунктом современной научно-технической революции.

Научно-техническая революция характеризуется перестройкой технической и отраслевой структуры народного хозяйства. В процессе этой перестройки создаются материально-вещественные предпосылки для последующего этапа — крупного автоматизированного машинного производства. Перестройка происходит во всех элементах материального производства — в системе машин, в технологии производства, в структуре всего народного хозяйства.

Научно-технический прогресс конца 19 - начала 20 века

Неизмеримо возросла роль науки в развитии производства. Наука превращается в непосредственную производительную силу, становится составным специфическим элементом производительных сил общества.

Основа современной научно-технической революции — электрификация и электронизация всех звеньев производственного процесса. Следовательно, важнейшие изменения в развитии производства непосредственно связаны с развитием энергетики, электротехники, электроники. Создание крупного автоматизированного машинного производства, сложных автоматизированных систем управления, внедрение электронных вычислительных машин на производстве, транспорте, в строительстве, в научно-исследовательских, конструкторских, плановых организациях невозможно осуществить без огромных затрат электроэнергии, без создания новых электротехнических и электронных устройств.

Самым общим качественным показателем уровня развития техники служит производительность труда. Этот показатель непосредственно связан с другими — производительностью машины, выражающейся в количестве вырабатываемого ею продукта в единицу времени.

Производительность машин, а вместе с ней и производительность техники в целом постоянно растут. Качество машины можно оценить ее производительностью. Но производительность, в свою очередь, является следствием ряда факторов, наиболее существенные из которых — интенсивность, напряженность работы. Интенсивность работы машин достигается увеличением скорости движения, концентрации и интенсификации механических, физических и химических процессов. В качестве примера интенсификации процессов в электротехническом устройстве можно сослаться на значительные повышения напряжения в линиях электропередач — от десятков и сотен до сотен тысяч вольт.

Другим качественным показателем развития техники является коэффициент полезного действия, позволяющий оценить совершенство машин. Можно сказать, что кпд машин имеет тенденцию роста. Как правило, после достижения 95% рост кпд замедляется, хотя могут происходить отдельные скачки.

Однако в современных условиях развития научно-технического прогресса качественный прогресс техники ни в коем случае нельзя оценивать только по значениям кпд и другим экономическим показателям.

Все более проникая в тайны природы, человек, как уже отмечалось, научился создавать такие могучие технические объекты, что развиваемые ими мощности оказываются соизмеримыми с геофизическими и космическими.

При разработке таких объектов требуется комплексный системный подход с учетом не только технико-экономических, но и социальных, экологических последствий их деятельности. Современный специалист всегда должен помнить, что наше общество должно быть ориентировано прежде всего на человека, на создание условий для его здоровой, творческой жизни, для его всестороннего развития.

Следовательно, в отличие от живых существ технические объекты уступают место более современным в период своего наивысшего расцвета. Это тоже одна из закономерностей техники. Понимание этого процесса позволяет легче преодолевать старые традиции в отношении технических объектов, которым иногда отданы многие годы творческой деятельности, помогает легче отказаться от них, если они не имеют перспектив развития в будущем.

И оценивая вклад того или иного деятеля науки и техники, нужно прежде всего иметь в виду, что им сделано нового по сравнению со своими предшественниками.

Важной особенностью развития техники является возврат к старым идеям на основе достижений научно-технического прогресса. Так, первые трехфазные трансформаторы М. О. Доливо-Добровольского имели пространственный магнитопровод, но вследствие сложности технологии их изготовления они не получили применения. Прошло более 75 лет. Технический уровень трансформаторостроения значительно повысился, освоение производства рулонной холоднокатаной стали и использование для обмоток алюминиевой фольги и ленты позволили наладить серийное производство мощных трансформаторов с пространственным магнитопроводом.

Следует иметь в виду еще одну характерную особенность развития техники: новое часто создается в старых конструктивных формах, которые кажутся ученым и изобретателям наиболее совершенными. Например, один из первых электродвигателей XIX в. (двигатель Бурбуза) по своим внешним формам почти в точности повторял паровую машину: возвратно-поступательное движение поршней заменялось аналогичным движением магнитов в соленоидах, переключение осуществлялось изменением полярности, вращательное движение вала достигалось с помощью кривошипно-шатунного механизма. О возможности использования линейного двигателя в то время еще и не помышляли.

При разработке новых устройств всегда приходится сталкиваться и с собственно техническими противоречивыми требованиями к объекту, например, требованиями к надежности и интенсивности работы, быстродействию и прочности.

Когда я поднимаю вопрос о ядерной войне в XIX веке, то одно из распространённых возражений на эту тему, основывается на якобы отсутствующей в то время технической возможности. Поэтому предлагаю детально в этом разобраться, взяв за основу только лишь факты, приводимые официальной историей. Подчеркиваю — всё изложенное далее: фотографии, рисунки и таблицы, являются постулатами официальной версии истории, и все материалы взяты из открытых источников, в том числе из Интернета и школьных учебников. Каждый из вас, при желании, сам может все это найти и перепроверить.

Это изображение солдата Орловского пехотного полка, времён войны с Наполеоном, взятое из учебника истории. Еще со школы мы знаем, что солдат русской армии, любого полка и рода войск, в начале XIX века, выглядел примерно так. Хорошо, допустим, но, даже логически анализируя только лишь эту картинку — нам откроется очень многое. Давайте начнём с оружия.

На вооружении армии имеется гладкоствольное ружьё с ударно-кремневым замком, заряжающееся с дула, образца 1808 года, а так же сабля, длинной около 60 см, образца 1807 года. Теперь включаем логику: официальная история нам говорит, что перед началом Отечественной войны 1812 года в русской армии, по родам войск, было:

Пехота: 360—380 тыс. человек;
Кавалерия: 60—70 тыс. человек;
Артиллерия: 1600 пушек, 35—40 тыс. солдат.

И это мы еще не считаем флот, который к тому времени уже был. И что же мы видим? Каждому солдату полагалось ружье, не говоря уже о саблях. То есть, технологические мощности позволяли вооружить армию.

Краткая официальная историческая справка , только вдумайтесь в те цифры, что вы сейчас увидите:

Конец краткой официальной исторической справки.

Для производства и ремонта такого количества оружия, нужно много металла. Отсюда делаем первый вывод — металлургическая промышленность была хорошо развита.

Однако, прежде, чем, из железа, что-то делать, нужно добыть железную руду. Добытую руду нужно обогатить и переплавить. Следовательно, нужно много шахт, рудников и карьеров. Отсюда делаем второй вывод — горнодобывающая промышленность была хорошо развита.

Гладкоствольное кремневое ружьё, по сути это металлическая труба, с определёнными характеристиками. Для производства стволов ружей требуются высокоточные токарные, фрезерные, координатно-расточные, сверлильные и протяжные станки, а так же высокоточные измерительные и металлорежущие инструменты. Для производства таких станков и инструментов должно быть налажено высокоточное приборостроение. Делаем третий вывод — металлообрабатывающая промышленность и метрология были хорошо развиты.

Для стрельбы использовался порох. Для снабжения армии такого размера, производство пороха было организованно в промышленных масштабах. Значит, делаем четвертый вывод — химическая промышленность была хорошо развита.

Помимо оружия, для армии нужно обмундирование. Для кройки и шитья столь сложных элементов формы требовалось нечто большее, чем вышивающие по вечерам бабушки. Ткани использовались разных цветов, но строго определенных для своих родов войск и полков. Для окраски тканей в таких количествах, опять-таки нужна хорошо развитая химическая промышленность. А прежде чем окрашивать, сами ткани ещё нужно изготовить. Затем окрашенную ткань нужно раскроить и сшить форму для армии. Пятый вывод — легкая промышленность была хорошо развита.

Помимо тканей, в обмундировании используется кожа (ремни, обувь), металл (пуговицы, бляхи, кокарды) и другие мелочи. Производство всего этого, так же было хорошо налажено. И здесь хочу особо подчеркнуть: мало все это изготовить, все элементы нужно собрать воедино, в готовый костюм, при этом, чтобы всего хватило, и не осталось ничего лишнего. Значит шестой вывод — были развиты статистика и учет, которые велись как минимум на бумаге.

Ввиду разности технологических процессов и используемого сырья, все производства физически не могли находиться в одном месте. Таким образом, имеем седьмой вывод — была развита логистика между этапами производства; налажены транспортные связи и имелись дороги, причем хорошие, не раскисающие осенью и весной, и не засыпаемые снегом зимой (железная дорога подходит лучше всего), ибо армия должна оставаться армией всегда, а не только летом! Самое глобальное стратегическое планирование, в основе своей опирается именно на вопрос вооружения армии и максимально эффективного использования этого вооружения.

При этом нужно понимать, что не могло развиваться только какое-то одно или два направления промышленности и науки. Развитие одной отрасли, неизменно влечёт развитие другой, так как всё взаимосвязано. Например, для переработки древесины, при производстве бумаги, нужно металлическое оборудование (от пил и топоров, до труб и бочек). А для любого производства нужны помещения, то есть строительство. И это мы еще не затронули вопрос о том, что всю армию нужно было кормить.

Таким образом, основываясь только на анализе обмундирования русского солдата, образ которого даёт нам официальная история, делаем общий вывод о степени развития промышленности в начале XIX века, и приходим к выводу, что утверждение, якобы Россия была аграрной страной, мягко говоря, не совсем правильное. По крайней мере, индустриальный сектор был хорошо развит.

Это далеко не все станки, предназначенные для производства оружия. Сразу обращаю ваше внимание на зубчатые колёса и резьбовые соединения. Скажите, друзья, разве похоже это на кустарное производство на коленке? А ведь эти станки не свалились с неба. Их так же нужно изготовить, и доставить до места эксплуатации.

Друзья, понимаете, что если описание образа обычного солдата, даваемое официальной историей, принять за истину в последней инстанции, то уровень развития промышленности того времени должен был равняться не много ни мало середине ХХ века, если даже не превосходить его.

А теперь продолжим мыслить логически. Для всей этой промышленности, для её работы, требуется энергия, причем колоссальная. Верить в то, что токарные и сверлильные станки для изготовления стволов ружей, приводились в действие осликами, может лишь наивный Буратино.

Водяное колесо , как основной источник движения, я бы рассматривать так же не стал и вот почему. Как мы помним из официальной справки, оружейные заводы России, в то время, располагались на равнинной местности, а это значит, что у рек, протекающих в той местности, нет большого уклона и, следовательно, течения. Что бы заставить крутится водяное колесо, в условиях равнинных рек, требуется строить высокую плотину, затопляя при этом огромное количество плодородных земель. Причём тут нужно понимать, что для подъёма плотины всего на 1 метр, придётся затопить несколько десятков квадратных километров земельных угодий, и с каждым дополнительным метром высоты плотины, количество затопляемых земель будет только возрастать. И это-то в агарной стране? При этом энергия падающей воды, для вращения водяных колёс, всё же иногда использовались и здесь ссылка на статью , описывающую как раз такой случай.

В металлообрабатывающих станках, например токарных, помимо частоты вращения, есть ещё один важный параметр — это крутящий момент. Проще говоря, сила вращения, что бы резец, коснувшись заготовки, не остановил её. Так вот, для получения большого крутящего момента, нужно водяное колесо большого диаметра и большая высота плотины. Тут прямая зависимость — чем больше диаметр колеса и чем больше высота, с которой на него падает вода, тем больше крутящий момент. Естественно, даже небольшая плотина, может дать большие обороты маленькому водяному колесу, при этом, если в такое колесо сунуть, например палку, то её просто перерубит, однако, если взяться за вал такого колеса рукой, то его легко остановить. Это и есть малый крутящий момент.

Паровая машина , конечно, может использоваться для приведения в действие сразу нескольких станков, но только в качестве временного решения, и вот почему. КПД паровой машины не превышает 20%. То есть, сжигая 100 кг угля, на полезную работу идет только 20 кг, остальное просто улетает с дымом в небо. Попробуйте сами, даже упрощённо посчитать, сколько потребуется угля в день, для приведения в действие паровой машины и нескольких простых токарных станков. Естественно, на заводе существует запас угля на несколько дней, но если нет железных дорог, то возить десятки тонн угля на телегах, запряжённых лошадьми, это просто фантастика. Тут нужно понимать, что уголь требовался ещё и для доменных печей, а помимо угля, ещё везли руду и флюсы.

Как вы уже поняли, логистика была хорошо налажена, иначе невозможно изготовить оружие и укомплектовать армию. И какой бы дорога ни была, помимо угля, по ней возили металл, ткани, химические компоненты пороха и красок, а так же провизию (я сейчас перечисляю ресурсы только касательно простого солдата). Объемы производства оружия для армии измерялись не единицами, даже не сотнями, а тысячами и сотнями тысяч штук. Что бы реализовать такие объемы производства, станков, так же были тысячи. Понятно, что на одной паровой машине, столько станков не запустить.

Говоря простыми словами, в отсутствие железных дорог, несколько паровых машин, могут использоваться в качестве движущей силы для станков, но только не очень долго, например, в качестве временного решения. Но именно этот способ, официальные историки и приводят в качестве основного, соглашаясь, однако с тем, что у паровых машин низкий КПД. Именно поэтому я и утверждаю, верить в то, что все станки приводились в действие только паровыми машинами на угле, все равно, что верить, в запуск спутников с помощью рогатки. Вполне очевидно, что станки приводились в действие всё-таки каким-то другим способом или другой энергией. Например, электрической.

"Электричество" . Этот термин ввел Уильям Гилберт в далёком 1600 году в своем сочинении о магнитах, их свойствах, и магнитном поясе Земли. Первый электрический конденсатор, согласно Википедии, был изобретен в 1745 году и назывался Ле́йденская банка (назван по месту изобретения — город Лейден, Нидерланды). То есть, даже по данным официальной истории, люди в начале XIX века знали, что такое электричество, как его получать и использовать.

Теперь, друзья мои, вам предстоит самим решить, что есть правда, а что вымысел: с одной стороны — армия в начале XIX века имела огнестрельное оружие и была хорошо экипирована, с другой стороны, русский солдат, это обычный дикарь, одетый в рубище и вооруженный дубиной. Потому, что если мы принимаем как факт первый вариант, то мы автоматически соглашаемся с тем, что уровень научно-технического прогресса в начале XIX века был таким же, как в середине века XX. Но, если высокий уровень научно-технического прогресса в начале XIX века мы считаем бредом, что такого не может быть, в принципе, как собственно нам и утверждает официальная история, то мы автоматически лишаем русского солдата огнестрельного оружия и всей экипировки. Это вытекает из самой точки зрения официальной истории, вот цитата из Википедии:

«именно в период с 1830 по 1860 гг. в России произошел промышленный переворот, аналогичный тому, что происходил в Англии во второй половине XVIII века. Так, в начале этого периода (1830) в России были лишь единичные экземпляры механических ткацких станков и паровых машин, а к концу периода только в хлопчатобумажной промышленности было почти 16 тысяч механических ткацких станков, на которых производилось около 3/5 всей продукции данной отрасли, и имелось паровых машин (паровозы, пароходы, стационарные установки) общей мощностью порядка 200 тыс. л.с. Одновременно с созданием в 1830—1840-е гг., практически с нуля, новых отраслей — хлопчатобумажной, сахарной, машиностроительной и других — шёл быстрый процесс вытеснения из промышленности крепостного труда.

Конец цитаты. В учебнике по истории отличия не большие. Вот и думайте, что есть что — решать вам.

Друзья, сегодня мы рассмотрели данные официальной истории лишь на примере простого солдата, образ которого нам преподносит всё та же официальная история. О том, как, по моему мнению, была экипирована и вооружена армия того периода, поговорим в другой статье. Однако помимо армии, в России того времени строились замечательные здания, по технологиям соизмеримым с современными, которые стоят до сих пор, создавались непревзойденные произведения искусства и т. д. Это неоспоримый факт.

А теперь попробуем применить эти выводы ко всей теме нашего расследования событий XIX века. Попробуем предположить, хотя бы чисто теоретически, что вначале XIX века была ядерная война и зададимся вопросом, а что из технологий должно было быть в наличии, для самой возможности нанесения ядерного удара. Давайте выстроим логическую цепочку.

  1. Сам ядерный заряд.
  2. Средство доставки. Сюда включаются пусковые механизмы, средства наведения, обслуживающие системы.
  3. Шахты для добычи руды и её переработки, а так же заводы для производства зарядов и их хранения.
  4. Радиологическая защита обслуживающего персонала. Системы контроля уровня радиоактивного и иного излучения, системы защиты человека.

В конце XIX, начале XX века происходит восстановление утраченного и разрушенного в ядерной войне начала XIX века. А нам это преподнесли как новые изобретения. И обратите внимание, что же изобретали — в начале XX века:

скрепки для бумаг, звуковое кино, дирижабль и самолет, полупроводниковый диод, шариковая ручка, стиральная машина, счетчик Гейгера, противогаз, жаростойкая стеклянная посуда, электрическая гирлянда для ёлки, теория фотоэффекта и общая теория относительности.

Во-вторых, очень много было уничтожено во время ковровой ядерной бомбардировки. Удары были точными и их было очень много. Естественно, искать древние смартфоны, в ядерных воронках, не имеет смысла.

В-третьих, если у нашей страны, как бы она тогда не называлась, и было в тот момент ядерное оружие, то оно вполне могло быть применено против врагов (то есть ракеты запущены и улетели), а ядерные удары противника уничтожили пусковые и дополнительные системы уже на нашей территории. Не исключено, что у России на тот момент еще не было ядерного оружия, поэтому и найти его просто невозможно.

Как вывод: только анализируя одни лишь официальные данные, мы видим, что в начале XIX века, Россия могла иметь ядерное оружие, или, по крайней мере, была очень близка к этому.

Друзья, за сим я с Вами не прощаюсь, благодарю за то, что дочитали до конца. В одной из следующих статей, мы продолжим эту тему и разовьём новые. Всего Вам доброго, до скорых встреч!

XIX век был воплощением неслыханного технического прогресса, были сделаны научные и технические открытия, которые привели к изменению образа жизни людей: его начало ознаменовалось освоением силы пара, созданием паровых машин и двигателей, которые позволили осуществить промышленный переворот, перейти от мануфактурного производства к промышленному, фабричному. Страны Европы и Северной Америки покрылись сетью железных дорог, что в свою очередь содействовало развитию промышленности и торговли. Начался выпуск первых синтетических материалов, искусственных волокон.

Научные открытия в области физики, химии, биологии, астрономии, геологии, медицины следовали одно за другим. Вслед за открытием Майклом Фарадеем явления электромагнитной дуги, Джеймс Максвелл предпринимает исследование электромагнитных полей, разрабатывает электромагнитную теорию света. Анри Беккерель, Пьер Кюри и Мария Склодовская-Кюри, изучая явление радиоактивности, поставили под вопрос прежнее понимание закона сохранения энергии.

Физическая наука проделала путь от атомной теории материи Джона Дальтона - к раскрытию сложной структуры атома. После обнаружения Дж.Дж. Томпсоном в 1897 г. первой элементарной частицы электрона последовали планетарные теории строения атома Эрнеста Резерфорда и Нильса Бора. Развиваются междисциплинарные исследования - физическая химия, биохимия, химическая фармакология.

Если сформулированный в 1869 г. Дмитрием Ивановичем Менделеевым периодический закон химических элементов установил зависимость между их атомными весами, то открытие внутреннего строения атома выявило связь между порядковым номером элемента в периодической системе и числом электронов в слоях оболочки атома.

В биологии появляются теории клеточного строения всех организмов Т. Швана, генетической наследственности Грегора Иоганна Менделя, опираясь на которые Август Вейсман и Томас Морган создали основы генетики. Основываясь на исследованиях в области физиологии высшей нервной деятельности, И.П. Павлов разработал теорию условных рефлексов.

Достижения в области биологии и химии дали мощный толчок развитию медицины. Французский бактериолог Луи Пастер разработал метод предохранительных прививок против бешенства и других заразных болезней, механизм стерилизации и пастеризации различных продуктов, заложил основы учения об иммунитете. Немецкий микробиолог Роберт Кох и его ученики открыли возбудителей туберкулеза, брюшного тифа, дифтерита и других болезней, создали против них лекарства. В арсенале врачей появились новые лекарственные препараты и инструменты. Врачи стали применять аспирин и пирамидон, был изобретен стетоскоп, открыты рентгеновские лучи.




Познание раздвинуло свои границы вглубь и вширь. Одновременно возникли и новые способы преодоления времени и пространства - новая техника с ее скоростями, средствами связи способствовала тому, что человек смог вместить в себе больший отрезок космического, любую точку планеты. Вселенная как бы одновременно сузилась и расширилась, все пришли в соприкосновение со всеми. Мир качественно преобразился.

В следующей главе мы более подробно раскроем некоторые научные открытия XIX века.

XIX век был воплощением неслыханного технического прогресса, были сделаны научные и технические открытия, которые привели к изменению образа жизни людей: его начало ознаменовалось освоением силы пара, созданием паровых машин и двигателей, которые позволили осуществить промышленный переворот, перейти от мануфактурного производства к промышленному, фабричному. Страны Европы и Северной Америки покрылись сетью железных дорог, что в свою очередь содействовало развитию промышленности и торговли. Начался выпуск первых синтетических материалов, искусственных волокон.

Научные открытия в области физики, химии, биологии, астрономии, геологии, медицины следовали одно за другим. Вслед за открытием Майклом Фарадеем явления электромагнитной дуги, Джеймс Максвелл предпринимает исследование электромагнитных полей, разрабатывает электромагнитную теорию света. Анри Беккерель, Пьер Кюри и Мария Склодовская-Кюри, изучая явление радиоактивности, поставили под вопрос прежнее понимание закона сохранения энергии.

Физическая наука проделала путь от атомной теории материи Джона Дальтона - к раскрытию сложной структуры атома. После обнаружения Дж.Дж. Томпсоном в 1897 г. первой элементарной частицы электрона последовали планетарные теории строения атома Эрнеста Резерфорда и Нильса Бора. Развиваются междисциплинарные исследования - физическая химия, биохимия, химическая фармакология.

Если сформулированный в 1869 г. Дмитрием Ивановичем Менделеевым периодический закон химических элементов установил зависимость между их атомными весами, то открытие внутреннего строения атома выявило связь между порядковым номером элемента в периодической системе и числом электронов в слоях оболочки атома.

В биологии появляются теории клеточного строения всех организмов Т. Швана, генетической наследственности Грегора Иоганна Менделя, опираясь на которые Август Вейсман и Томас Морган создали основы генетики. Основываясь на исследованиях в области физиологии высшей нервной деятельности, И.П. Павлов разработал теорию условных рефлексов.

Достижения в области биологии и химии дали мощный толчок развитию медицины. Французский бактериолог Луи Пастер разработал метод предохранительных прививок против бешенства и других заразных болезней, механизм стерилизации и пастеризации различных продуктов, заложил основы учения об иммунитете. Немецкий микробиолог Роберт Кох и его ученики открыли возбудителей туберкулеза, брюшного тифа, дифтерита и других болезней, создали против них лекарства. В арсенале врачей появились новые лекарственные препараты и инструменты. Врачи стали применять аспирин и пирамидон, был изобретен стетоскоп, открыты рентгеновские лучи.

Познание раздвинуло свои границы вглубь и вширь. Одновременно возникли и новые способы преодоления времени и пространства - новая техника с ее скоростями, средствами связи способствовала тому, что человек смог вместить в себе больший отрезок космического, любую точку планеты. Вселенная как бы одновременно сузилась и расширилась, все пришли в соприкосновение со всеми. Мир качественно преобразился.

В следующей главе мы более подробно раскроем некоторые научные открытия XIX века.

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Цена прогресса 19 в. Проблема:могут ли правила прлитической борьбы в обществе.

Описание презентации по отдельным слайдам:

Цена прогресса 19 в. Проблема:могут ли правила прлитической борьбы в обществе.

Цена прогресса 19 в. Проблема:могут ли правила прлитической борьбы в обществе допускать революции (насильственое свержение власти)?

НАУЧНЫЕ ПРЕДСТАВЛЕНИЯ О СТРОЕНИИ ПРИРОДЫ. В 19 веке умозрительные представлен.

НАУЧНЫЕ ПРЕДСТАВЛЕНИЯ О СТРОЕНИИ ПРИРОДЫ. В 19 веке умозрительные представления об атомистическом строении вещества стали на твердую экспериментальную основу. Ученые нашли атомный вес многих химических элементов, создали модели, обнаружили явлении изомерии химических элементов молекулярных структур, ввели понятие валентности. Началось развитие синтетической органической химии

Дж.ДАЛЬТОН (1766–1844) -английский физик и химик, сыгравший большую роль в ра.

Дж.ДАЛЬТОН (1766–1844) -английский физик и химик, сыгравший большую роль в развитии атомистических представлений применительно к химии, открыл несколько новых эмпирических закономерностей: закон парциальных давлений (закон Дальтона), закон растворимости газов в жидкостях (закон Генри-Дальтона) и, наконец, закон кратных отношений (1803). Он ввел понятие атомной массы и, приняв за единицу массу атома водорода, в 1803 составил первую таблицу относительных атомных масс элементов

Д.И.МЕНДЕЛЕЕВ ( 1834 - 1907 ) -великий русский ученый; открыл периодический.

Д.И.МЕНДЕЛЕЕВ ( 1834 - 1907 ) -великий русский ученый; открыл периодический закон химических элементов, являющийся естественно-научной основой современного учения о веществе. Опубликовал за свою жизнь 431 научную работу, в том числе 99 работ были посвящены различным областям техники.

Он изобрел новый вид пороха, защитил докторскую диссертацию организовал Главн.

Он изобрел новый вид пороха, защитил докторскую диссертацию организовал Главную палату мер и весов в России, писал работы по воздухоплаванию, метеорологии, экономике, сельскому хозяйству, народному просвещению. Но свое самое знаменитое открытие Д.И.Менделеев совершил в 1869 году, он открыл Периодический закон, который принес ему всемирную славу.

Д.К. МАКСВЕЛЛ ( 1831 - 1879 ) - выдающийся английский физик, является создат.

Д.К. МАКСВЕЛЛ ( 1831 - 1879 ) - выдающийся английский физик, является создателем теории электромагнитного поля и электромагнитной теории света. Теория электромагнетизма Максвелла получила опытное подтверждение и стала общепризнанной классической основой современной физики.

-русский физиолог и просветитель публицист, мыслитель-рационалист, создатель.

-русский физиолог и просветитель публицист, мыслитель-рационалист, создатель физиологической школы, учёный-энциклопедист, биолог-эволюционист, психолог, антрополог, анатом, гистолог, патолог, психофизиолог, физико-химик, эндокринолог, офтальмолог, гематолог ,нарколог, гигиенист, культуролог, приборостроитель, военный инженер . И.М. СЕЧЕНОВ (1829 — 1905)

ЭВОЛЮЦИОННАЯ КАРТИНА МИРА Развитие научной мысли в 19 веке коренным образом.

ЭВОЛЮЦИОННАЯ КАРТИНА МИРА Развитие научной мысли в 19 веке коренным образом изменило представление людей об окружающем мире. Строение живой и неживой материи и живых организмов, закономерности природных явлений и общественного развития- это и многие другие эволюционные подходы к пониманию природы и общества все шире вводились в научный оборот.

 -английский натуралист и путешественник, одним из первых пришел к выводу и о.

-российский биолог и патолог один из основоположников патологиэволюционной .

-российский биолог и патолог один из основоположников патологиэволюционной эмбрио логии и иммунологии, создатель научной школы, основал (1886) первую в России бактериологиче скую станцию, изложил фагоцитарную теорию иммунитета. Создал теорию происхождения многоклеточных организмов. Ему принадлежат труды по проблеме старения. Лауреат Нобелевской премии (1908) И.И. МЕЧНИКОВ (1845-1916)

-немецкий философ, социолог, экономист, писатель, общественный деятель, основ.

РАЗВИТИЕ ОБРАЗОВАНИЯ. На протяжении всего 19 веке шел процесс отделения школь.

РАЗВИТИЕ ОБРАЗОВАНИЯ. На протяжении всего 19 веке шел процесс отделения школьного образования от церкви, становления светской школы. Обязательным обучением охвачены дети от 6 до 12-13 лет. В начальном образовании осуществлен переход к государственной школьной системе.

Развивалась сеть средних общеобразовательных школ, которые в большинстве стра.

Развивалась сеть средних общеобразовательных школ, которые в большинстве стран назывались гимназиями или лицеями. В них преподавались предметы гуманитарного цикла и естественнонаучных дисциплин.19 век положил начало массовому женскому образованию. Массовая грамотность и рост интеллигенции стали фактором прогресса и изменили лицо мира. СМОЛЬНЫЙ ИНСТИТУТ

СРЕДСТВА МАССОВОЙ ИНФОРМАЦИИ В 19 веке источником информации стали газеты.Во.

В 19 веке шла дифференциация книжного дела. Наибольшими тиражами выходили ху.

Библиотека конгресса США Публичная библиотека в Петербурге

Библиотека конгресса США Публичная библиотека в Петербурге

-русский электротехник, военный инженер, изобретатель и предприниматель. Изве.

Первый опыт показал большое преимущество свечи в сравнении с газовым освещени.

Первый опыт показал большое преимущество свечи в сравнении с газовым освещением „Русский свет" появился в столицах: Париже, Лондоне, Мадриде, Берлине, Неаполе - и распространился на восток. В Европе начали возникать компании по эксплуатации свечи Яблочкова. .

Применение свечи Яблочкова вызвало новые изобретения и усовершенствования. С.

Применение свечи Яблочкова вызвало новые изобретения и усовершенствования. Свечи Яблочкова включались в цепь последовательно в количестве 4 - 5 штук. Вместо старых регуляторов Яблочков применил трансформаторы

-всемирно известный американский изобретатель. Только в США Эдисон получил.

-всемирно известный американский изобретатель. Только в США Эдисон получил 1908 патентов и около 3 тысяч в других странах мира. Он усовершенствовал телеграф, телефон, киноаппаратуру,разработал один из первых успешных вариантов электрической лампы накалива ния,создал сверхмощный электрогенератор и участвовал в сооружении и пуске в Нью-Йорке первой в мире центральной тепловой электростанции с разветвленной сетью подачи электроэнергии (1881 г) Т. А.ЭДИСОН ( 1847- 1931)

Эдисон изобрел щелочной железо-никелевый аккумулятор, предохранитель, поворот.

Эдисон изобрел щелочной железо-никелевый аккумулятор, предохранитель, поворотный выключатель, мегафон. Участвовал в создании лекарственных препаратов, красителей и других материалов, разработал процесс получения синтетического фенола и жидких продуктов перегонки каменного угля. Положил начало электронике и изобрел собственный способ обогащения железной руды.

Н. И. ПИРОГОВ (1836-1854) -русский хирург и анатом, естествоиспытатель и педа.

Н. И. ПИРОГОВ (1836-1854) -русский хирург и анатом, естествоиспытатель и педагог, создатель первого атласа топографической анатомии, основоположник русской военно-полевой хирургии, основатель русской школы анестезии.

Н. И. Пироговым «были созданы новые методы исследования в изучении анатомии.

— заслуженный российский профессор, директор Императорского клинического инст.

— заслуженный российский профессор, директор Императорского клинического института великой княгини Елены Павловны в Санкт-Петербурге, автор трудов по военно-полевой хирургии брюшной полости. Н.В.СКЛИФОСОВСКИЙ ( 1836— 1904)

Л.ПАСТЕР (1822—1895) - французский микробиолог и химик, доказал, что брожен.

Л.ПАСТЕР (1822—1895) - французский микробиолог и химик, доказал, что брожение – биологический процесс, обусловленный деятельностью микроорганизмов,предложил способ сохранения пищевых продуктов с помощью тепловой обработки. Л.Пастер изучал заразные болезни (сибирскую язву, бешенство, куриную слепоту, краснуху и др.). Предложил метод прививок против этих и других инфекционных заболеваний с использованием ослабленных культур соответствующих микроорганизмов-возбудителей. Предложил назвать ослабленные культуры вакцинами, а процедуру их применения – вакцинацией. В 1880 Пастер установил вирусную природу бешенства.

-немецкий микробиолог, один из основоположников современной бактериологии и э.

Достижения науки 19 века Наука или область Ф И О Страна Достижения или изобр.

Достижения науки 19 века Наука или область Ф И О Страна Достижения или изобретения

Задание на дом: § 37, стр. 221-227 Прочитать и 2.Заполнить таблицу. 3. Просмо.

Задание на дом: § 37, стр. 221-227 Прочитать и 2.Заполнить таблицу. 3. Просмотреть таблицу стр.224: представления об идеальном обществе разных политических течений. Выбрать, какое вам течение понравилось и почему(устно)

Использованная литература http://class-fizika.narod.ru/port5.htm http://www.a.

Краткое описание документа:

Презентация для обучающихся 11 класса. В теме рассматривается достижения 19 века разных государств:России, Германии, США, Фрнции и т.д. С этой презентацие легко учащимя показвать достижения стран. Можо по ней сотавить таблицу достижений.

Учащиеся в удовольствием смотрять эту презентацию. Лего запоминается материал.

Читайте также: