Монтаж вращающейся печи кратко

Обновлено: 08.07.2024

Основной элемент вращающейся печи – металлический барабан. Он сваривается из листового железа толщиной 20 – 30 мм. Как правило, диаметр печи по всей длине одинаков, но в некоторых для изменения скорости движения материала в отдельных зонах при неизменном уклоне диаметр барабана изменяется. Внутри барабан футеруется высокоглинозёмистым или шамотным кирпичом ( толщина футеровки 200 – 300 мм ). Между металлическим кожухом печи и огнеупорной кладкой обычно закладывается тонкий теплоизоляционный слой (10 – 30 мм). Общий вид печи представлен на рисунке (3).

На наружной поверхности барабана закрепляются опорные, стальные бандажи в виде неразрывных колец шириной 400 – 800 мм. Каждый бандаж опирается на ролики, ширина которых на 50 – 110 мм больше ширины бандажа. Опорные ролики установлены на массивных стальных плитах, на железобетонных фундаментах таким образом, что барабан печи имеет небольшой уклон 2 – 3.5 % от его длины. Это обеспечивает перемещение материала внутри печи при вращении барабана. Барабан печи при вращении испытывает напряжение на изгиб между опорами барабана. Их допустимая величина определяет выбор толщины корпуса барабана, диаметр печи, расстояние между опорами, которое может достигать 30 м.

Топливосжигающие устройства устанавливаются в головной части барабана. Головка печи состоит из топочной камеры, устройства для выгрузки материала и уплотнительного устройства, перекрывающего щель между вращающимся барабаном и неподвижной топочной камерой. К головке примыкает устье канала, через который полупродукт при помощи течки пересыпается в холодильник.

Уплотнительные устройства имеют существенное значение для эффективной работы как самой печи, так и холодильника. Это устройство может быть выполнено в виде, входящих, в друг друга лабиринтных колец приваренных к корпусу и к головки печи. Холодный воздух, попадающий в кольцевой канал лабиринтного уплотнения, отсасывается из него вентилятором, что предотвращает попадание воздуха в печь.

Другая конструкция уплотнительного устройства состоит из двух трущихся друг о друга шлифовальных колец, одно из которых устанавливается на печи, а другое прикреплено к головке печи.

Противоположная часть печи состоит из газоотводящей камеры, загрузочного устройства и уплотнения. Материал загружается в печь либо в виде сухой, но чаще всего гранулированной шихты, либо в виде пульпы с содержанием влаги 40 –42 %.

Бокситовая шихта загружается распылением с помощью пульповых форсунок. Из форсунки пульпа выбрасывается через сопло в виде мелких капель. Длина распыления составляет обычно 10 – 12 м. На каждую печь устанавливают три-пять пульповых форсунок. Форсунки закрепляют на специальном металлическом щите, заделанном в кладку газоотводящей камеры, и вдвигают в печь примерно на 0.5 м. Угол их поворота относительно оси печи можно регулировать. Большую часть форсунок помещают в нижней части сечения печи под углом к её оси, для того чтобы увеличить дальность и продолжительность полёта материала, а, следовательно, количество получаемого им тепла. Эффективность теплообмена повышается с увеличением тонкости распыления пульпы, однако, при этом значительно возрастает унос материала из печи, что является одним из недостатков данного способа загрузки. Необходимо постоянно контролировать работу форсунок и периодически их прочищать. Сопла форсунок изготовляются из твёрдых сплавов и по мере износа заменяются.

Для предотвращения пылеобразования при подачи влажной шихты на внутренние стенки барабана монтируется отбойное устройство в виде связки рельсов длинной 10 –12 м, закреплённых цепью при помощи специальных шарниров в холодной части печи. Для того, чтобы улучшить теплоиспользование, в зонах сушки и подогрева устанавливают внутренние теплообменные устройства.

Наиболее эффективными перегребающими теплообменными устройствами являются цепные завесы, которые обычно выполняются из цепей с круглыми звеньями. Применяют два способа занавески цепей: гирляндами (рис. 4а) и свободными концами (рис. 4б).

Рис. 4. Схема подвески цепей гирляндами (а) и свободными концами (б).

Цепная завеса влияет не только на теплообмен, но и на улавливание пыли, стойкость футеровки и образование настылей.

Ячейковые теплообменники (рис.5) выполняются из жаростойких сплавов. Они монтируются из литых полок длиной 250 – 400 мм с направляющими рёбрами, которые способствуют перемешиванию материала. Эти теплообменники при сохранении неизменной производительности печи снижают температуру отходящих газов и удельный расход тепла. Их установка сокращает свободное поперечное сечение печи, что приводит к возрастанию скорости газов и в результате к увеличению уноса материала.

Рис. 5. Схема ячейкового теплообменника.

Вращающиеся печи работают по принципу противотока. Загружаемые в барабан материалы двигаются от газоотводящей головки к топочной, а дымовые газы в обратном направлении.

Производительность вращающейся печи, а также удельный расход тепла в ней зависит не только от её размеров, наклона, скорости вращения, теплообменных устройств и др. конструктивных характеристик, но и от режима работы печи, т.к. при неизменном коэффициенте расхода воздуха он в основном определяется расходом сырья и тепла в единицу времени.

Холодильники ТВП охлаждают бокситовый спёк и подогревают воздух необходимый для горения топлива. Высокое качество спёка достигается при медленном его охлаждении до температур 600 – 700 0 С. Дальнейшее охлаждение может производиться с любой скоростью.

В данной схеме используем холодильник кипящего слоя. Он представляет собой камеру прямоугольного поперечного сечения, футерованную внутри шамотным кирпичом (рис. 4). В конструкции предусматривается шамотоотделительная камера, находящаяся под загрузочной шахтой. В шамотоотделителе при подаче воздуха через равномерно расположенные по сечению аэрирующие трубки происходит очистка глинозёма от огнеупорного боя, крошки и прочих продуктов истирания шамотного кирпича. Это позволяет повысить качество глинозёма. Холодильник имеет несколько самостоятельных воздушных камер. Специальная конструкция воздухораспределительной решетки обеспечивает равномерное распределение воздуха в воздухораспределительных камерах, компенсацию температурных расширений и исключает просыпание глинозёма в воздушные камеры.

Конструкция холодильника обеспечивает нагрев воздуха, поступающего в печь на горение топлива, до 600 0 С, в результате чего снижается удельный расход топлива на 15 – 18 %; охлаждение температуры 80 – 100 0 С; отделение крупнозернистых механических включений из охлаждаемого глинозёма; повышение производительности действующих печей на 12 – 15 % (при замене холодильников барабанного типа); возможность создания холодильников различных габаритов.

Конструкция холодильника позволяет собрать его непосредственно на месте установки и эксплуатировать агрегат вне производственных помещений в любых климатических условиях.


Для высокотемпературной обработки промышленных и строительных материалов используются обжиговые печи. Такое оборудование может иметь разные конструкции, размеры и свои эксплуатационные особенности. Барабанная или вращающаяся печь занимает отдельное место в сегменте, обеспечивая возможности эффективной сушки сыпучего сырья.

Конструкция агрегата

Промышленные модели барабанных печей преимущественно формируются стальными трубами с кирпичной огнеупорной подкладкой. Обязательным условием компоновки является обеспечение возможности вращения цилиндра вокруг своей оси на скорости 30-250 об/час. Соответственно, чем крупнее диаметр барабана, тем ниже скорость вращения. Движение обеспечивается с помощью вала, зафиксированного на несущей стойке с роликами из жаропрочного металла. Тепловое воздействие обеспечивается в процессе сжигания топливных материалов (газа, нефти, бензина или твердотельного сырья), которое размещается в отдельной камере. В некоторых исполнениях вращающаяся печь содержит теплообменные устройства, реализующие вспомогательные процессы обжига и сушки.

Принцип работы печи

Вращающаяся печь для обжига

Цилиндрическая емкость в виде барабана имеет небольшой наклон относительно горизонтали – это исходное положение, из которого начинается движение. Но перед включением полость конструкции заполняется рабочим материалом. Подача заготовки осуществляется через верхний патрубок барабана. Далее оператор закрывает конструкцию и включает электродвигатель. В процессе работы вращающаяся печь циклично опускает вниз перемешиваемое вещество, обдавая массу горячими газами. Допуск термических потоков может производиться через выносную топку, но в классических моделях генерация газа осуществляется внутри барабана. Во втором случае может задействоваться горелка Бунзена, формирующая языки пламени через трубы печной форсунки. Для таких задач требуется дополнительный источник топлива в виде масла, газа, измельченного угля или щепы.

Зоны термической обработки

Вращающаяся печь

На протяжении всего рабочего цикла обслуживаемый материал может несколько раз встречаться с печными газами при разных температурных условиях, определяющих то или иное состояние обрабатываемой массы. В зависимости от характеристик термической обработки в печи выделяют следующие зоны:

  • Зона сушки. Пространство этой части составляет порядка 25-35% от общей емкости барабана. Газы при температуре порядка 930 °С обеспечивают процессы испарения влаги.
  • Зона подогрева. В этой части происходит обработка потоками с температурой до 1100 °С. Подогрев выполняется на фоне теплоотдачи от продукта сгорания при возможной поддержке сторонних химических реакций.
  • Зона температурного размягчения. Режим температурной обработки в этой зоне может составлять 1150 °С. Главная задача этой части вращающейся печи заключается в обеспечении полного сгорания избытков воздуха в открытой структуре материала.
  • Зона охлаждения. На этом этапе целевой материал подвергается воздействию холодных потоков и отвердевает. Некоторые из металлических гранул заготовки могут здесь же проходить операции окисления с обретением коричневато-красного оттенка.

Технико-эксплуатационные особенности оборудования

Длинная вращающаяся печь

Само по себе вращение агрегата с перемещением содержимого материала повышает его КПД и качество обжига. Особенно выгодно применение длинных трубчатых конструкций, благодаря устройству которых минимизируется расход тепловой энергии. Чем длиннее барабан, тем плотнее гранулы взаимодействуют с печными газами в процессе своего движения внутри емкости. Соответственно, минимизируются и непроизводительные тепловые потери. Стоит отметить и равномерность обжига, которая также сказывается на качестве термической обработки сыпучих материалов. Например, вращающаяся печь для цементного сырья в виде измельченного гипса и клинкера позволяет спекать массу так, что получается однородная структура. Иногда соединяют несколько сырьевых групп с добавлением силикатов кальция, известняка и глины. Барабан в процессе вращения формирует практически единую консистенцию продукта.

Расчет тепловой мощности печи

Для равномерного обжига материала необходимо обеспечивать его передвижение по всей длине печи с оптимальным скоростным режимом. Темп движения, с одной стороны, должен создавать условия для выполнения необходимых реакций, а с другой – не задерживать массу в состоянии кристаллизации, иначе утратятся уже обретенные технологические свойства. Достигнуть оптимального баланса мощности можно с помощью правильного подбора электродвигателя.

Короткая вращающаяся печь

На базовом уровне расчет вращающейся печи выполняется на основе времени пребывания материала в емкости термической обработки – при сухом способе интервалы в среднем составляют 1,5-2 ч, а при мокром – 3-3,5 ч. Также следует учитывать время на завершение процесса обжига, которое в случае с сухой обработкой составит порядка 1 ч, а при мокром обжиге – 1,5 ч. Что касается мощности, то для выполнения стандартных задач предусматривается электродвигатель, силовой потенциал которого варьируется от 40 до 1000 кВт в случае с промышленными агрегатами. Конкретные показатели определяются также с учетом подключения вспомогательных коммуникаций, характера выполнения обвязки и включения модифицирующих компонентов в основной обжигаемый состав.

Футеровка вращающейся печи

Футеровка вращающейся печи

Помимо подбора оптимальных рабочих показателей, на качество обжига будет влиять и техническое обслуживание. Одной из ключевых работ, направленных на поддержание высоких технико-эксплуатационных показателей печи, будет ее футеровка. В сущности это изоляция металлической поверхности барабана с помощью термостойкого материала. Термоизоляционную функцию эффективно выполняет литой огнеупорный бетон и кирпич. Но и после обкладки вращающаяся печь для обжига должна подвергаться обмазке защитными покрытиями, оберегающими структуру того же бетона от распространения мелких трещин. Сама футеровка выполняется с толщиной от 8 до 30 см в зависимости от размеров печной конструкции. Рассчитывать огнеупор следует на температуры порядка 1000-1200 °С.

Заключение

Цилиндр вращающейся печи

Обжиговые агрегаты сегодня широко применяются в изготовлении строительных смесей, плиточных материалов и всевозможного расходного сырья, требующего сушки. К преимуществам вращающихся печей можно отнести высокую производительность и качество теплового воздействия, но не обходится эксплуатация и без недостатков. Данное оборудование характеризуется большими размерами, массивностью рабочих органов и низким уровнем автоматизации. К этому же стоит добавить и требования к силовому обеспечению. На производствах полного цикла барабанные печи подключаются к сетям на 380 В, а также к вентиляционным и охлаждающим системам.

Документ из архива "Монтаж вращающейся барабанной печи", который расположен в категории " ". Всё это находится в предмете "промышленность, производство" из раздела "", которые можно найти в файловом архиве Студент. Не смотря на прямую связь этого архива с Студент, его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "промышленность, производство" в общих файлах.

Онлайн просмотр документа "125081"

Текст 4 страницы из документа "125081"

1 - монтажные краны; 2 - песчано-гравийная подушка; 3 - фундаментная опора; 4 - роликоопора; 5-монтажный блок корпуса; 6 - временная опорная металлоконструкция; 7,8,9 - поставочные части монтажного блока; 10 – проушины

После окончания стыковки и проверки прямолинейности монтажного блоке заваривают подварочный шов с внутренней или с внешней стороны. Кроме того, чтобы не нарушать собранных стыков во время транспортировки блока, с внутренней сторон приваривают 6…8 планок размером 800x250x20 мм.

В большинстве случаев монтаж корпуса печи начинают с холодного конца, не возможна и другая последовательность монтажа, указанная в проекте производства работ. Если монтажный блок не помешается на опорах фундамента, то свивающий конец его укладывают на временную металлическую опору. Временные металлические опоры изготавливают в соответствии с ППР.

Монтажный блок корпуса печи устанавливают с помощью одного или двух монтажных кранов (рис.11).


Рис. 12. Козловой монтажный кран КМК -120; 1 - тележка передвижения крана; 2 - нога портала; 3 - кабина; 4 — полиспаст; 5 - строп; 6 - грузовая лебёдка; 7 - грузовая тележка; 8 — ригель портала

Следует иметь в виду, что только средний бандаж, имеющий упорные ролики, устанавливают по оси роликоопор, а другие бандажи монтируют со смещением в сторону среднего бандажа. Монтажный блок стропят с учетом центра массы обвязкой вокруг корпуса или за специально приваренные к корпусу проушины или скобы. Второй монтажный блок устанавливают в проектное положение и стыкуют с первым блоком по маркировке, выполненной при контрольной сборке на предтриятии-изготовителе. При стыковке блоков следят за тем, чтобы не было совпадения продольных стыков в блоках, их смещают на 200 мм. Все остальные блоки корпуса печи устанавливают на проектное место аналогично первым. Собранный корпус на роликоопорах выверяют на прямолинейность.

Существует несколько способов выверки.

Выверка по струне. Вдоль корпуса печи на расстоянии 300 - 400 мм натягивают струну (Рис. 13) с таким расчетом, чтобы расстояния до струны от крайних бандажей были одинаковыми. Со струны против каждого бандажа опускают отвес, другой отвес опускают с бандажа. Производят замер расстояний между отвесами, аналогично замеряют расстояния от струны и до корпуса между бандажами. По полученным замерам вычисляют расстояние до центральной оси от струны: а ± Dб/2 = А (а - величина замера между отвесами, Dб - диаметр бандажа). Это расстояние должно соответствовать расстоянию от оси до центра рамы соответствующей роликоопоры. Полученные после выверки результаты замеров заносят в формуляр. Замеры повторяют через 90 0 , для чего печь поворачивают краном за конец намотанного на корпус каната. При повороте печи следят за поведением зазоров в монтажных соединениях, по которым определяют наличие излома геометрической оси.


Рис.13.Схема выверки прямолинейности корпуса по струне:

1 -роликоопора; 2 - бандаж; 3 – струна

Выверку теодолитом. Вдоль корпуса печи (Рис. 13) на расстоянии от бандажа 200 . 250 мм (насколько позволяет размер навесной линейки) направляют визирную ось теодолита по навесной линейке, которую устанавливают горизонтально вначале на крайних бандажах. Расстояния до визирной оси от крайних бандажей принимают одинаковыми. Линейка должна иметь специальное призматическое магнитное основание для установки ее на круглые поверхности. Линейку закрепляют магнитным основанием на бандажи или стенку корпуса горизонтально по уровню. По линейке до бандажей измеряют и вычисляют размер А указанным выше способом до осевой плоскости. Трубу теодолита поворачивают в вертикальной плоскости направлением вниз, по ней устанавливают марку на раме роликоопоры и проверяют расстояние Ai от марки до центральной риски рамы с помощью рулетки. Выверку также производят в вертикальной плоскости, устанавливая линейку на верхние образующие, вначале на крайние бандажи для направления теодолита, а затем на промежуточные, И образующую корпуса между бандажами. Вычисляют расстояние А.


Рис. 14. Схема выверки прямолинейности корпуса теодолитом и лазером:

1 - навесная линейка; 2 - визирная линия теодолита; 3 - лазерный генератор; 4 - бандаж;

5-теодолит; б - монтажная марка; 7 — центровая риска на раме опорной станции;

8 - предохранительные распоры

При такой выверке нет необходимости поворачивать корпус, как это делается при выверке с помощью струны.

Прямолинейность корпуса может быть выверена лазером по геометрической оси печи. Для этого можно использовать предохранительные распоры на концах блоков внутри корпуса, на которых можно отметить центр обечайки и просверлить в связующей планке отверстие 8 мм. Лазерный луч направляют так, чтобы он проходил через два отверстия. Регулирование смещения концов на стыках осуществляют стяжными монтажными приспособлениями. При выверке нивелиром требуются длинная рейка и необходимость подстановки нивелира, что усложняет выверку.

Прямолинейность барабанных вращающихся печей можно выверить инструментом ИГЦО-3 (рис. 15, А.с. 248259, СССР, 1969, № 23). Этот инструмент может заменить лазерный генератор. Им выверяют печь также по её геометрической оси.


Рис.15. Инструмент ИГЦГО-3:

1-стенка; 2-основание инструмента; 3-гайка и винт, приваренные к стенке корпуса; 4-теодолит;

5-механизм поперечного перемещения;6-трубчатая стойка; 7-механизм вертикального перемещения с рейкой.


Рис.16. Определение смешения центра венцовой шестерни от центра вращения корпуса:

1-магнитное основание линейки; 2- стенка корпуса обечайки; 3- венцовая шестерня; 4 – линейка; 5-визирный луч

ИГЦО-3 состоит из трубчатой стойки с основанием, механизма подъема, контрольного уровня, механизма поперечного перемещения ползуна, в который можно установить искатель геометрического центра, теодолит или мишень.

Метод выверки прямолинейности корпуса печи заключается в нахождении геометрического центра. Выверка может быть произведена двумя инструментами. За базовые сечения принимают начало и конец выверяемого корпуса. Инструменты ИЩО-3 устанавливают в базовых сечениях, находят центр вращения печи и искатель центра на одном инструменте заменяют на мишень, а на другом на теодолит. Наводят визирную трубу теодолита на центр мишени и фиксируют в таком положении. Инструмент с мишенью переносят на конец одного из блоков в стыке. Мишень снимают, устанавливают искатель центра, находят центр вращения в сечении и заменяют искатель мишенью. Теодолитом одного инструмента по мишени другого определяют, куда нужно переместить конец блока Стяжными приспособлениями устанавливают конец блока так, чтобы центр вращения по мишени совпал с визирным лучом теодолита. Инструмент с мишенью переносят на конец второго блока в стыке и выверку повторяют. Так последовательно выверяют все стыки. Отклонения на стыках с учетом толщины стенки допускаются 10 мм.

При выверке прямолинейности корпуса печи необходимо учитывать, что роликоопоры выверены и смещение роликов не допускается.

Выверять корпус печи необходимо в конце дня, когда на печь не попадают лучи солнца. Нагрев от солнца и от рядом работающей печи сильно влияет на изменения размеров. После выверки прямолинейности корпуса печи монтируют венцовую шестерню. На обечайку корпуса, измерив предварительно диаметр, устанавливают половину венцовой шестерни и временно ее закрепляют.

Поворачивают корпус печи до тех пор, пока эта половина не окажется внизу. На верхнюю часть корпуса укладывают вторую половину шестерни. Обе половины шестерни соединяют между собой согласно маркировке. Для центровки венцовой шестерни используют линейку с магнитным основанием, закрепленную к основанию шарнирно (рис. 15). Обечайку, на которую одета венцовая шестерня, размечают на восемь равных частей внутри печи. В каждую точку по очереди устанавливают линейку, потом ее покачивают до пересечения точки геометрического центра, обозначение которой может быть лазером или инструментом ИГЦО-3. По линейке отмечают расстояние от центра вращения до фиксируемой точки подвенцовой обечайки. Определяют теоретическое расстояние в каждой из восьми точек от поверхности корпуса до впадины зуба венцовой шестерни, которое равно разности a=R-A-s, где R — радиус шестерни по впадине зубьев, измеренный до ее сборки; А - расстояние до стенки корпуса, отмеченное на линейке; s — толщина стенки корпуса. По полученным размерам а по расчету и по фактическим измерениям регулируют биение шестерни с помощью клиньев, забиваемых с двух сторон навстречу друг другу, или специальным приспособлением с регулировочными винтами и подкладками, устанавливаемыми под башмаки. Рассверливают отверстия в башмаках и в корпусе для закрепления шестерни. Венцовую шестерню закрепляют высокопрочным болтами.

На сборочной площадке одновременно с монтажом венцовой шестерней собирают привод. На фундаментную раму устанавливают и выверяют на ней редуктор привода по осям валов и на горизонтальность. Фундаментная рама привода до монтажа на ней редуктора должна быть выставлена на подкладках по уровню в продольном и поперечном направлениях. Горизонтальность главного редуктора можно проверить рамным уровнем по полумуфтам валов.

Вал с подвенцовой шестерней и подподшипниковыми упорами, также вспомогательный редуктор устанавливают и центрируют по валам главного редуктора. Центрирование производят по полумуфтам. После центрирования подшипники вала и основания редуктора закрепляют. Аналогичным образом центрируют и закрепляют к раме электродвигатели.

Скомплектованную и отцентрированную на раме приводную группу после регулировки венцовой шестерни устанавливают на проектное место (рис 17). Подвенцовую шестерню заводят в зацепление с венцовой шестерней. Выверку зубчатого зацепления производят с помощью регулировочных винтов, уклон рамы контролируют по уровню с клиновой линейкой. Зазор в зубчатом зацеплении проверяют свинцовым списком и по пятну касания на краску. Поворот печи осуществляют за корпус краном с помощью стального каната. Если в процессе выверки зацепления ослабляются болты крепления корпусов подшипников вала с подвенцовой шестерней, то после подгонки зацепления повторяют центрирование валов по валу подвенцовой шестерни.

Выверив привод, закрепляют фундаментную раму. Одновременно с монтажом привода монтируют централизованную систему смазки. После подключения двигателей привода и набора прочности бетона подливки проводят окончательную регулировку зубчатого зацепления венцовой и подвенцовой шестерен. При вращении печи проверяют торцевое и радиальное биение венцовой шестерни и зубчатое зацепление.


Рис.17. Схема установки привода:

1 - главный редуктор; 2 - корпуса течи; 3 - вспомогательный редуктор; 4 - электродвигатель;

5 -опорная рама; б - анкерный болт, 7 - фундамент; 8 - регулировочный винт, 9 - подвенцовая шестерня; 10 – венцовая шестерня

Проверку зацепления и регулировку зазоров производят по правилам сборки цилиндрических зубчатых передач. При этом радиальный зазор должен быть 0,2 т+(5. . .7) мм (т - модуль зацепления, мм, 5. 7 мм - величина, учитывающая радиальное биение и его расширение от нагревания). Величина бокового зазора допускается от 1 до 2,5 мм. Перекос шестерни для радиального зазора не должен превышать 0,24 мм на длине зуба, а для бокового зазора 0,18 мм. Одновременно с монтажом привода электросваркой прихватывают монтажные стыки и срезают монтажные приспособления, а мести их приварки зачищают. Затем производят электросварку монтажных стыков корпуса печи. К сварке допускаются сварщики, имеющие удостоверения на право производства ответственных электросварочных работ. Электроприхватки выполняют ручной электродуговой сваркой с наружной стороны, а сварку кольцевых швов производят автоматической электросваркой под слоем флюса с флюсовой подформовкой при температуре окружающей среды не ниже – 5 0 С по специальной разработанной технологии.

Качество сварных швов определяют внешним осмотром и рентгено - или гамма-дефектоскопией, а в случае невозможности применения этих способов использую.

1. Ведомственные производственные нормы расхода материалов (ВПНРМ) на монтаж оборудования предприятий стройиндустрии разработаны в соответствии с "Основными положениями по нормированию расхода и запасов сырья и материалов в производстве", утвержденными постановлением Госплана СССР от 12.12.78 № 177, с изменениями, которые утверждены Госпланом СССР постановлением от 30.11.79 № 188.

Нормы разработаны с учетом применения материалов, качество которых соответствует требованиям ГОСТов и технических условий.

2. ВПНРМ предназначены для определения нормативного количества материалов на стадии подготовки строительно-монтажного производства и при организации производственно-технологической комплектации объектов строительства, контроля за расходом материалов при их описании, анализа производственно-хозяйственной деятельности строительно-монтажных организаций.

3. Нормы разработаны на основании технологии и организации монтажных работ, а также опыта работы ряда строительно-монтажных организаций Главтехмонтажа.

4. Нормами учтены чистая норма (расход материалов на единицу оборудования без учета отходов и потерь, возникающих во время хранения и транспортирования материалов, изделий и полуфабрикатов) и трудноустранимые отходы и потери, образующиеся в процессе монтажных работ.

5. При разработке ведомственных норм использованы следующие нормативные материалы и документы: "Методические рекомендации по разработке элементных и укрупненных производственных норм расхода материалов" (НИИЭС Госстроя СССР, 1982); Общие производственные нормы расхода материалов в строительстве. Сб. 30 "Сварочные работы" (М: Стройиздат, 1982 г.); Производственные нормы расхода строительных материалов. Гл. 9 "Газовая резка" (НИИЭС Госстроя СССР, 1968).

Внесены Главтехмонтажем

Утверждены Минмонтажспецстроем СССР
24 декабря 1986 г.

Срок введения в действие
1 июля 1987 г.

6. Номенклатура оборудования, по которой разработаны ведомственные нормы, соответствует СНиП IV -6-82 Сб. 24 "Оборудование предприятий промышленности строительных материалов".

7. Нормы расхода материалов предусматривают состав рабочих операций, соответствующих сборникам: ЕНиР № 29, вып. 1 и 2; ВНиР № 6.

8. Нормы даны в расчете на единицу оборудования.

9. Нормами предусмотрено производство монтажных работ с помощью различных грузоподъемных механизмов: крана КМК-200 и стреловых кранов.

10. Потребность в деревянных шпалах представлена в таблицах в виде дроби: в числителе - потребность на монтаж печи, в знаменателе - с учетом возврата.

§ 1. Монтаж оборудования печного отделения

1.1. Монтаж печи вращающейся для производства извести Æ 3,6 ´ 110 м, массой 616,4 т.

Состав работ: 1. Установка роликоопор в сборе на фундамент. 2. Насадка бандажей. 3. Монтаж корпуса печи. 4. Сварка монтажных стыков корпуса печи. 5. Установка венцовой шестерни. 6. Установка главных и вспомогательных редукторов привода. 7. Монтаж уплотнительного устройства холодного конца печи. 8. Укладка футеровочных плит печи (бронеплит). 9. Монтаж цепной завесы. 10. Монтаж головной части печи.

Трубчатыми вращающимися печами принято называть техноло­гические агрегаты непрерывного действия с рабочим простран­ством в виде полого цилиндра, котором вследствие небольшого наклона (~3°) печи и вращения перерабатываемые сыпучие ма­териалы перемещаются вдоль печи, нагреваясь за счет тепла, выделившегося при сжигании топлива. В конструктивном отно­шении они отличаются друг от друга только размерами корпуса и устройством систем загрузки и выгрузки материала. В назва­нии печи обычно отражено ее назначение. Так, например, раз­личают вельц-печи, применяемые для вельцевания кеков цин­кового производства, печи для спекания бокситов, кальцинации глинозема, обжига ртутьсодержащих материалов, а также печи для сушки различных промежуточных продуктов металлургиче­ского производства.

По энергетическому признаку трубчатые вращающиеся печи относятся к печам-теплообменникам с переменным по длине ре­жимом тепловой работы. На участке печи, где происходит горе­ние топлива и температура продуктов сгорания достигает 1550— 1650 С С, осуществляется радиационный режим работы печи. По мере продвижения продуктов сгорания топлива по длине печи они охлаждаются до нескольких сот градусов и режим тепловой ра­боты печи постепенно становится конвективным. Конкретное распределение по печи зон с конвективным и радиационным режимом работы зависит от вида и параметров технологического процесса.

Основными элементами вращающихся печей (рис. 32 1) являются корпус (барабан), приводной механизм, опорные бандажи с роликами, а также загрузочная и разгрузочная камеры.

Корпус мечи представляет собой сварную металлическую трубу диаметром до 5м и длиной до 185м, футерованную изнутри огнеупорным кирпичом. Он опирается на специальные ролики, ширина пролета между которыми составляет для больших печей 20 - 28 м. Для перемещения материала корпус наклонен к гори­зонту под углом в 2,5 - 3°. Привод печи, с помощью которого она вращается с частотой около 1 об/мин, состоит из электродвигателя, редуктора и зубчатой передачи.

Опорные бандажи кольцевой формы воспринимают на себя всю нагрузку от веса барабана, достигающую 70—80 т. Для больших печей применяют кованые бандажи прямоугольного сечения, которые надевают на корпус свободно, с небольшим зазором, учитывая последующее тепловое расширение барабана. Каждый бандаж опирается на два ролика, вращающиеся вместе с бандажом во время работы печи.

Верхний торец печи входит в загрузочную камеру. Сухую шихту загружают в печь с помощью шнекового питателя через патрубок, расположенный в загрузочной камере. Пульпа подается в печь через пульповую трубу ковшом-дозатором или с помощью специальной форсунки. Улавливаемая пыль возвращается в ба­рабан печи так же, как сухая шихта.

Нижний торец печи входит в разгрузочную камеру. Между ней и барабаном ставится специальное кольцевое уплотнение. В передней стенке камеры имеются отверстия для установки горелочных устройств. К ней также примыкают устье канала, по кото­рому готовый продукт пересыпается в холодильник.

Для предотвращения налипания влажной шихты на стенки барабана и настылеобразования в холодном конце печи устанавливают цепные завесы. Их прикрепляют к барабану одним концом по всему сечению печи, выбирая длину зоны таким образом, чтобы температура газов в ней не превышала 700°. При отсутствии завес может быть использовано отбойное устройство, представляющее собой связки рельсов длиной до 12 м, прикрепленные цепью к торцевой головке печи.

Футеровка вращающихся печей работает в весьма тяжелых условиях, что связано с периодическим колебанием температур на поверхности кладки, обусловленным вращением печи и пере­мещением находящегося в ней материала. Перепады температур на внутренней поверхности барабана при входе и выходе из-под слоя шихты составляют 150—200 °С. В зоне спекания па футеровку сильное химическое и абразивное воздействие оказывает материал. В зоне сушки кладка подвергается значительному истиранию цепями. Основным материалом для футеровки печей глиноземных заводов служит шамот. Высокотемпературные зоны печи выкладывают из хромомагнезитового, магнезитового и нериклазошпинелидного огнеупорного кирпича. Для сохранения футеровки при остановках печи барабан должен вращаться до ее полного охлаждения. Продолжительность работы печи обычно составляет 2—4 года.

Переработка мелкого сыпучего материала без его расплавления с успехом производится также в трубчатых враща­ющихся печах. В длинной футерованной трубе чаще всего противотоком движутся нагреваемый материал и про­дукты горения топлива. Движение материала происходит благодаря небольшому наклону трубы в сторону выгрузки и вращению печи. При вращении материал поднимается на некоторую высоту и пересыпается вниз. При этом происходит хороший теплообмен с горячими газами все время обновляющейся поверхности материа­ла. Теплообмену способствует также то, что материал, пересыпаясь, попадает на нагретую поверхность кладки за тот период, когда она свободна от слоя материала.

Все это определило высокую интенсивность теплообмена в рабочем пространстве печи.

Трубчатые вращающиеся печи используются также для сушки различных материалов, удаления химически свя­занной влаги при высоких температурах обжига и для спекания материала с образованием новых соединений. Это определило их применение при производстве глинозема в алюминиевой промышленности (спекание и каль­цинация). Они нашли применение и при переработки материалов, содержащих свинец и цинк. При этом цинк отгоняется и виде окисла и улавливается из отходящих газов. Барабанные печи используются для обжига суль­фидных материалов.

Основной элемент печи - железный барабан 3 длиной до 150 м и диаметром 2,0—3,8 м. Барабан футеруется высокоглиноземистым или шамотным кирпичом. Печь работает по принципу противотока. Шихта сухая или мокрая в виде пульпы с содержанием влаги 40 - 42% поступает в барабан через торец 6 (холодным конец) и медленно перемещается к головной части 2 (горячий конец) навстречу газам. Из барабана продукт спекания – спек - ссыпается в холо­дильник, расположенный под печью и представляющий собой также барабан длиной до 30 м и диаметром до 2,5 м. В барабане спек охлаждается движущимся на­встречу воздухом или водой, орошающей холодильник сверху. При охлаждении спека воздухом последний просасывается через холодильник вентилятором (на рисун­ке не показан) и используется при сжигании топлива. Для нагрева печи применяют мазут, газ или угольную пыль. Форсунки или горелки располагают в головной части барабана. Дымовые газы, содержащие значитель­ное количество пыли, через дымоход 8направляются на очистку в пылевые камеры, в электрофильтры и даже иногда в скрубберы. Только после этого дымовые газы с помощью дымососа отводятся в дымовую трубу. Фу­терованный и загруженный шихтой барабан имеет боль­шую массу (масса печи длиной 70 м около 400 т). С по­мощью специальных бандажей 4, закрепленных снару­жи кожуха, печь опирается на вращающиеся ролики 11 с бронзовыми подшипниками. Вращение производится от мотора 10 через редуктор и венцовую шестерню 5, укрепленную с помощью пружин на кожухе печи. Бара­бан вращается обычно с частотой 0,0—2 оборота в ми­нуту. Частоту вращения можно изменять, регулируя контроллером число оборотов мотора.

Печь монтируют с уклоном в 3—6%. Во избежание схода барабана с опор используются упорные ролики 12,расположенные горизонтально, в которые сбоку упи­рается бандаж.

Горячий конец печи входит в топливную (разгрузоч­ную) головку 1, устраиваемую обычно откатной. Между концом барабана и топливной головкой ставится лаби­ринтное уплотнение и виде диска 13, укрепленного на барабане и вращающегося в коробке, укрепленной на топливной головке. В передней стенке топливной головки имеются отверстия для горелок или форсунок. К голов­ке примыкает устье капала, но которому спек пересыпа­ется в холодильник.

Холодный конец печи входит в загрузочную коробку 7, Загружают сухую шихту посредством патрубка, про­ходящего через загрузочную коробку печи (на рисунке не показан). Пульпу в печь либо наливают, либо распыливают форсунками. Во избежание образования насты­лей на внутренней поверхности холодного конца бара­бана имеется отбойное приспособление 9, состоящее из стальной болванки, прикрепленной цепью к загрузочной головке. При вращении барабана болванка разбивает настыли.

Производительность печи при мокрой боксито­вой шихте 12 т/ч спека и выше. Главные факто­ры, влияющие на произ­водительность: толщина слоя материала в печи, частота вращения печи, влажность шихты и ее химический состав. Сред­ний удельный расход тепла составляет 6300 - 7100 кДж на 1 кг спека.

Читайте также: