Научная революция эпохи нового времени кратко

Обновлено: 14.05.2024

Итоги: великие географические открытия, появление различных приборов (телескоп, микроскоп, барометр), изменение человеческого мировоззрения.

Сделаны важнейшие открытия в географии, астрономии, механике, картографии.

Коперник, Кеплер, Галилей, Ньютон

Чтобы перестроить общество, нужно просветить население.

Основные черты просветителей:

· наибольший вклад внесён в теории о государстве и обществе

· новой религией становится наука

· отношение к религии: атеисты и деисты

· безусловная вера в прогресс, стремление к высшему

Термины и персоналии:

Атеизм - в широком смысле — отрицание веры в существование Бога или богов; в более узком — прямое убеждение в том, что богов не существует. В самом широком смысле атеизм — простое отсутствие веры в существование богов

Деизм-религиозно-философское направление, признающее существование Бога и сотворение им мира, но отрицающее большинство сверхъестественных и мистических явлений, божественное откровение и религиозный догматизм. Большинство деистов полагают, что Бог после сотворения мира не вмешивается в течение событий; другие деисты считают, что Бог все же влияет на события, но не контролирует их полностью.

Научная революция -радикальное изменение процесса и содержания научного познания, связанное с пе­реходом к новым теоретическим и методологическим пред­посылкам, к новой системе фундаментальных понятий и ме­тодов, к новой научной картине мира, а также с качествен­ными преобразованиями материальных средств наблюдения и экспериментирования, с новыми способами оценки и ин­терпретации эмпирических данных и с новыми идеалами объ­яснения, обоснованности и организации знания. ИЛИ - период развития науки, во время которого старые научные представления замещаются частично или полностью новыми, появляются новые теоретические предпосылки, методы, материальные средства, оценки и интерпретации, плохо или полностью несовместимыми со старыми представлениями.

Научная революция стала возможной благодаря динамичному развитию общества, уже достигшего значительного технологического прогресса. Огнестрельное оружие, порох и корабли, способные пересекать океаны, позволили европейцам открыть, исследовать и нанести на карту значительную часть мира, а изобретение книгопечатания означало, что любая задокументированная информация быстро становилась доступной ученым всего континента. Начиная с XVI века, взаимосвязь между обществом, наукой и техникой становилась все более тесной, поскольку прогресс в одной из областей знания подталкивал к развитию других.

Статья с сайта, указанного в программе Орлова-Коротковой-Давидсона (очень подробная, но легко запоминающаяся)

Путь к прогрессу

За исключением нескольких блестящих открытий, в период позднего средневековья научная мысль уступала в развитии технологическим обретениям. Техника занималась практическими вещами, которые либо работали, либо нет. Наука же изучала природу Вселенной и управляющие ею законы. Передовые идеи часто наталкивались на ожесточенное сопротивление. В частности, новые теории вошли в противоречие с религиозными догмами в объяснении природных явлений, подвергать сомнению которые считалось кощунственным и недопустимым.

До XVI века, считающегося началом современной эры, преобладал взгляд на Вселенную, основанный на теориях древнегреческого философа Аристотеля (384-322 гг. до н. э.) и развившего их греческого астронома Птолемея (II век н. э.). Учения греков и римлян всегда пользовались большим авторитетом в западном мире, особенно если они были приемлемы для Церкви. Церковью было принято описание Птолемеем небесного свода, где Земля помещена в центр Солнечной системы, что соответствовало христианской теологии, сделавшей драму грехопадения и спасения души краеугольным камнем истории. Согласно Птолемею, Солнце, Луна и планеты вращаются вокруг неподвижной Земли. Когда же, производя астрономические наблюдения, ученые обнаружили противоречия в системе Птолемея, орбиты планет были вычерчены по-другому и приобрели весьма замысловатый вид исключительно для того, чтобы соответствовать данной теории. Не все ученые разделяли точку зрения Птолемея, однако в течение всего периода средневековья ее никто не оспаривал.

Европейская сенсация

Попытки Церкви запретить теорию Коперника потерпели неудачу, поскольку книга Галилея была переведена на многие языки и стала популярной во всей Европе. Более того, важное свидетельство справедливости утверждений Коперника предоставил немецкий астроном Иоганн Кеплер (1571-1630), который в 1609-19 гг. открыл три закона движения планет. Коперник и Галилей считали, что планеты вращаются вокруг Солнца по круговой орбите; Кеплер определил, что орбиты планет являются эллиптическими, и тем самым устранил ошибки своих предшественников. Он продемонстрировал, что гелиоцентрическая теория проще системы Птолемея, а также свободна от ее противоречий. Несколькими годами позже Кеплер создал Рудольфовы таблицы, с помощью которых было возможно предсказать движение планет в будущем; основанные на работах Тихо Браге, эти открытия ознаменовали начало всеобъемлющего и математически точного описания Солнечной системы.

Законы Ньютона

Достижения медицины

Новый язык

Изобретения
Итак, к XVII веку наука действительно далеко продвинулась в своем развитии. Помимо телескопа, были изобретены такие приборы, как микроскоп, термометр, барометр и воздушный насос.

Распространение знаний

В это время интерес к науке проявлялся повсеместно, а научные знания были еще не настолько специализированными, чтобы любой образованный человек не мог провести эксперимент и совершить открытие.

Существование научных обществ и журналов означало, что сведения о каждом научном открытии могли быстро распространяться по всей стране, давая возможность исследователям использовать новейшую информацию.

В шестнадцатом-семнадцатом веках активно развивается экспериментально-математическое естествознание и интеллектуальная жизнь людей. Естествознание занимает передовые позиции в рассуждениях, вызванных развитием капиталистического производства. Наука способна ответить на насущные вопросы народа, которые постепенно меняются, как и новое общество. Природу можно изучить с помощью реальных, действенных законов. Для этого не нужен божественный дух, все объяснимо и понятно.

В теоретическом мировоззрении начинает проявляться методологическая подоплека. Стартует развитие гносеологии. Философия и наука связаны между собой, что сопровождается переориентацией мышления.

Философия 17 века – кратко

Научная революция в философии – это переход к философским взглядам Нового времени. XVII век становится периодом отхода от средневековых тенденций, полностью исключаются схоластические догмы, формируются иные приоритеты. Бог более не может являться путем к познанию. Разум, знания становятся ключевыми аспектами в суждениях философов. Зачастую именно семнадцатый век характеризуют как эру рационализма.

Научная революция 17 века приводит к популяризации математической методологии в сфере естествознания. Это способствует колоссальному прорыву. Рационалисты в этот период были приверженцами математического направления. Каждое исследование на основе математики становилось идеальным научным знанием для приверженцев рационализма. Основываясь на этом, они выдвигали философские теории:

  • Опыт может порождать или определять истину;
  • Чувственные, неустойчивые, переменчивые взгляды не являются определяющими критериями;
  • Рациональные, дедуктивные методы поиска истины в математике являются примером для философской мысли. Она должна быть результатом действия разума, иметь обоснование.

Философы 17 века научный прогресс воспринимали по-разному. Возникали разногласия и споры по поводу подлинных знаний и их основы. Некоторые считали, что опыт является основой, другие отстаивали теорию разума. В период Нового времени сторонники этих теорий присоединились к группам эмпиризма и рационализма.

Во время семнадцатого века сформировались принципиально новые философские взгляды. Они основывались на экспериментально-опытных исследованиях и ценности разума.

Научная революция в философии – развитие науки в 16-17 веках

Много открытий, исследований и становление производства приводят к первым революциям. Военный конфликт спровоцирован не был, однако революционные настроения Нидерландов и Англии привели к ряду рациональных изменений в следующих областях:

  • Экономической;
  • Политической;
  • Социальной;
  • Мировоззренческой.

Семнадцатый век стал периодом всестороннего развития. Активно прогрессировала сфера мануфактурного производства, развивалась мировая торговля, область мореплавания, военное дело. Открылась первая академия, где проводились научные исследования прикладного и практического значения. Для купцов, ученых идеалом становится человек. Именно он способен достигнуть успеха, развивать мир.

Появились научные общества. Научная революция привела к становлению механики, которая объясняла передвижение объектов в пространстве. Это стало значимым аспектом для становления философского мировоззренческого мышления семнадцатого столетия.

Философия и социальная среда оказались связаны между собой только через естествознание, различные его проявления. Религиозное восприятие также имело большое значение, так как представляло идеологию государства. Передовые мыслители возвращались к божеству, потому что считали механистическое мировоззрение ограниченным.

Необходимо проверить точность фактов, изложенных в этом разделе.
На странице обcуждения могут быть пояснения.

Революция в науке — период развития науки, во время которого старые научные представления замещаются частично или полностью новыми, появляются новые теоретические предпосылки, методы, материальные средства, оценки и интерпретации, плохо или полностью несовместимые со старыми представлениями.

Содержание

Научные революции

Первая научная революция XVII / XVIII веков

Это была революция метода познания и обхождения с полученным знанием, и она была тесно связана с духом просвещения.

Это было связано с тем, что знание, полученное опытом, низко ценилось. Человеческие органы чувств считались плохим прибором для его получения – уж очень они обманчивы. Истинным и имеющим всеобщую силу считалось знание, полученное чистой логикой. Знание же, идущее из наблюдения, считалось частичным, не имеющим всеобщей действительности. Индуктивный метод – заключение об общем по частным наблюдениям – приживался лишь очень постепенно [4] .

Сейчас науки занимаются получением знания. Тогда они занимались его бережным хранением и передачей дальше. Оно хранилось в канонических текстах, которые трактовались определённым способом и постоянно зубрились. Такими текстами были Библия и античные авторы: в первую очередь Аристотель, важный для логики и схоластики, римское право (кодекс Юстиниана), труды Гиппократа. Но все они не давали ответа на новые вопросы, поставленные наблюдениями. Современные научные исследования не находили себе места в системе университетских дисциплин, ибо те были традиционными местами передачи знания, а не исследований, и преподавали они теоретическое знание, не практическое [5] .

Вот что писал английский историк Эдвард Гиббон (Edward Gibbon, 1737-1794) про современные ему университеты:

Одновременно с общими энциклопедиями появляются и специальные, и для разных отдельных наук, которые тогда переросли в отдельный жанр литературы [12] .

Открытия

Как уже говорилось, большие открытия случились ещё до первой научной революции. Они связаны среди прочего с именами: Коперника, Галилея, Кеплера, Ньютона.

    (1473—1543): наиболее известен как автор гелиоцентрической системы мира, положившей начало первой научной революции. (1564—1642): изучал проблему движения, открыл принцип инерции, закон свободного падения тел; сделал ряд астрономических открытий с помощью телескопа. (1571—1630): установил три закона движения планет вокруг Солнца, создал первую механистическую теорию движения планет, внес существенный вклад в развитие геометрической оптики. (1643—1727): сформулировал понятия и законы классической механики, математически сформулировал закон всемирного тяготения, теоретически обосновал законы Кеплера о движении планет вокруг Солнца, создал небесную механику (Закон всемирного тяготения был незыблем до конца 19 в.), создал дифференциальное и интегральное исчисление как язык математического описания физической реальности, автор многих новых физических представлений (о сочетании корпускулярных и волновых представлений о природе света и т. д.), разработал новую парадигму исследования природы (метод принципов)— мысль и опыт, теория и эксперимент развиваются в единстве, разработал классическую механику как систему знаний о механическом движении тел, механика стала эталоном научной теории, сформулировал основные идеи, понятия, принципы механической картины мира.
  • Механическая картина мира Ньютона:
    • Вселенная от атомов до человека — совокупность неделимых и неизменных частиц, взаимосвязанных силами тяготения, мгновенное действие сил в пустом пространстве.
    • Любые события предопределены законами классической механики.
    • Мир, все тела построены из твердых, однородных, неизменных и неделимых корпускул — атомов.
    • Основа механистической картины мира: движение атомов и тел в абсолютном пространстве с течением абсолютного времени. Свойства тел неизменны и независимы от самих тел.
    • Природа — машина, части которой подчиняются жесткой детерминации.
    • Синтез естественно-научного знания на основе редукции (сведения) процессов и явлений к механическим.

    Механическая картина мира дала естественно-научное понимание многих явлений природы, освободив их от мифологических и религиозных схоластических толкований. Её недостаток — исключение эволюции, пространство и время не связаны. Экспансия механической картины мира на новые области исследования (химия, биология, знания о человеке и обществе). Синонимом понятия науки стало понятие механики. Однако накапливались факты, не согласовывающиеся с механистической картиной мира и к середине 19 в. она утратила статус общенаучной.

    Джероламо Кардано внёс значительный вклад в развитие алгебры, Франсуа Виет основоположник символической алгебры, Рене Декарт и Пьер Ферма внесли свой вклад в развитие математики.

    Вторая научная революция конца XVIII века — 1-я половина XIX века

    Третья научная революция конец XIX века — середина XX века

      — понятия электромагнитного поля — электродинамика, статистическая физика — и как вещество и как электромагнитное поле
    • Электромагнитная картина мира, законы мироздания — законы электродинамики — о медленном непрерывном изменении земной поверхности — целостная концепция эволюции живой природы , Шванн — теория клетки — о единстве происхождения и развития всего живого , Джоуль, Ленц — закон сохранения и превращения энергии — теплота, свет, электричество, магнетизм и т. д. переходят одна в другую и являются формами одного явления, эта энергия не возникает из ничего и не исчезает. — материальные факторы и причины эволюции — наследственность и изменчивость — радиоактивность — Лучи — элементарная частица электрон — планетарная модель атома — квант действия и закон излучения — квантовая модель атома Резерфорда-Бора — общая теория относительности — связь между пространством и временем — все материальные микрообъекты обладают как корпускулярными, так и волновыми свойствами (квантовая механика)
    • Зависимость знания от применяемых исследователем методов
    • Расширение идеи единства природы — попытка построить единую теорию всех взаимодействий — необходимость применять взаимоисключающие наборы классических понятий (например, частиц и волн), только совокупность взаимоисключающих понятий дает исчерпывающую информацию о явлениях. Это совершенно новый метод мышления, диктующий необходимость освобождения от традиционных методологических ограничений
    • Появление неклассического естествознания и соответствующего типа рациональности
    • Мышление изучает не объект, а то, как явилось наблюдателю взаимодействие объекта с прибором
    • Научное знание характеризует не действительность как она есть, а сконструированную чувствами и рассудком исследователя реальность
    • Тезис о непрозрачности бытия, блокирующий возможности субъекта познания реализовывать идеальные модели и проекты, вырабатываемые рациональным сознанием.
    • Допущение истинности нескольких отличных друг от друга теорий одного и того же объекта
    • Относительная истинность теорий и картины природы, условность научного знания.

    Об относительной истине и условности научного знания писал американский физик Ричард Фейнман:

    Религиозная реформация явилась революцией в духовной жизни человека. Она имела далеко идущие последствия во всех сферах деятельности. Для становления науки важным явилось то, что Реформация произвела основательную критическую работу по отношению к средневековой картине мира, отбросив аристотелевски–схоластические представления.

    Идеи Реформации способствовали дезантропоморфизации природы: на смену пониманию природы как живого организма пришла механистическая интерпретация. Мир стал рассматриваться как безжизненный, качественно однородный. Такой мир можно унифицировать, измерять, анализировать.

    В научной деятельности учёные той эпохи видели высокий религиозный смысл. С их точки зрения научные открытия не теснят религию, а наоборот, углубляют религиозное чувство, все больше открывая нам совершенство мироздания, мудрость и величие Творца. Деятели научной революции были убеждены в том, что существует естественная гармония религии, метафизики и науки.

    Среди имён выдающихся учёных того времени называют имена: Н. Коперника, И. Кеплера, Г. Галилея. Н.Коперник (1473–1543) обосновывает представления о гелиоцентрической системе мироздания. Она несла в себе определенное эстетическое совершенство, которого была лишена громоздкая система Птолемея, согласовывалась с популярными тогда представлениями об исключительной роли Солнца во Вселенной.

    Дело Н. Коперника продолжил Иоганн Кеплер (1571–1630). Результатом его многолетних усилий стала система математических законов движения планет (законы Кеплера). Произведения И. Кеплера – яркий образец соединения нового и старого, теологии и физики, математики и ренессансных учений.

    Фундамент современной механики заложил Галилео Галилей (1564–1642). Он продемонстрировал эффективность применения в эмпирических исследованиях идеализированных объектов – материальной точки, прямолинейного равномерного движения и т.п. Введение умопостигаемых объектов было, по сути дела, продолжением платоновской традиции. Галилеевский метод экспериментирования позволил добиться математизации изучаемых феноменов и тем самым вообще математизации физики. Г. Галилей сформулировал закон падения тел, исследовал закономерности колебаний маятника. Он защищал идею автономии науки как особой интеллектуальной деятельности, обосновывал представления о математическом языке, на котором написана книга природы.

    Выразителем самосознания новой эпохи явился Рене Декарт (1596– 1650). Он не только был крупнейшим математиком, но и пытался обобщить принципы математического мышления до уровня универсальной научной методологии – всеобщей математики, mathesis universalis. Эти принципы, по Р. Декарту, действуют везде, где осуществляется научное познание. Своим главным достижением Р. Декарт считал создание метода, который позволяет, по его мнению, преодолеть скептицизм. Правильное мышление устанавливает несомненные первоначала; выводит из них все остальные утверждения. Основными действиями научного разума являются умение видеть самоочевидное (интуиция), строить логически достоверные рассуждения (дедукция), добиваться максимальной полноты рассмотрения явления (энумерация). Программа Р. Декарта – это программа унификации всей науки, а теория познания опирается на учение о ясных и отчетливых идеях (например, понятиях математической механики – движение, фигура, число и др.).

    Таким образом, им была предложена, по сути дела, универсальная математическая концепция архитектуры мироздания. Материя предстала в ней как некое единое целое, как организованная система силовых взаимодействий, причем система принципиально реляционная, связанная воедино, т.к. между любыми двумя телами действует взаимная сила притяжения. Многовековые поиски теории единства мира увенчались созданием учения, которое было сформулировано точно, в количественных терминах.

    В области конкретных математических методов И. Ньютону (наряду с Г.В. Лейбницем) принадлежит честь создания аппарата математического анализа – дифференциального и интегрального исчисления. Математический анализ стал новым языком описания физических явлений; в будущем он открыл дорогу особому типу физических законов – структурным законам, описывающим микроструктуру физических сред (таковы, например, дифференциальные уравнения поля). Это вывело естествознание к совершенно новым горизонтам. И. Ньютону принадлежат и другие важнейшие результаты в математике и физике (особенно в оптике).

    Полноту картины становления науки дают исследования в гуманитарной сфере. На протяжении XVI–XVII вв. происходит разрыв с системой средневековых представлений о человеке и обществе, разрабатываются сугубо светские учения о государстве, социально–политическом устройстве, праве. Человек рассматривается как носитель естественного права, а государство – как результат договорного процесса между свободными индивидами.

    По образцу корпускулярно–атомистической концепции материи в естественных науках социальные мыслители развивают идеи социального атомизма и ищут законы социальной жизни, аналогичные законам механического движения. Новое гуманитарное знание стремится к точности, сравнимой с точностью естествознания.

    Дж. Локк (1632–1704) известен своей сенсуалистической теорией познания и социально–политическими работами. Он развивал учение о правах человека, об общественном договоре, о разделении ветвей власти в цивилизованном государстве. Государство, по Дж. Локку, оказывается неким минимумом принуждения, который необходим индивидам для гарантии своих свобод.

    Читайте также: