Микроструктура нервной ткани кратко

Обновлено: 08.07.2024

Клетка. Согласно клеточной теории клетка является элементарной единицей строения, функционирования и развития живого организма.

Ткань – исторически сложившаяся совокупность клеток и межклеточного вещества, обладающих общностью происхождения, строения и функций. В организме человека выделяют 4 основных вида тканей: эпителиальная, мышечная, соединительная и нервная. Эпителиальная ткань покрывает тело снаружи и выстилает полости внутренних органов. Мышечная ткань образует скелетные мышцы тела, мышцу сердца и мышцы внутренних органов и сосудов. Соединительная ткань образует кости, хрящи, плотные оболочки вокруг внутренних органов, кровь и т.д. Нервная ткань образует нервную систему.

В организме животного и человека существует 4 основные разновидности тканей: мышечная, соединительная (кровь, кости, связки, хрящи, подкожная жировая клетчатка и т.д.), эпителиальная (кожа и слизистые полостей органов) и нервная.

Нервная ткань образована клетками двух типов: нейронами, осуществляющими специфические функции нервной системы, и глиальными клетками, которые являются вспомогательными и выполняют функции опоры, изоляции, питания (трофики) нейронов. Нейроны в нервной ткани за счет своих отростков соединяются в очень сложные системы, взаимодействие между нейронами осуществляется за счет специфических контактов, называемых синапсами.

Нейрон как основная морфо-функциональная единица

Нервной системы

Нейрон относится к высокоспециализированным клеткам, способным воспринимать раздражение, преобразовывать его в нервный импульс (свойство возбудимости) и проводить его вдоль поверхности клетки (свойство проводимости) для передачи в синапсе другим нервным клеткам или клеткам эффекторных (рабочих) органов (мышечным или железистым).

Нейрон состоит из сомы (тела или перикариона) и отростков. Размеры тела нейрона колеблются от 5 до 150 мкм. Короткие отростки ветвятся наподобие дерева и поэтому называются дендритами (от греч. dendron – дерево). Их количество в разных нейронах колеблется от одного до тысяч. На дендритах образуются мелкие мембранные выросты микрошипики дли­ной до 2—3 мкм. Шипики являются местами синаптических контактов. Они не встречаются в месте отхода дендритов от сомы. Нервное возбуждение всегда проходит в направлении от дендрита к соме.Сома и дендриты нейрона покрыты только клеточной мембраной и внешне выглядят как серое вещество нервной системы.

От сомы отходит один длинный отросток – аксон. Он является основой нервного волокна. Длина такого отростка у человека может достигать I20 см. Аксон служит для проведения нервных импульсов от тела клетки к другим нейронам (или эффекторным органам). Начальную часть аксона, вытянутую в виде воронки от тела клетки, называют аксонным холмиком. Аксонный холмик наиболее возбудим и является наиболее частым местом генерации нервных импульсов. Сам аксон, или осевой цилиндр, имеет серый цвет. Но основная его часть покрыта как чехлом белой жироподобной миелиновой оболочкой.Поэтому внешне скопления аксонов выглядят как белое вещество нервной системы. Миелиновая оболочка периодически истончается, образуя перехваты Ранвье. За счет миелиновой оболочки нервный импульс распространяется по аксону в десятки раз быстрее, чем по дендритам или соме.

На относительно большом удалении от сомы аксон может вет­виться. Такие боковые отростки называют коллатералями. Каждая из коллатералей на самом оконча­нии также, как правило, ветвится, эти ветвления называют терминалями (от лат. terminalis – заключительный, конечный). Терминали уже не покрыты миелином. На конце каждой терминали есть вздутие, которое является составной частью синапса (пресинапс).




Нейрон, как и типичная животная клетка, имеет в своем внутреннем строении плазматическую мембрану, ядро, цито­плазму и органеллы.

Особенностью строения нейрона является большое количество рибосом на эндоплазматической сети в соме, которое при специальных способах окраски выглядит как тигроидное вещество (вещество Ниссля). В цитоплазме нейрона содержат­ся органеллы специального назначения микротрубоч­ки и микрофиламенты, которые различаются разме­ром и строением. Микрофиламенты представляют внутренний скелет цитоплазмы и расположены в соме. Микротрубочки тянутся вдоль аксона по внут­ренним полостям от сомы до окончания аксона. По ним распространяются биологически активные веще­ства.

После созревания нейроны не способны к делению в силу своей высокой специализации. Именно эта особенность нейронов обеспечивает сохранение всей информации, которую организм усваивает в течение жизни. Соответственно погибшие нейроны не возмещаются, однако, при отрезании аксона в периферической нервной системе может происходить его повторное прорастание в иннервируемый орган.

Классификации нейронов

При классификации нейронов используют различные основания для их разделения: по форме сомы, количеству отростков, по функциям и по эффектам, которые нейрон оказывает на другие клетки.

1. В зависимости от формы сомы различают зерни­стые (ганглиозные) нейроны, у которых сома имеет округлую форму, пирамидные нейроны разных раз­меров — большие и малые пирамиды, звездчатые ней­роны, веретенообразные нейроны и т.д. (рис. 6).

2. По количеству отростков в нейроне различают:

а) мультиполярные нейроны – состоят из тела, нескольких отходящих от него дендритов и одного аксона (встречаются в ЦНС человека чаще всего):

б) биполярные нейроны – состоят из тела, аксона и одного дендрита (например, периферийные чувствительные нервы).

в) униполярные нейроны – имеют только один отросток аксон, воспринимают возбуждение за счёт синапсов, расположенных на теле клетки (у человека такие нейроны обнаружены только в чувствительном ядре тройничного нерва на уровне среднего мозга).

г) псевдоуниполярные нейроны. Подобные клетки образуются из биполярных нейронов при слиянии двух отростков в один. Этот отросток затем Т–образно разветвляется на два волокна: афферентное и эфферентное (они расположены в спинномозговых ганглиях задних корешков и в чувствительных ганглиях черепно-мозговых нервов). Подобное строение чувствительных нейронов обеспечивает быстрое проведение сигнала к центральной нервной системе, так как миелинизированным оказывается и отросток, выполняющий функции дендрита.

3. В зависимости от выполняемых функцийобычно выделяют нейроны:

а) сенсорные (чувствительные, афферентные);

б) эффекторные (эфферентные, двигательные и вегетативные);

в) вставочные (интернейроны, сочетательные, ассоциативные). Среди них особо выделяют модуляторные нейроны, которые не участвуют сами в реакциях, но могут изменять уровень активности других нервных клеток.

г) секреторные нейроны. Секреторные нейроны вырабатывают различные гормоны, выделяющиеся в кровь и осуществляющие гуморальную регуляцию работы различных органов и систем (например, нейросекреторные клетки гипоталамуса).

4. По эффекту, который нейроны оказывают на дру­гие клетки, различают возбуждающие нейроны и тор­мозные нейроны. Возбуждающие нейроны повышают активность клеток, с которыми они связаны вплоть до генерации в них возбуждения. Тормозные нейроны, напротив, снижают возбудимость клеток, вызывая уг­нетающий эффект и затрудняя возникновение в них возбуждения.

Лекция 2 Анатомия ЦНС 2009

План лекции

  1. Микроструктура нервной ткани
  2. Нейрон как основная морфо-функциональная единица
  3. нервной системы
  4. Классификации нейронов
  5. Морфо-функциональная характеристика синапса
  6. Общая характеристика нервных волокон
  7. Структурно-функциональная характеристика глиальных клеток

Микроструктура нервной ткани

Клетка. Согласно клеточной теории клетка является элементарной единицей строения, функционирования и развития живого организма.

Ткань – исторически сложившаяся совокупность клеток и межклеточного вещества, обладающих общностью происхождения, строения и функций. В организме человека выделяют 4 основных вида тканей: эпителиальная, мышечная, соединительная и нервная. Эпителиальная ткань покрывает тело снаружи и выстилает полости внутренних органов. Мышечная ткань образует скелетные мышцы тела, мышцу сердца и мышцы внутренних органов и сосудов. Соединительная ткань образует кости, хрящи, плотные оболочки вокруг внутренних органов, кровь и т.д. Нервная ткань образует нервную систему.

В организме животного и человека существует 4 основные разновидности тканей: мышечная, соединительная (кровь, кости, связки, хрящи, подкожная жировая клетчатка и т.д.), эпителиальная (кожа и слизистые полостей органов) и нервная.

Нервная ткань образована клетками двух типов: нейронами, осуществляющими специфические функции нервной системы, и глиальными клетками, которые являются вспомогательными и выполняют функции опоры, изоляции, питания (трофики) нейронов. Нейроны в нервной ткани за счет своих отростков соединяются в очень сложные системы, взаимодействие между нейронами осуществляется за счет специфических контактов, называемых синапсами.

Нейрон как основная морфо-функциональная единица

Нервной системы

Нейрон относится к высокоспециализированным клеткам, способным воспринимать раздражение, преобразовывать его в нервный импульс (свойство возбудимости) и проводить его вдоль поверхности клетки (свойство проводимости) для передачи в синапсе другим нервным клеткам или клеткам эффекторных (рабочих) органов (мышечным или железистым).

Нейрон состоит из сомы (тела или перикариона) и отростков. Размеры тела нейрона колеблются от 5 до 150 мкм. Короткие отростки ветвятся наподобие дерева и поэтому называются дендритами (от греч. dendron – дерево). Их количество в разных нейронах колеблется от одного до тысяч. На дендритах образуются мелкие мембранные выросты микрошипики дли­ной до 2—3 мкм. Шипики являются местами синаптических контактов. Они не встречаются в месте отхода дендритов от сомы. Нервное возбуждение всегда проходит в направлении от дендрита к соме.Сома и дендриты нейрона покрыты только клеточной мембраной и внешне выглядят как серое вещество нервной системы.

От сомы отходит один длинный отросток – аксон. Он является основой нервного волокна. Длина такого отростка у человека может достигать I20 см. Аксон служит для проведения нервных импульсов от тела клетки к другим нейронам (или эффекторным органам). Начальную часть аксона, вытянутую в виде воронки от тела клетки, называют аксонным холмиком. Аксонный холмик наиболее возбудим и является наиболее частым местом генерации нервных импульсов. Сам аксон, или осевой цилиндр, имеет серый цвет. Но основная его часть покрыта как чехлом белой жироподобной миелиновой оболочкой.Поэтому внешне скопления аксонов выглядят как белое вещество нервной системы. Миелиновая оболочка периодически истончается, образуя перехваты Ранвье. За счет миелиновой оболочки нервный импульс распространяется по аксону в десятки раз быстрее, чем по дендритам или соме.

На относительно большом удалении от сомы аксон может вет­виться. Такие боковые отростки называют коллатералями. Каждая из коллатералей на самом оконча­нии также, как правило, ветвится, эти ветвления называют терминалями (от лат. terminalis – заключительный, конечный). Терминали уже не покрыты миелином. На конце каждой терминали есть вздутие, которое является составной частью синапса (пресинапс).

Нейрон, как и типичная животная клетка, имеет в своем внутреннем строении плазматическую мембрану, ядро, цито­плазму и органеллы.

Особенностью строения нейрона является большое количество рибосом на эндоплазматической сети в соме, которое при специальных способах окраски выглядит как тигроидное вещество (вещество Ниссля). В цитоплазме нейрона содержат­ся органеллы специального назначения микротрубоч­ки и микрофиламенты, которые различаются разме­ром и строением. Микрофиламенты представляют внутренний скелет цитоплазмы и расположены в соме. Микротрубочки тянутся вдоль аксона по внут­ренним полостям от сомы до окончания аксона. По ним распространяются биологически активные веще­ства.

После созревания нейроны не способны к делению в силу своей высокой специализации. Именно эта особенность нейронов обеспечивает сохранение всей информации, которую организм усваивает в течение жизни. Соответственно погибшие нейроны не возмещаются, однако, при отрезании аксона в периферической нервной системе может происходить его повторное прорастание в иннервируемый орган.

Классификации нейронов

При классификации нейронов используют различные основания для их разделения: по форме сомы, количеству отростков, по функциям и по эффектам, которые нейрон оказывает на другие клетки.

1. В зависимости от формы сомы различают зерни­стые (ганглиозные) нейроны, у которых сома имеет округлую форму, пирамидные нейроны разных раз­меров — большие и малые пирамиды, звездчатые ней­роны, веретенообразные нейроны и т.д. (рис. 6).

2. По количеству отростков в нейроне различают:

а) мультиполярные нейроны – состоят из тела, нескольких отходящих от него дендритов и одного аксона (встречаются в ЦНС человека чаще всего):

б) биполярные нейроны – состоят из тела, аксона и одного дендрита (например, периферийные чувствительные нервы).

в) униполярные нейроны – имеют только один отросток аксон, воспринимают возбуждение за счёт синапсов, расположенных на теле клетки (у человека такие нейроны обнаружены только в чувствительном ядре тройничного нерва на уровне среднего мозга).

г) псевдоуниполярные нейроны. Подобные клетки образуются из биполярных нейронов при слиянии двух отростков в один. Этот отросток затем Т–образно разветвляется на два волокна: афферентное и эфферентное (они расположены в спинномозговых ганглиях задних корешков и в чувствительных ганглиях черепно-мозговых нервов). Подобное строение чувствительных нейронов обеспечивает быстрое проведение сигнала к центральной нервной системе, так как миелинизированным оказывается и отросток, выполняющий функции дендрита.

3. В зависимости от выполняемых функцийобычно выделяют нейроны:

а) сенсорные (чувствительные, афферентные);

б) эффекторные (эфферентные, двигательные и вегетативные);

в) вставочные (интернейроны, сочетательные, ассоциативные). Среди них особо выделяют модуляторные нейроны, которые не участвуют сами в реакциях, но могут изменять уровень активности других нервных клеток.

г) секреторные нейроны. Секреторные нейроны вырабатывают различные гормоны, выделяющиеся в кровь и осуществляющие гуморальную регуляцию работы различных органов и систем (например, нейросекреторные клетки гипоталамуса).

4. По эффекту, который нейроны оказывают на дру­гие клетки, различают возбуждающие нейроны и тор­мозные нейроны. Возбуждающие нейроны повышают активность клеток, с которыми они связаны вплоть до генерации в них возбуждения. Тормозные нейроны, напротив, снижают возбудимость клеток, вызывая уг­нетающий эффект и затрудняя возникновение в них возбуждения.

Содержание

Для начала, я советую посмотреть небольшое видео, в котором рассказывается о различных тканях человека. Но нас будет интересовать именно нервная ткань. В более красочном и наглядном виде вам будет легче усвоить основы, а потом вы сможете расширить свои знания.

Основной тканью, из которой образована нервная система является нервная ткань, которая состоит из клеток и межклеточного вещества.
Ткань — это совокупность клеток и межклеточного вещества, сходных по строению и выполняемым функциям.

Нервная ткань: нейроны и глиальные клетки (глия)

Нервная ткань имеет эктодермальное происхождение. Нервная ткань отличается от других видов ткани тем, что в ней отсутствует межклеточное вещество. Межклеточное вещество является производной глиальной клетки, состоит из волокон и аморфного вещества.

Функцией нервной ткани является обеспечение получения, переработки и хранения информации из внешней и внутренней среды, а также регуляция и координация деятельности всех частей организма.

Нервная ткань состоит из двух видов клеток: нейронов и глиальных клеток. Нейроны играют главную роль, обеспечивая все функции ЦНС. Глиальные клетки имеют вспомогательное значение, выполняя опорную, защитную, трофическую функции и др. В среднем количество глиальных клеток превышает количество нейронов в соотношении 10:1 соответственно.

Нервная ткань: нейроны и глиальные клетки (глия)

Каждый нейрон имеет расширенную центральную часть: тело — сому и отростки — дендриты и аксоны. По дендритам импульсы поступают к телу нервной клетки, а по аксонам от тела нервной клетки к другим нейронам или органам.

Отростки могут быть длинными и короткими. Длинные отростки нейронов называются нервными волокнами. Большинство дендритов (дендрон — дерево) короткие, сильно ветвящиеся отростки. Аксон (аксис — отросток) чаще длинный, мало ветвящийся отросток.

Нейроны

Нейрон — это сложно устроенная высокоспециализированная клетка с отростками, способная генерировать, воспринимать, трансформировать и передавать электрические сигналы, а также способная образовывать функциональные контакты и обмениваться информацией с другими клетками.

Каждый нейрон имеет только 1 аксон, длина которого может достигать несколько десятков сантиметров. Иногда от аксона отходят боковые отростки — коллатерали. Окончания аксона, как правило, ветвятся, и их называют терминалями. Место, где от сомы клеток отходит аксон, называется аксональным (аксонным) холмиком.

По отношению к отросткам сома нейрона выполняет трофическую функцию, регулируя обмен веществ. Нейрон обладает признаками, общими для всех клеток: имеет оболочку, ядро и цитоплазму, в которой находятся органеллы (эндоплазматический ретикулум, аппарат Гольджи, митохондрии, лизосомы, рибосомы и т.д.).

Нервная ткань: нейроны и глиальные клетки (глия)

Кроме того, в нейроплазме содержатся органеллы специального назначения: микротрубочки и микрофиламенты, которые различаются размером и строением. Микрофиламенты представляют внутренний скелет нейроплазмы и расположены в соме. Микротрубочки тянутся вдоль аксона по внутренним полостям от сомы до окончания аксона. По ним распространяются биологически активные вещества.

Кроме того, отличительной особенностью нейронов является наличие митохондрий в аксоне как добавочного источника энергии. Взрослые нейроны не способны к делению.

Виды нейронов

Существует несколько классификаций нейронов, основанных на разных признаках: по форме сомы, количеству отростков, функциям и эффектам, которые нейрон оказывает на другие клетки.

В зависимости от формы сомы различают:
1. Зернистые (ганглиозные) нейроны, у которых сома имеет округлую форму;
2. Пирамидные нейроны разных размеров — большие и малые пирамиды;
3. Звездчатые нейроны;
4. Веретенообразные нейроны.

Нервная ткань: нейроны и глиальные клетки (глия)

По количеству отростков (по строению)выделяют:
1. Униполярные нейроны (одноотростчатые), имеющие один отросток, отходящий от сомы клеток, в нервной системе человека практически не встречаются;
2. Псевдоуниполярные нейроны (ложноодноотростчатые), такие нейроны имеют Т-образный ветвящийся отросток, это клетки общей чувствительности (боль, изменения температуры и прикосновение);
3. Биполярные нейроны (двухотростчатые), имеющие один дендрит и один аксон (т.е. 2 отростка), это клетки специальной чувствительности (зрение, обоняние, вкус, слух и вестибулярные раздражения);
4. Мультиполярные нейроны (многоотростчатые), которые имеют множество дендритов и один аксон (т.е. много отростков); мелкие мультиполярные нейроны являются ассоциативными; средние и крупные мультиполярные, пирамидные нейроны — двигательными, эффекторными.

Нервная ткань: нейроны и глиальные клетки (глия)

Униполярные клетки (без дендритов) не характерны для взрослых людей и наблюдаются только в процессе эмбриогенеза. Вместо них в организме человека имеются псевдоуниполярные клетки, у которых единственный аксон разделяется на 2 ветви сразу же после выхода из тела клетки. Биполярные нейроны имеются в сетчатке глаза и передают возбуждение от фоторецепторов к ганглионарным клеткам, образующим зрительный нерв. Мультиполярные нейроны составляют большинство клеток нервной системы.

Нервная ткань: нейроны и глиальные клетки (глия)

По выполняемым функциям нейроны бывают:
1. Афферентные (рецепторные, чувствительные) нейроны — сенсорные (псевдоуниполярные), их сомы расположены вне ЦНС в ганглиях (спинномозговых или черепно-мозговых). По чувствительным нейронам нервные импульсы движутся от периферии к центру.

Форма сомы — зернистая. Афферентные нейроны имеют один дендрит, который подходит к рецепторам (кожи, мышц, сухожилий и т.д.). По дендритам информация о свойствах раздражителей передается на сому нейрона и по аксону в ЦНС.

Пример чувствительных нейронов: нейрон, реагирующий на стимуляцию кожи.

2. Эфферентные (эффекторные, секреторные, двигательные) нейроны регулируют работу эффекторов (мышц, желез и т.д.). Т.е. они могут посылать приказы к мышцам и железам. Это мультиполярные нейроны, их сомы имеют звездчатую или пирамидную форму. Они лежат в спинном или головном мозге или в ганглиях автономной нервной системы.

Короткие, обильно ветвящиеся дендриты воспринимают импульсы от других нейронов, а длинные аксоны выходят за пределы ЦНС и в составе нерва идут к эффекторам (рабочим органам), например, к скелетной мышце.

Пример двигательных нейронов: мотонейрон спинного мозга.

Тела чувствительных нейронов лежат вне спинного мозга, а двигательные нейроны лежат в передних рогах спинного мозга.

3. Вставочные (контактные, интернейроны, ассоциативные, замыкающие) составляют основную массу мозга. Они осуществляют связь между афферентными и эфферентными нейронами, перерабатывают информацию, поступающую от рецепторов в центральную нервную систему.

В основном это мультиполярные нейроны звездчатой формы. Среди вставочных нейронов различают нейроны с длинными и короткими аксонами.

Пример вставочных нейронов: нейрон обонятельной луковицы, пирамидная клетка коры головного мозга.

Нервная ткань: нейроны и глиальные клетки (глия)

По эффекту, который нейроны оказывают на другие клетки:
1. Возбуждающие нейроны оказывают активизирующий эффект, повышая возбудимость клеток, с которыми они связаны.
2. Тормозные нейроны снижают возбудимость клеток, вызывая угнетающий эффект.

Нервные волокна и нервы

Нервные волокна — это покрытые глиальной оболочкой отростки нервных клеток, осуществляющие проведение нервных импульсов. По ним нервные импульсы могут передаваться на большие расстояния (до метра).

Классификация нервных волокон основана на морфологических и функциональных признаках.

По морфологическим признакам различают:
1. Миелинизированные (мякотные) нервные волокна — это нервные волокна, имеющие миелиновую оболочку;
2. Немиелинизированные (безмякотные) нервные волокна — это волокна, не имеющие миелиновой оболочки.

Нервная ткань: нейроны и глиальные клетки (глия)

По функциональным признакам различают:
1. Афферентные (чувствительные) нервные волокна;
2. Эфферентные (двигательные) нервные волокна.

Нервные волокна, выходящие за пределы нервной системы, образуют нервы. Нерв — это совокупность нервных волокон. Каждый нерв имеет оболочку и кровоснабжение.

Различают спинномозговые нервы, связанные со спинным мозгом (31 пара), и черепно-мозговые нервы (12 пар), связанные с головным мозгом. В зависимости от количественного соотношения афферентных и эфферентных волокон в составе одного нерва различают чувствительные, двигательные и смешанные нервы (см. таблицу ниже).

В чувствительных нервах преобладают афферентные волокна, в двигательных — эфферентные, в смешанных — количественное соотношение афферентных и эфферентных волокон приблизительно равно. Все спинномозговые нервы являются смешанными нервами. Среди черепно-мозговых нервов выделяют три вышеперечисленных типа нервов.

Список черепно-мозговых нервов с обозначением доминирующих волокон

I пара — обонятельные нервы (чувствительные);
II пара — зрительные нервы (чувствительные);
III пара — глазодвигательные (двигательные);
IV пара — блоковые нервы (двигательные);
V пара — тройничные нервы (смешанные);
VI пара — отводящие нервы (двигательные);
VII пара — лицевые нервы (смешанные);
VIII пара — вестибуло-кохлеарные нервы (чувствительные);
IX пара — языкоглоточные нервы (смешанные);
X пара — блуждающие нервы (чувствительные);
XI пара — добавочные нервы (двигательные);
XII пара — подъязычные нервы (двигательные).

Нервная ткань: нейроны и глиальные клетки (глия)

Глия

Пространство между нейронами заполнено клетками, которые называются нейроглией (глией). По подсчетам глиальных клеток примерно в 5-10 раз больше, чем нейронов. В отличие от нейронов клетки нейроглии делятся в течение всей жизни человека.
Клетки нейроглии выполняют многообразные функции: опорную, трофическую, защитную, изолирующую, секреторную, участвуют в хранении информации, то есть памяти.

Выделяют два типа глиальных клеток:
1. клетки макроглии или глиоциты (астроциты, олигодендроциты, эпендимоциты);
2. клетки микроглии.

Нервная ткань: нейроны и глиальные клетки (глия)

Астроциты имеют звездчатую форму и много отростков, которые отходят от тела клетки в разных направлениях, некоторые из них оканчиваются на кровеносных сосудах. Астроциты служат опорой для нейронов, обеспечивая их репарацию (восстановление) после повреждения, и участвуют в их метаболических процессах (обмене веществ).

Олигодендроциты — это мелкие овальные клетки с тонкими короткими отростками. Находятся в сером и белом веществе вокруг нейронов, входят в состав оболочек и в состав нервных окончаний. Олигодендроциты образуют миелиновые оболочки вокруг длинных аксонов и длинных дендритов.

Функции олигодендроцитов:
1. трофическая (участие в обмене веществ нейронов с окружающей тканью);
2. изолирующая (образование миелиновой оболочки вокруг нервов, что необходимо для лучшего проведения сигналов).

Миелиновая оболочка выполняет роль изолятора и увеличивает скорость проведения нервных импульсов вдоль мембраны отростков, предотвращает распространение на соседние ткани идущих по волокну нервных импульсов. Она сегментарна, пространство между сегментами называется перехват Ранвье (в честь ученого, который их открыл). Из-за того, что электрические импульсы проходят по миелинизированному волокну скачкообразно от одного перехвата к другому, такие волокна имеют высокую скорость проведения нервных импульсов.

Нервная ткань: нейроны и глиальные клетки (глия)

Каждый сегмент миелиновой оболочки, как правило, образован одним олигодендроцитом в центральной нервной системе (Шванновская клетка (или клетки Шванна) в периферической нервной системе), которые, истончаясь, закручиваются вокруг аксона.

Нервная ткань: нейроны и глиальные клетки (глия)

Миелиновая оболочка имеет белый цвет (белое вещество), так как в состав мембран олигодендроцитов входит жироподобное вещество — миелин. Иногда одна глиальная клетка, образуя выросты, принимает участие в образовании сегментов нескольких отростков.

Сома нейрона и дендриты покрыты тонкими оболочками, которые не образуют миелин и составляют серое вещество.
Т.е. миелином покрыты аксоны, поэтому они имеют белый цвет, а сома (тело) нейрона и короткие дендриты не имеют миелиновой оболочки, и поэтому они серого цвета. Вот так скопление аксонов, покрытых миелином, образуют белое вещество мозга. А скопление тел нейрона и коротких дендритов — серое.

Эпендимоциты — это такие клетки, которые выстилают желудочки мозга и центральный канал спинного мозга, секретируя спинномозговую жидкость. Они участвуют в обмене ликвора и растворения в нем веществ. На поверхности клеток, обращенных в спинномозговой канал, имеются реснички, которые своим мерцанием способствуют движению цереброспинальной жидкости.
Таким образом, функцией эпендимоцитов является секреция ликвора.

Нервная ткань: нейроны и глиальные клетки (глия)

Микроглия — это часть из вспомогательных клеток нервной ткани, которая не является ею, т.к. имеет мезодермальное происхождение. Представлена мелкими клетками, которые находятся в белом и сером веществе мозга. Микроглия способна к амебовидному передвижению и фагоцитозу.

Клетки микроглии доставляют нейронам кислород и глюкозу. Кроме того, они входят в состав гематоэнцефалического барьера, который образован ими и эндотелиальными клетками, образующими стенки кровеносных капилляров. Гематоэнцефалический барьер задерживает макромолекулы, ограничивая их доступ к нейронам.

Нервная ткань - основная ткань, формирующая нервную систему и создающая условия для реализации ее многочисленных функций. Нервная ткань имеет эктодермальное происхождение, не принято делить нервную ткань на какие-либо виды тканей. Обладает двумя основными свойствами: возбудимостью и проводимостью.

Нейрон

Структурно-функциональной единицей нервной ткани является нейрон (от др.-греч. νεῦρον — волокно, нерв) - клетка с одним длинным отростком - аксоном (греч. axis - ось), и одним/несколькими короткими - дендритами (греч. dendros - дерево).

Строение нейрона

Спешу сообщить, что представление, будто короткий отросток нейрона - всегда дендрит, а длинный - всегда аксон, в корне неверно. С точки зрения физиологии правильнее дать следующие определения: дендрит - отросток нейрона, по которому нервный импульс перемещается к телу нейрона, аксон - отросток нейрона, по которому импульс перемещается от тела нейрона.

Нейроны обладают 4 свойствами:

  • Рецепция (лат. receptio - принятие) - способны воспринимать поступающие сигналы (дендриты)
  • В ответ на сигналы способны переходить в состояние возбуждения или торможения
  • Проведение возбуждения (от дендрита к телу нейрона, затем - к концу аксона)
  • Передача сигнала другим объектам - нейрону или эффекторному органу

Отростки нейронов проводят нервные импульсы и передают их другим нейронам, эффекторам, благодаря чему мышцы сокращаются или расслабляются, а секреция желез усиливается или уменьшается.

Тройничный нерв

Миелиновая оболочка

Нервные волокна подразделяются на миелиновые и безмиелиновые. Нервное волокно - это один или несколько отростков нейронов (могут быть как аксоны, так и дендриты) с окружающей оболочкой.

Безмиелиновые нервные волокна находятся преимущественно в составе вегетативной нервной системы (скорость проведения 1-2 м/c). Миелиновые - образуют белое вещество головного и спинного мозга, нервные волокна соматической нервной системы (5-120 м/с).

В миелиновых нервных волокнах отростки нейронов покрыты миелиновой оболочкой (на 70-75% состоит из липидов (жиров)), которая обеспечивает изолированное проведение нервного импульса по нерву. Если бы не было миелиновой оболочки (вообразите!) нервные импульсы распространялись бы хаотично, и, когда мы хотели сделать движение рукой, то вместе с рукой двигалась бы нога.

Существует болезнь при которой собственные антитела уничтожают миелиновую оболочку нервных волокон головного и спинного мозга (случаются и такие сбои в работе организма). Эта болезнь - рассеянный склероз, по мере прогрессирования приводит к разрушению не только миелиновой оболочки, но и нервов - а значит, происходит атрофия мышц и человек постепенно становится обездвиженным.

Рассеянный склероз, разрушенная миелиновая оболочка

Миелиновый слой представлен несколькими слоями мембраны глиальной клетки (леммоцит, шванновская клетка), которые закручиваются вокруг осевого цилиндра (отростка нейрона). Это закручивание хорошо видно на картинке, где изображен здоровый нерв, чуть выше ;)

Миелиновый слой оболочки волокна регулярно прерывается в местах стыка соседних леммоцитов - перехваты Ранвье. Миелиновая оболочка обеспечивает изолированное и более быстрое проведение возбуждения (сальтаторный тип, лат. salto - скачу, прыгаю).

Перехваты Ранвье

Нейроглия (греч. νεῦρον — волокно, нерв + γλία — клей)
  • Опорная - поддерживает нейроны в определенном положении
  • Регенераторная (лат. regeneratio - возрождение) - в случае повреждения нервных структур нейроглия способствует регенерации
  • Трофическая (греч. trophe - питание) - с помощью нейроглии осуществляется питание нейронов: напрямую с кровью нейроны не контактируют
  • Электроизоляционная - леммоциты (шванновские клетки) закручиваются вокруг отростков нейронов и формируют миелиновую оболочку
  • Барьерная и защитная - изолируют нейроны от тканей внутренней среды организма
  • Некоторые глиоциты секретируют цереброспинальную (спинномозговую) жидкость - ликвор (от лат. liquor - жидкость)

В состав нейроглии входят разные клетки, их в десятки раз больше чем самих нейронов. В периферическом отделе нервной системы миелиновая оболочка, изученная нами, образуется именно из нейроглии - шванновских клеток (леммоцитов). Между ними хорошо заметны перехваты Ранвье - участки, лишенные миелиновой оболочки, между двумя смежными шванновскими клетками.

Строение нейрона

Классификация нейронов

Нейроны функционально подразделяются на чувствительные, двигательные и вставочные.

Классификация нейронов по функции

Чувствительные нейроны также называются афферентные, центростремительные, сенсорные, воспринимающие - они воспринимают раздражения, преобразуют их в нервные импульсы и передают в ЦНС. Рецептором называют концевое окончание чувствительных нервных волокон, воспринимающих раздражитель.

Вставочные нейроны также называются промежуточные, ассоциативные - они обеспечивают связь между чувствительными и двигательными нейронами, передают возбуждение в различные отделы ЦНС, участвуют в обработке информации и выработке команд.

Двигательные нейроны по-другому называются эфферентные, центробежные, мотонейроны - они передают нервный импульс (возбуждение) на эффектор (рабочий орган). Наиболее простой пример взаимодействия нейронов - коленный рефлекс (однако вставочного нейрона на данной схеме нет). Более подробно рефлекторные дуги и их виды мы изучим в разделе, посвященном нервной системе.

Схема коленного рефлекса

Синапс

На схеме выше вы наверняка заметили новый термин - синапс (греч. sýnapsis - соединение). Синапсом называют место контакта между двумя нейронами или между нейроном и эффектором (органом-мишенью). В синапсе нервный импульс "преобразуется" в химический: происходит выброс особых веществ - нейромедиаторов (наиболее известный - ацетилхолин) в синаптическую щель.

Разберем строение синапса на схеме. Его составляют пресинаптическая мембрана аксона, рядом с которой расположены везикулы (лат. vesicula — пузырек) с нейромедиатором внутри (ацетилхолином). Если нервный импульс достигает терминали (окончания) аксона, то везикулы начинают сливаться с пресинаптической мембраной: ацетилхолин поступает наружу, в синаптическую щель.

Схема синапса

Попав в синаптическую щель, ацетилхолин связывается с рецепторами на постсинаптической мембране, таким образом, возбуждение (нервный импульс) передается другому нейрону. Так устроена нервная система: электрический путь передачи сменяется химическим (в синапсе).

Яд кураре

Гораздо интереснее изучать любой предмет на примерах, поэтому я постараюсь как можно чаще радовать вас ими ;) Не могу утаить историю о яде кураре, который используют индейцы для охоты с древних времен.

Этот яд блокирует ацетилхолиновые рецепторы на постсинаптической мембране, и, как следствие, химическая передача возбуждения с одного нейрона на другой становится невозможна. Это приводит к тому, что нервные импульсы перестают поступать к эффекторам, в том числе к дыхательным мышцам (межреберным, диафрагме), вследствие чего дыхание останавливается и наступает смерть животного.

Яд кураре

Нервы и нервные узлы

Собираясь вместе, отростки нейронов (нервные волокна) образуют пучки нервных волокон. Нервные пучки объединяются в нервы, которые покрыты соединительнотканной оболочкой. В случае, если тела нейронов концентрируются в одном месте за пределами центральной нервной системы, их скопления называют нервным узлом - или ганглием (от др.-греч. γάγγλιον — узел).

В случае сложных соединений между нервными волокнами говорят о нервных сплетениях. Одно из наиболее известных - плечевое сплетение.

Плечевое сплетение

Болезни нервной системы

Неврологические болезни могут развиваться в любой точке нервной системы: от этого будет зависеть клиническая картина. В случае повреждения чувствительного пути пациент перестает чувствовать боль, холод, тепло и другие раздражители в зоне иннервации пораженного нерва, при этом движения сохранены в полном объеме.

Если повреждено двигательное звено, движение в пораженной конечности будет невозможно: возникает паралич, но чувствительность может сохраняться.

Миастения

Постепенно любые движения мышцами становятся для пациента все труднее, становится тяжело долго говорить, повышается утомляемость. Наблюдается характерный симптом - опущение верхнего века. Болезнь может привести к слабости диафрагмы и дыхательных мышц, вследствие чего дыхание становится невозможным.

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

• Прочие отрасли знания → Анатомия

Аннотация:
Анатомия центральной нервной системы является базовым предметом. Знания, полученные в этом курсе, необходимы при изучении нейрофизиологии, физиологии высшей нервной деятельности, психофизиологии, психогенетики, нейропсихологии. В настоящем пособии будут кратко изложены современные представления о строении клетки, роли клеточных органелл, строении биологической мембраны, клеточной теории, физиологических свойствах клеток, особенностях строения нервных клеток и нервной ткани.

Читайте также: