Мыслительный эксперимент эйнштейна кратко

Обновлено: 30.06.2024

Гелясин А.Е. Мысленный эксперимент в физике // Фiзiка: праблемы выкладання. – 2007. – № 6. – С. 23-28.

Что наблюдалось бы на опыте,
если не глазами во лбу,
то очами умственными?
Галилео Галилей

Вывод, сделанный Галилеем, явно противоречил всему, что знали и наблюдали в реальной жизни (поэтому, может, не стоит сильно ругать Аристотеля за создание неверной, с точки зрения современной физики, теории движения, ведь он создавал свою теорию на основе наблюдения за движением реальных тел). Конечно, мы не можем реально осуществить этот эксперимент. Даже если бы нам удалось устранить все внешние воздействия, что принципиально невозможно сделать, то все равно наблюдать вечно длящееся движение нам будет недоступно. Поэтому, когда изучаешь труды Галилея, понимаешь, что одной из самых замечательных и уникальных черт его мышления была способность достигать ясного структурного понимания исследуемого физического процесса на чрезвычайно сложном и запутанном фоне реальности.

Как уже говорилось, вначале Эйнштейн пытался решить вопрос о скорости света, если наблюдатель будет двигаться, и связал этот вопрос с существованием абсолютной системы отсчета. В уравнениях Максвелла для электромагнитного поля скорость света играла важную роль и являлась константой. Эйнштейн задавался вопросом: что произойдет с уравнениями Максвелла, если предположить, что скорость света зависит от движения источника и будет ли при этом решение уравнений соответствовать опыту? Он исследовал эту альтернативу (является ли скорость света в уравнениях Максвелла относительной переменной) и получил отрицательный результат. Такой результат подтвердил и опыт Майкельсона, показавший, что скорость света должна быть постоянной. Возникающие вопросы и противоречия пытались решить многие физики того времени, однако их решения основывались на положениях традиционной физики, с устоявшимися понятиями пространства, времени, измерения. Эйнштейн задается вопросом: можно ли правильно, объективно оценить ситуацию, находясь в рамках классической физики? Для полного понимания ситуации необходимо было правильно ответить на следующие вопросы:

Как измерить скорость света в движущейся системе?

Как в этих условиях измерить время?

Что означает одновременность в такой системе?

Что означает одновременность, если это понятие относится к различным местам?

В поисках ответа на эти вопросы Эйнштейн понял: нельзя слепо применять привычное понятие одновременности ко всем случаям. Смысл одновременности должен основываться на понятии одновременности в одном месте. Отсюда следовало, что в случае локализации двух событий необходимо принимать во внимание относительное движение сигнала о событии. Таким образом, смысл и структурная роль одновременности в ее отношении к движению претерпели коренное изменение. Отсюда сразу же следовало соответствующее требование к измерению времени и пространства как зависящим от относительного движения. Но Эйнштейн понимал: чтобы введение наблюдателя и его системы координат не носило совершенно произвольный и субъективный характер (ведь реальность не может быть произвольной и субъективной), необходимо ввести основной инвариант — некий фактор, который будет оставаться неизменным при переходе от одной системы координат к другой. Это приводит его к решающему шагу — введению в качестве инварианта скорости света. До сих пор скорость света была одной из многих скоростей. Теперь ее роль изменилась: она перестала быть одним из многих частных факторов и стала центральным элементом системы новой физики.

Итак, мы рассмотрели мысленные эксперименты выдающихся физиков, которые показывают, что хорошо продуманный мысленный эксперимент может не только вызвать кризис в господствующей теории, но и создать новую, более совершенную форму физики. Какие же основные черты мысленных экспериментов?

Поскольку автору не удалось найти в литературе определение физического мысленного эксперимента, приходится предложить собственное.

Мысленный физический эксперимент — это познавательный процесс, имеющий структуру реального физического эксперимента, с созданной на базе наглядных образов идеальной физической моделью, функционирование которой подчиняется законам физики и правилам логики. Мысленный эксперимент при этом сочетает силу формального логического вывода и экспериментальной достоверности.

Целью мысленных экспериментов является изучение физических явлений, принципиально или в настоящее время недоступных для проведения реальных экспериментов. В физике известно много мысленных экспериментов, среди которых наиболее яркими и известными являются:

  • эксперименты Архимеда по открытию условий плавания тел;
  • рассмотренные выше эксперименты Галилея и Эйнштейна;
  • эксперимент Маха: есть ли инерция в пустой Вселенной;
  • проекты идеальных двигателей (Карно);
  • демон Максвелла, осуществляющий создание вечного двигателя второго рода;
  • демон Больцмана — противовес демону Максвелла, доказывающий вероятностный характер второго начала термодинамики;
  • парадокс близнецов, иллюстрирующий относительность временных промежутков в различных системах отсчета;
  • лифт Эйнштейна — мысленный эксперимент Эйнштейна со свободно падающим лифтом, в результате которого сформулирован принцип эквивалентности тяжелой и инертной массы, положенный в основу общей теории относительности;
  • кот (кошка) Шредингера — эксперимент, показывающий неполноту квантовой механики;
  • гамма-микроскоп Гейзенберга — мысленный эксперимент, подтверждающий принцип неопределенности;
  • феймановский эксперимент о прохождении электрона через две щели.

Как видно из перечисления только самых значительных мысленных экспериментов, они внесли огромный вклад в развитие физики. Формально мысленные эксперименты можно разделить на три группы. К первой относятся эксперименты, которые давали теоретическое объяснение наблюдаемым фактам. Ко второй — мысленные эксперименты по изучению физических явлений, в настоящее время недоступных для проведения реальных экспериментов, и, естественно, мысленные эксперименты, изучающие явления в условиях, принципиально недоступных реальному эксперименту (например, работа идеальной тепловой машины).

Кроме этого, существуют иллюстративные мысленные эксперименты, имеющие цель сделать выводы той или иной теории более наглядными, поскольку, если к результатам мысленного эксперимента относиться как к готовому знанию, он будет играть роль простой иллюстрации.

Именно такие эксперименты предлагаются на начальном этапе в процессе обучения физике. Мы знаем, что физика изучает природу с помощью абстрактных идеальных моделей, для описания которых используется математический аппарат. Учащиеся, как правило, воспринимают информацию в чувственной форме, и поэтому в процессе обучения им приходится перекодировать чувственно воспринимаемую информацию в символическую и знаковую формы. Здесь на выручку приходит мысленный эксперимент, позволяющий абстрактную физическую реальность переводить в сознании учащихся в привычную и знакомую форму наглядных образов. В процессе обучения мысленное экспериментирование с идеальными физическими моделями позволяет связать наглядные реально существующие образы с символическими образами и моделями. Например, во время урока запись на доске F = M · a представляется ребятам действием какой-либо реальной силы, создающей ускорение реального тела. В дальнейшем реальные объекты могут представляться учащимися абсолютно непохожими на первоначальные — в виде таблиц, графиков, математических формул. Мысленный эксперимент позволяет научить переходу от реальности к абстрактным идеальным моделям, в результате действий с которыми получить результаты, применимые к реальным объектам.

Кроме того, что мысленные эксперименты позволяют лучше понять и почувствовать физические законы и явления, они необходимы и при решении физических задач. Даже не приводя конкретных примеров, можно утверждать: большинство задач сформулированы таким образом, чтобы описать часть реального процесса, поэтому мысленный эксперимент необходим, чтобы при решении задачи переводить реальные образы в образы идеальной модели, действия которой будут описываться математическими символами и понятиями. Кроме того, существует большое количество задач (олимпиадные, творческие, экспериментальные), где учебный мысленный эксперимент является эвристическим, позволяя провести исследования и получить серьезные и красивые результаты. Эти мысленные эксперименты ничем не отличаются от научных и позволяют делать свои маленькие открытия каждому ученику.

Нельзя обойти стороной связь мысленного эксперимента и компьютерного моделирования физических процессов. Компьютерное моделирование дает возможность на экране наблюдать то, что мы должны представлять в своем сознании. Мы видим, что происходит с мысленным идеальным объектом в почти реальных условиях, при этом выделяется только самое существенное для этой идеальной модели.

Подлинное использование мысленных экспериментов всегда должно учитывать колоссальную сложность и многообразие физических постулатов и посылок, которые лежат в основе той или иной аргументации. При этом необходимо помнить, что мысленный эксперимент имеет ряд аспектов, связанных не только с проблемой имитации тех или иных физических ситуаций, но и с компетенцией мыслящего субъекта. Поэтому мы должны обучать учащихся умению ставить не только реальные эксперименты, но и проводить мысленные.

Таким образом, хотя нельзя преувеличивать роль мысленных экспериментов там, где возможна экспериментальная проверка положений теории, нельзя и недооценивать эту роль в тех областях физики, где реальный эксперимент сильно ограничен. Это касается и процесса обучения физике.

Литература

1. Жолнеревич, И. И. Физика: учеб. пособие для 10 кл. / И. И. Жолнеревич, И. Н. Медведь. — Минск: Нар. асвета, 2007.

2. Мах, Э. Механика / Э. Мах. — М., 2000.

3. Штекли, А. Галилей / А. Штекли. — М.: Молодая гвардия, 1972.

4. Вейтгеймер, М. Продуктивное мышление / М. Вейтгеймер. — М.: Прогресс, 1987.

5. Лъоцци, М. История физики / М. Льоцци. — М.: Мир, 1970.

6. Галилей, Г. Избранные труды — Т. 1 / Г. Галилей. — М.: Наука, 1964.

7. Эйнштейн, А. Эволюция физики / А. Эйнштейн, Л. Инфельд. — М.: Наука, 1965.

8. Эйнштейн, А. Собр. научных трудов. — Т. 1 / А. Эйнштейн. — М.: Наука, 1965.

Давайте для начала рассмотрим упрощенный вариант того, как Эйнштейн открыл общую теорию относительности. Эйнштейн начинал со следующего мысленного эксперимента. Он представлял себе человека, стоящего в лифте, который не имеет окон и движется очень тихо. Человек в лифте не мог бы слышать движение лифта или выглядывать из него наружу. Он мог бы лишь ощущать давление от пола, которое у него обычно ассоциируется со стоянием на твердой поверхности, например на земле.

Эйнштейн воображал, что сам он висит в области пространства, где нет тяготения, и смотрит на этого человека и лифт снаружи. Эйнштейн представлял себе, что лифт поднимает мощный подъемный кран, который создает силу, тянущую его вверх. Человек в лифте – который не может выглядывать наружу – ощущает эту силу как исходящую от пола. (Эйнштейн вычислял силу, необходимую для ускорения лифта, по формуле Ньютона: сила = масса ? ускорение. Исходя из массы человека и лифта, Эйнштейн представлял, какая сила потребовалась бы крану, чтобы компенсировать ускоряющий потенциал тяготения.)


Рис. 30.1. Мысленный эксперимент Эйнштейна с лифтом

Эйнштейн заключал, что, не имея возможности выглядывать наружу, человек в лифте не мог бы проводить различие между силой тяготения, тянущей его вниз, и силой, наподобие силы подъемного крана, тянущей его вверх.

Из своего мысленного эксперимента Эйнштейн сразу же понял, что человек в лифте не смог бы сказать, есть ли под ним большая планета, сила тяготения которой прижимает его к полу, или же над ним имеется подъемный кран, сила которого ускоряет его вверх.


Рис. 30.2. Человеку в лифте кажется, что поблизости есть планета, обладающая тяготением

Поскольку человек в лифте не может проводить различие между ускорением, обусловленным силами крана или тяготения, сила тяготения должна быть каким-то образом эквивалентна силе крана. Другими словами, для человека в лифте ускорение и тяготение эквивалентны друг другу.

Он знал, что его общая теория относительности должна включать в себя меняющуюся скорость – то есть ускорение – а значит, и тяготение. Почему? Потому что тяготение и ускорение оказывают сходное действие. Эйнштейн понял, что тяготение влияет на материю так же, как ускорение. Таким образом, сила тяготения и сила ускорения неразличимы. Поскольку ускорение (и его силы) могут вызываться изменением направления движения – как при повороте направо или налево в автомобиле, – эффекты тяготения эквивалентны кривизне пространства.

Эйнштейн доверял собственным мысленным экспериментам не меньше, или даже больше, чем реальным измерениям, которые позднее подтвердили его выводы. Он знал, что общая теория относительности, какова бы она ни была, должна иметь дело с этой эквивалентностью.

Вот примерное объяснение. Вспомните, что если 5 – это расстояние, проходимое за время t, а v – это скорость, то v = s/t. Ускорение a – это изменение скорости, то есть отношения s/t. Таким образом, ускорение эквивалентно изменениям в пространстве и времени. Иными словами, из эквивалентности тяготения и ускорения следует, что тяготение – самая универсальная из всех материальных сил – эквивалентно изменениям в пространстве и времени, происходящим при искривлении и деформации этих измерений.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

2. Эксперимент

2. Эксперимент Метод эксперимента состоит в том, чтобы установить искусственный контроль и искусственную изоляцию, обеспечивая тем самым воспроизведение сходных условий и следующих из них определенных результатов. Он основан на той идее, что в результате сходных

МАНИФЕСТ ЭЙНШТЕЙНА — РАССЕЛА. УЧЕНЫЕ В БОРЬБЕ ЗА МИР

МАНИФЕСТ ЭЙНШТЕЙНА — РАССЕЛА. УЧЕНЫЕ В БОРЬБЕ ЗА МИР Трагедия Хиросимы и Нагасаки потрясла Рассела, стала импульсом для его размышлений о реальности всемирной ядерной катастрофы и — как следствие — о путях ее предотвращения. Его жизнь начиная с 1945 г. и до самой смерти в

Заметка о Беркли как о предшественнике Маха и Эйнштейна

Заметка о Беркли как о предшественнике Маха и Эйнштейна У меня было весьма слабое представление о том, кем был епископ Беркли, однако я был благодарен ему за то, что он защитил нас, опираясь на бесспорную первую предпосылку.Сэмюэл

Мозг Эйнштейна*

Мозг Эйнштейна* Мозг Эйнштейна является мифическим объектом: парадоксально, но величайший ум изображается как сверхсовершенный механизм, человек непомерной интеллектуальной мощи изымается из сферы психологии и помещается в мир роботов; как известно, в научной

17.2.1. Общая теория относительности Эйнштейна (ОТО) / космология Большого взрыва

17.2.1. Общая теория относительности Эйнштейна (ОТО) / космология Большого взрыва В 1915 году Альберт Эйнштейн опубликовал полевые уравнения ОТО, связывающие кривизну пространства–времени с распределенной в пространстве–времени энергией: R?? — ?Rg?? = 8?Т. В упрощенном

ГЛАВА 8. ПАРАДОКС ЭЙНШТЕЙНА-ПОДОЛЬСКОГО-РОЗЕНА

ГЛАВА 8. ПАРАДОКС ЭЙНШТЕЙНА-ПОДОЛЬСКОГО-РОЗЕНА Идеалистическая интерпретация коллапса квантово-волновой функции держится на нелокальности сознания. Поэтому нам нужно спросить — существуют ли какие-либо экспериментальные доказательства нелокальности. Нам везет. В 1982

ЗНАНИЕ ИЛИ ЭКСПЕРИМЕНТ?

ЗНАНИЕ ИЛИ ЭКСПЕРИМЕНТ? Вклад суфиев в реализацию человеческих возможностей зависит от того, понимают ли люди необходимость устранить барьеры, препятствующие пониманию.Главное препятствие проявляется здесь в том, что люди принимают желаемое за действительное и

Специальная теория относительности Эйнштейна и Пуанкаре

Специальная теория относительности Эйнштейна и Пуанкаре Напомним принцип относительности Галилея, который гласит, что физические законы Ньютона и Галилея останутся совершенно неизменными, если от покоящейся системы отсчета мы перейдем в другую, движущуюся равномерно

Общая теория относительности Эйнштейна

Общая теория относительности Эйнштейна Напомним великую истину, открытую Галилеем: все тела под действием силы тяжести падают одинаково быстро. (Это было блестящей догадкой, едва ли подсказанной эмпирическими данными, поскольку из-за сопротивления воздуха перья и камни

23. Отстраненность Эйнштейна от времени

23. Отстраненность Эйнштейна от времени Люди вроде нас, которые верят в физику, знают, что различие между прошлым, настоящим и будущим – это лишь упрямо сохраняющаяся иллюзия. Альберт Эйнштейн Некоторые физики, вроде Стивена Хоукинга, утверждают, что определенные аспекты

Эфир Эйнштейна

Интерлюдия Недовольство Эйнштейна

Интерлюдия Недовольство Эйнштейна Блочная картина Вселенной в теории относительности стала последним шагом к устранению времени из физики. Но у самого Эйнштейна было двойственное отношение к исчезновению времени из картины мироздания, для создания которой он столько

Парадокс Эйнште́йна — Подо́льского — Ро́зена (ЭПР-парадокс) — попытка указания на неполноту квантовой механики с помощью мысленного эксперимента, заключающегося в измерении параметров микрообъекта косвенным образом, не оказывая на этот объект непосредственного воздействия. Целью такого косвенного измерения является попытка извлечь больше информации о состоянии микрообъекта, чем даёт квантовомеханическое описание его состояния.

Содержание

Суть парадокса

Согласно соотношению неопределённостей Гейзенберга, нет возможности измерить одновременно координату частицы и её импульс. Предполагая, что причиной неопределённости является то, что измерение одной величины вносит принципиально неустранимые возмущения в состояние и производит искажение значения другой величины, можно предложить гипотетический способ, которым соотношение неопределённостей можно обойти.

Допустим, две одинаковые частицы A и B образовались в результате распада третьей частицы C . В этом случае, по закону сохранения импульса, их суммарный импульс должен быть равен [1] исходному импульсу третьей частицы , то есть, импульсы двух частиц должны быть связаны. Это даёт возможность измерить импульс одной частицы ( A ) и по закону сохранения импульса рассчитать импульс второй ( B ), не внося в её движение никаких возмущений. Теперь, измерив координату второй частицы, можно получить для этой частицы значения двух неизмеримых одновременно величин, что по законам квантовой механики невозможно. Исходя из этого можно заключить, что соотношение неопределённостей не является абсолютным, а законы квантовой механики являются неполными и должны быть в будущем уточнены.

Если законы квантовой механики всё же верны, то измерение импульса одной частицы равносильно измерению импульса второй частицы. Однако это создаёт впечатление мгновенного воздействия первой частицы на вторую в противоречии с принципом причинности.

История вопроса

После публикации этой статьи Нильс Бор опубликовал статью с тем же названием, [4] в которой он высказал несколько аргументов за вероятностное описание квантовой механики и определённую аналогию между положениями квантовой механики и эйнштейновской Общей теорией относительности. Так зародился спор Бора — Эйнштейна о физическом смысле волновой функции.

Бом в 1951 году рассмотрел возможность провести эксперимент (технически тогда еще не осуществимый), т. н. оптический вариант ЭПР-опыта, который смог бы разрешить спор Эйнштейна-Бора.

В 1964 году [5] Белл ввёл математический формализм, использующий дополнительные параметры, которые могли бы объяснить вероятностную природу квантовых явлений. По замыслу, полученные им неравенства должны были показать, может ли введение дополнительных параметров сделать описание квантовой механики не вероятностным, а детерминированным — в случае нарушения неравенств Белла такое детерминистическое описание с использованием дополнительных параметров невозможно. Таким образом, становилось возможным в эксперименте получить определённую величину, описывающую корреляции между удаленными измерениями, и на ее основе сказать, имеет ли смысл описывать квантовые явления вероятностно или детерминировано.

Результаты экспериментов, проведённых в 1972 году Стюартом Дж. Фридманом и Джоном Ф. Клаузером [6] в Калифорнийском университете в Беркли, согласовывались с квантовой механикой, и было зафиксировано нарушение неравенств Белла.

Затем в Гарвардском университете Р.А. Хольт и Ф.М. Пипкин [7] получили результат, расходящийся с квантовой механикой, но удовлетворяющий неравенствам Белла.

В 1976 году в Хюстоне Эдвард С. Фрай и Рэднделл. С. Томпсон [8] изготовили гораздо более совершенный источник коррелированных фотонов, и их результат совпал с предсказаниями квантовой механики. Они установили отклонение от неравенств Белла.

Все эти эксперименты выполнялись с одноканальными поляризаторами, и отличались лишь источниками коррелированных фотонов и их получением. При такой упрощенной экспериментальной схеме используются поляризаторы, пропускающие свет, поляризованный параллельно a (или b), но не пропускающий свет в ортогональном направлении. Поэтому можно получить только часть величин, нужных для вычисления корреляции между удаленными измерениями.

Для того, чтобы повысить точность экспериментов, было необходимо иметь стабильный и хорошо управляемый источник запутанных фотонов и использовать двухканальный поляризатор. В 1982—1985 гг. Алан Аспе, используя соответствующее оборудование, поставил серию более сложных экспериментов, результаты которых также совпали с предсказаниями квантовой механики и продемонстрировали отклонение от неравенств Белла.

Объяснение парадокса

Как и многие другие физические парадоксы, мысленный эксперимент Эйнштейна — Подольского — Розена содержит в себе ряд различных проблем и уровней их понимания. В базовой формулировке ставится под сомнение полнота соотношения неопределённости Гейзенберга. Для этого предлагается измерительная процедура, в которой могут быть одновременно получены значения координаты и импульса частицы. Однако такое измерение проводится однократно, что не противоречит квантовой теории. Дело в том, что соотношение неопределённости формулируется для дисперсий физических величин. Чтобы их вычислить, необходимо провести множество экспериментов, усреднение по которым и даёт значения Δx и Δp . Обсуждать дисперсию единичного эксперимента не имеет смысла.

Ситуация аналогична интерференции одиночных электронов [10] . Каждый из них после прохождения интерференционных щелей засвечивает на фотопластинке единственную точку. Лишь множество электронов, находящихся в одном состоянии (ансамбль электронов), со временем из этих отдельных точек сформируют интерференционную картину. Подобным образом и соотношение неопределённости носит статистический характер.

Предположим, что у квантовых объектов, находящихся в одном состоянии, проводится измерение двух физических величин x и p , которым соответствуют некоммутирующие между собой операторы " width="" height="" />
и " width="" height="" />
. В квантовой механике нет явного запрета на одновременное одиночное измерение x и p . Мысленный эксперимент Эйнштейна — Подольского — Розена является примером подобной измерительной процедуры. Если усреднить получаемые в каждом измерении значения величин (x1,p1) , (x2,p2) ,… , то произведение их дисперсиий по всей совокупности измерений будет удовлетворять соотношению неопределённости [11] .

Это, однако, не означает, что одиночная квантовая частица, над которой проводится измерение, может одновременно обладать определёнными значениями координаты и импульса. В эксперименте Эйнштейна — Подольского — Розена после измерения импульса одной частицы двухчастичная волновая функция редуцируется (изменяется) таким образом, что вторая частица также оказывается в состоянии Ψp(x) с определённым значением импульса p . Поэтому суть парадокса может быть рассмотрена на стандартной одночастичной задаче c волновой функцией Ψp(x) .


Если мы можем, при отсутствии возмущения системы, предсказать с достоверностью (то есть вероятностью, равной единице) значение некоторой физической величины, то существует элемент физической реальности, соответствующий этой физической величине.

Для суждения об успехе физической теории мы можем задать себе два вопроса: 1) Правильна ли теория? и 2) Является ли даваемое теорией описание полным? Только в том случае, если на оба эти вопроса можно дать положительные ответы, концепции теории могут быть признаны удовлетворительными. Первый вопрос — о правильности теории — решается в зависимости от степени согласия между выводами теории и человеческим опытом. Этот опыт, который только и позволяет нам делать заключения о действительности, в физике принимает форму эксперимента и измерения. Мы хотим рассмотреть здесь, имея в виду квантовую механику, второй вопрос … от всякой полной теории нужно, как нам кажется, требовать следующее: каждый элемент физической реальности должен иметь отражение в физической теории. Мы будем называть это условием полноты.

После чего авторы отмечают известный факт из квантовой механики:

… для частицы в состоянии ψ определенного значения координаты предсказать нельзя, а его можно получить только путем непосредственного измерения. Такое измерение вызовет возмущение частицы и, таким образом, изменит ее состояние. После того как координата будет определена, частица уже не будет больше находиться в прежнем состоянии. Обычно в квантовой механике из этого делается следующий вывод: если количество движения частицы известно, то ее координата не имеет физической реальности.

Критика парадокса

Ответ Бора

Ответ Бора начинается с заявления:

Квантовая механика в пределах своей области применимости представляется вполне рациональным описанием тех физических явлений, с которыми мы встречаемся при изучении атомных процессов … аргументация в парадоксе ЭПР едва ли годится для того, чтобы подорвать надежность квантовомеханического описания, основанного на стройной математической теории, которая охватывает все случаи измерения.

и далее Бор достаточно подробно рассматривает ряд измерений в экспериментах. Он отрицает, что можно говорить о какой-либо неполноте квантовомеханического описания. А вероятностные измерения связаны с невозможностью контролировать обратное действие объекта на измерительный прибор (то есть учёт переноса количества движения в случае измерения положения и учет смещения в случае измерения количества движения). После чего рассматривает различные способы устранения такого влияния и приходит к выводу:

Невозможность более подробного анализа взаимодействий, происходящих между частицей и измерительным прибором … представляет существенное свойство всякой постановки эксперимента, пригодной для изучения явлений рассматриваемого типа, в которых мы сталкиваемся с своеобразной чертой индивидуальности, совершенно чуждой классической физике.

Поэтому Фок замечает, что Эйнштейн и Бор вкладывают разный смысл в некоторые термины [12] , и вся аргументация с той и другой стороны подчинена изначальной позиции, которую выбрал для себя оппонент:

Таким образом, данный спор, содержит в своей основе решение вопросов о достаточности и необходимости тех или иных аксиом, и исходящим из этого философском понимании физической реальности (природы) и о том, какое описание физических теорий может удовлетворить исследователя. И в решении данного вопроса отчетливо видна важная связь философии-физики [14] .

Оптический вариант мысленного ЭПР-опыта, предложенный Бомом

Бом в 1951 году в последней главе своей книги [15] отмечает, что в критерии физической реальности, данном в ЭПР-парадоксе, неявно присутствуют два предположения:

Дальше Бом отмечает, что если искать доказательства концепции изложенной в ЭПР-парадоксе, то это должно привести к поискам более полной теории, выраженной, например, в виде теории скрытых параметров.

Важным вкладом Бома в решение этого парадокса считают, то что он используя два фильтра Штерна-Герлаха (оптическим аналогом является поляризатор, который использовался в реальных опытах), который был использован в опыте Штерна — Герлаха, предложил реальный физический эксперимент, который позволил бы в частном виде реализовать мысленный ЭПР-эксперимент. Но в то время это было невозможно технически, хотя позже такие эксперименты были сделаны многократно (наиболее известны эксперименты Алана Аспе). Таким образом, стала возможной некоторая постановка опыта, для проверки философских позиций Эйнштейн versus Бор.


Мысленный эксперимент Эйнштейна-Подольского-Розена-Бома с фотонами. Два фотона v1 и v2, испущенные в зацепленном состоянии, анализируются линейными поляризаторами с ориентациями a и b. Можно измерять вероятности одиночной или совместной регистрации на выходе каналов поляризаторов

В 1933 году Альберт Эйнштейн вместе со своими учениками Борисом Подольским и Натаном Розеном провел необычный мысленный эксперимент, который, как планировал физик, должен был пошатнуть основы квантовой теории того времени.

Однако это привело к тому, что Эйнштейн буквально пришел в бешенство от собственных же идей и все это по сей день служит источником головной боли для квантовых физиков.

Итак, представьте атом, испускающий в противоположных направлениях два электрона, которые вращаются в разных направлениях, а значит их суммарное вращение равно нулю.

При этом, важно отметить, вы не знаете какой электрон в каком направлении вращается.

Если у вас в запасе достаточно много времени, то вы застанете тот момент, когда расстояние между электронами будет составлять миллионы или даже миллиарды световых лет.

Теперь представьте, что вы получаете возможность измерить спин какого-то из электронов и вы узнаете, что его вектор направлен вверх. Через доли секунды вы уже будете знать, что спин второго электрона направлен противоположно вниз.

То есть вы бы получили информацию мгновенно и расстояние в миллионы/миллиарды световых лет для вас не было бы проблемой!

Разве это не противоречит легендарной теории относительности Эйнштейна? Парадокс заставил ученого серьезно понервничать и, пытаясь найти объяснение столь логичному эксперименту, ситуация лишь усугублялась.

Альберта Эйнштейна бесило не то, что информация о спине электрона передается быстрее скорости света, а идея "нелокальности Вселенной".

Все тяжелые элементы были рождены в результате взрывов сверхновых и их распространение было равномерным по всем направлениям. Выходит, что атомы из которых состоят наши тела, связаны невидимыми нитями с аналогичными атомами на другом конце Вселенной.

Самые важные мысленные эксперименты Эйнштейна, не утратившие своего значения и поныне, были предложены лишь в 1935 г., когда вместе со своими коллегами Борисом Подольским и Натаном Розеном он опубликовал в журнале The Rhysical Review статью, содержащую наиболее убедительную и по сей день формулировку парадоксальной природы квантовой физики. По существу, эксперимент Эйнштейна – Подольского – Розена затрагивал старую проблему: может ли частица одновременно обладать определенным положением и определенным импульсом. Задача, которую поставили перед собой Эйнштейн и его коллеги, состояла в том, чтобы придумать схему мысленного эксперимента, позволяющего (по крайней мере в принципе) сколь угодно точно измерить координаты частицы и ее импульс.

К тому времени было общепризнано, что любая попытка непосредственно измерить положение и импульс частицы обречена на провал по простой причине: когда вы пытаетесь измерить положение частицы, само измерение вносит не поддающиеся контролю изменения в величину импульса частицы. В свою очередь измерение импульса аннулирует всю полученную ранее информацию о положении частицы. Измерение одного типа несовместимо с измерением другого типа и аннулирует его результат. И если Эйнштейн надеялся преуспеть в попытке одновременного измерения координат и импульсов, ему надлежало избрать более тонкую стратегию.

Использованный Эйнштейном и его коллегами принцип достаточно известен. При игре в бильярд, когда шар, по которому игрок ударяет кием, сталкивается с другим шаром, оба они разлетаются в разные стороны. Но их движения не произвольны, а жестко связаны друг с другом законом действия и противодействия – законом сохранения импульса. Измерив импульс одного шара, можно судить об импульсе другого (который может откатиться далеко в сторону), даже непосредственно не наблюдая за ним. Закон сохранения импульса справедлив и для квантовых частиц. Значит, необходимо лишь, чтобы две квантовые частицы, 1 и 2, столкнувшись между собой, провзаимодействовали и разлетелись на большое расстояние. В этот момент можно измерить импульс частицы 1. Зная его, можно, воспользовавшись законом сохранения импульса, точно вычислить импульс частицы 2, которая, собственно, нас и интересует. Измерение импульса частицы 1, разумеется, внесет неопределенность в ее положение, но это несущественно, так как не влияет на положение частицы 2 (а нас интересует именно она), поскольку та находится далеко; в принципе она могла бы располагаться на расстоянии нескольких световых лет. Если в один и тот же момент непосредственно измерить положение частицы 2, то ее положение и импульс станут известны одновременно. Иначе говоря, мы перехитрим принцип неопределенности!

Отвергая идею мгновенного дальнодействия, Эйнштейн исходил из своего убеждения, что никакой сигнал или воздействие не могут распространяться быстрее света. Это – ключевой момент теории относительности, и им не следовало пренебрегать. Кроме того, невозможность распространения сигналов со скоростью выше скорости света принципиально важна для общего определения прошлого и будущего во Вселенной. Преодоление светового барьера эквивалентно распространению сигналов назад во времени, а это чревато парадоксами.

На этом этапе Эйнштейн и Бор могли признать лишь несовпадение своих позиций. Необходим был такой вариант мысленного эксперимента, который позволил бы проверить, нарушается или нет принцип неопределенности на практике. В 60‑х годах Джон Белл из ЦЕРНа придумал, как это сделать. Он использовал два основных допущения Эйнштейна, Подольского и Розена (распространение сигналов со скоростью меньше скорости света и существование объективной реальности) для вывода наиболее общих соотношений между измерениями с частицей 1 и измерениями с частицей 2, причем измерениями не только положения и импульса, но и других характеристик, в частности ориентации спина. Белл обнаружил, что измерения некоторых типов позволяют различить позиции Эйнштейна и Бора, отдавая предпочтение одной из них. Иначе говоря, два упомянутых допущения позволяют сделать определенные экспериментальные предсказания, которые не подтвердились бы, будь справедлива квантовая механика в духе Бора с внутренне присущей ей неопределенностью. Таким образом, если бы удалось выполнить соответствующий реальный эксперимент, то тем самым осуществилась бы прямая проверка наличия квантовой неопределенности.

Белл записал суть различия двух соперничающих теорий в форме математического соотношения, получившего название неравенства Белла. Проще говоря, если прав Эйнштейн, то результаты реального эксперимента должны подтвердить неравенство Белла. Если же прав Бор, то это неравенство не будет выполнено. Очередь теперь была за экспериментаторами.

Крушение наивного представления о реальности

Практическую проверку неравенства Белла не удалось осуществить в 60‑е гг. Основная проблема заключалась в недостаточной точности оборудования того времени. Чтобы с уверенностью исключить обмен сигналами между двумя частицами, находящимися на некотором расстоянии друг от друга, измерения следовало произвести за столь короткий интервал времени, за который сигналы, распространяющиеся со скоростью света (или медленнее), не успевали бы преодолеть расстояние между частицами. Это означает, что при расстоянии между частицами в несколько метров измерения должны занимать не более нескольких миллиардных долей секунды.

Причуды квантовой реальности

А как быть с парадоксами, связанными с распространением сигналов? Возможно, что‑то мешает нам управлять такими сигналами. В этих вопросах достичь полной ясности так и не удалось.

Хотя не все физики согласны с ниспровержением наивной реальности, взгляды Бора остаются общепринятыми, и результаты Аспека, несомненно, лишь подкрепили их. Эта точка зрения оказывает глубокое влияние на наши представления об окружающем нас физическом мире.

Подобный взгляд на природу можно с полным основанием назвать наивным реализмом.

Квантовая физика ниспровергает столь упрощенную классическую взаимосвязь целого и его частей. Квантовый подход требует рассматривать частицы только в их взаимосвязи с целым. Поэтому было бы неверно считать элементарные частицы вещества материальными объектами, которые, соединяясь в ансамбли, образуют более крупные объекты. При более точном описании мир выступает как совокупность отношений.

Американский физик Г. П. Стэпп так сформулировал квантовую концепцию частицы:

Элементарная частица не есть нечто независимо существующее и не поддающееся анализу. По существу – это среда, распространяющаяся вовне на другие объекты.

Невольно на, память приходит строка из Уильяма Блейка: Вселенная в песчинке видней. Мы должны рассматривать вещество и энергию в рамках всеобъемлющего единого бытия. Еще одно следствие квантовой физики затрагивает роль наблюдателя – лица, реально выполняющего измерения. Квантовая неопределенность не переносится на производимые нами реальные наблюдения. Это означает, что в каком‑то звене цепи, соединяющей исследуемую квантовую систему с экспериментальной установкой, шкалами и измерительными приборами, нашими органами чувств, нашим мозгом и, наконец, нашим сознанием, должно происходить нечто такое, что рассеивает квантовую неопределенность. Правила квантовой физики вполне определенны в этом отношении. В отсутствие наблюдателя квантовая система каким‑то образом существует и развивается. После того как произведено наблюдение, поведение системы становится совершенно иным. Чем мною вызвано изменение в поведении системы, не ясно, но некоторые физики утверждают, что это изменение явно обусловлено вмешательством экспериментатора.

Этим слегка интригующим замечанием мы завершим наш рассказ о проблемах и парадоксах квантовой физики. И какие бы споры ни велись вокруг ее принципиальных основ, подавляющее большинство ученых все же сходится на том, что в своих приложениях квантовая теория работает блестяще. В частности, именно на ней основывается все описание мира элементарных частиц – того самого мира, в недрах которого погребена суперсила.

Солнечным весенним днем 1822 г. молодой сельский врач Гидеон Мантелл навещал пациента неподалеку от своего родного города Льюиса в графстве Сассекс (Англия). В этой поездке доктора Мантелла сопровождала его жена Мэри Энн, которая, пока муж занимался больным, воспользовалась возможностью побродить по сельским улочкам. Проходя мимо груды камней, добытых из карьера для ремонта дороги, миссис Мантелл заметила странный блестящий предмет коричневого цвета. При ближайшем рассмотрении он оказался куском песчаника, содержащим несколько гигантских зубов. Миссис Мантелл показала находку своему мужу, геологу‑любителю, и он пришел в сильное возбуждение. Найденные зубы напоминали зубы ящерицы игуаны, и доктор Мантелл сделал смелое предположение, что они когда‑то принадлежали огромным травоядным рептилиям, населявшим Землю еще до появления млекопитающих. Он назвал эти существа игуанодонами. Так чета Мантеллов впервые обнаружила и правильно описала останки динозавров.

Найденные Мантеллами останки вскоре были признаны останками вымерших существ, которые населяли Землю 65–200 млн лет назад. Достойна восхищения мысль, что, изучая современные горные породы, можно кое‑что узнать о мире в столь далекие времена; 200 млн лет – такой гигантский отрезок времени, что не поддается человеческому воображению. Дальнейшие более тщательные поиски привели к открытию останков живых организмов, возраст которых оценивается не менее чем в 3 млрд лет (а возможно, близко к 4 млрд).

Для начала интересно выбрать наиболее знакомый нам объект – наш собственный организм и попытаться выяснить, чтоон может поведать о прошлом.

Прежде всего отметим, что наш организм содержит биологическую информацию, которая закодирована в генах – отдельных участках молекул ДНК, имеющих характерную структуру. Молекулы ДНК лежат в основе всей жизни на Земле. Поэтому можно рассматривать как реликт возникновения жизни на Земле около 4 млрд лет назад. Наша генетическая структура несет на себе бесчисленные отпечатки физических условий, в которых находились наши предки на протяжении многих веков и которые способствовали эволюции человека. Поэтому наш организм – это живой реликт, который в закодированном виде хранит в себе историю нашей планеты.

Биологическая информация определяется тем, какими способами атомы углерода, водорода, кислорода и других элементов, входящих в состав живых организмов, образуют сложные соединения. Ну а что можно сказать о самих атомах, из которых построен наш организм и весь окружающий нас мир?

Согласно современным космологическим представлениям, эти атомы существовали не всегда: они являются реликтами физических процессов, происходивших в глубинах Вселенной задолго образования Земли. Атомы – это ископаемые космоса. Как мы видели в гл. 2, первооснову космического вещества составляет водород, на который вместе с гелием приходится около 10% атомов, тогда как на каждый из остальных примерно 90 элементов – лишь малая доля. В нашем организме сконцентрированы многие элементы, которые в космосе встречаются в следовых количествах. Они зарождались в сложных процессах, происходящих внутри звезд.

Ключ к пониманию ранних этапов эволюции Вселенной скрыт в гигантском количестве теплоты, выделившейся при Большом взрыве. В своем простейшем варианте теория горячей Вселенной предполагает, что Вселенная спонтанно возникла в результате взрыва из состояния с бесконечно большой плотностью и бесконечно большой тепловой (внутренней) энергией. По мере расширения Вселенной температура падала – сначала быстро, а затем все медленнее – от бесконечно большого значения до довольно низкой величины, при которой возникли условия, благоприятные для образования звезд и галактик. На протяжении около 100 тыс. лет температура превышала несколько тысяч градусов, что препятствовало образованию атомов. Таким образом, примерно 100 тыс. лет космическое вещество сохраняло форму разогретой плазмы, состоящей из ионизированных водорода и гелия. Лишь когда температура Вселенной понизилась приблизительно до температуры поверхности Солнца, возникли первые атомы. Таким образом, атомы – это реликты эпохи, наступившей через 100 тыс. лет после Большого взрыва.

Остается, однако, еще более интересный вопрос. Каково происхождение ядер водорода и гелия? Не являются ли они продуктами физических процессов, происходивших в еще более ранние эпохи? В первые несколько минут после Большого взрыва температура космической плазмы превышала 10 6 К – этого было вполне достаточно для протекания ядерных реакций. Методом численного моделирования на ЭВМ и с использованием данных ядерной физики астрофизикам удалось воспроизвести детали ядерных процессов, происходивших в первые минуты существования Вселенной.

Согласно полученным результатам, в конце первой секунды температура достигала 10 10 К – это слишком много для того, чтобы могли существовать сложные ядра. Все пространство было тогда заполнено хаотически движущимися протонами и нейтронами, вперемешку с электронами, нейтрино и фотонами (тепловым излучением). Ранняя Вселенная расширялась чрезвычайно быстро, так что по прошествии минуты температура упала до 10 8 К, а спустя еще несколько минут – ниже уровня, при котором возможны ядерные реакции. Таким образом, в процессе эволюции ранней Вселенной существовал относительно короткий (порядка нескольких минут) промежуток времени, когда протоны и нейтроны могли объединяться, образуя сложные ядра.

Реликты первой секунды

Возможность установить реликты первых минут существования Вселенной, безусловно, следует рассматривать как блестящее достижение астрофизики. Но ученым не свойственно почивать на лаврах – раздвигая границы возможного, они неуклонно стремятся идти к новой цели. В этом – сущность научного поиска. Для объяснения происхождения химических элементов требуется знать, в каком состоянии находилась Вселенная в конце первой секунды. А что было в более ранние моменты, в течение первой секунды?

Чтобы осмыслить события вероятно, происходившие в первые мгновения существования Вселенной, необходимо понять природу космической активности. Если бы мы могли путешествовать вспять во времени, начиная с сегодняшнего дня, что заметили бы, то по мере движения назад темп развития ускоряется. Так, изменения Земли в процессе ее эволюции в течение 4,6 млрд лет происходили очень медленно; поэтому геологические масштабы времени измеряются миллионами лет. Если бы нам удалось вернуться во времена, отстоящие от момента Большого взрыва не на миллиарды, а на миллионы лет, то мы обнаружили бы, что темп развития значительно ускорился. Галактики сформировались течение нескольких сотен миллионов лет, тогда как звезды – еще быстрее (по‑видимому, за несколько десятков миллионов лет). За рубежом, отстоящим от Большого взрыва на 100 тыс. лет, Вселенная предстает почти лишенной какой‑либо структуры – это период горячей плазмы. Темп эволюции здесь можно оценивать по скорости космического расширения и падения температуры. В этот период Вселенная расширялась примерно в 100 тыс. раз быстрее, чем сегодня, а ее температура достигала нескольких тысяч градусов. Еще раньше скорость расширения была много больше, а температура – гораздо выше. В момент 1 с размеры Вселенной возрастали вдвое примерно за 1 с, а ее температура достигала 10 10 К. Очевидно, в пределах первой секунды темп изменений Вселенной был еще выше, безгранично нарастая по мере приближения к моменту Большого взрыва.

Математически это нарастание темпа активности описывается обратно пропорциональной зависимостью. Если обозначить через t время, прошедшее от момента рождения Вселенной – момента Большого взрыва, – то скорость расширения будет пропорциональна 1/t, а температура – 1/ √ t. С уменьшением I обе эти величины возрастают все быстрее, стремясь к бесконечности. Таким образом, поскольку космическая активность неуклонно возрастает по мере приближения к моменту рождения Вселенной, существенные изменения происходят, по‑видимому, за все более короткие промежутки времени. Поэтому здесь целесообразно перейти на исчисление времени в долях 10. Так, за промежуток времени 0,1 – 1 с происходит столько же событий, сколько в интервале 0,01–0,1 с и т. д. Хотя интервал времени уменьшается последовательно в 10 раз, темп изменений, происходящих в каждом таком интервале, оказывается примерно одинаковым.

Возникает вполне естественный вопрос, как далеко можно экстраполировать нашу модель ранней Вселенной, сохраняя уверенность в ее адекватности. Я вспоминаю, как будучи студентом, присутствовал в конце 60‑х гг. на лекции по космологии, где разговор шел о недавно открытом фоновом тепловом излучении. Лектор был несколько смущен, говоря о расчетах содержания гелия на основе ядерных реакций, происходивших, как предполагалось, в первые минуты существования Вселенной. Большинство аудитории открыто смеялось над этой дерзкой затеей и явно ощущало, что моделирование Вселенной в столь ранние моменты ее эволюции – занятие довольно сомнительное. Сегодня умонастроение резко переменилось. Расчеты содержания гелия стали частью общепризнанного подхода в космологических исследованиях, и наше внимание привлекают периоды времени, предшествующие нуклеосинтезу.

Читайте также: