Металлы диэлектрики и полупроводники по зонной теории кратко

Обновлено: 02.07.2024

зонная теория (англ. energy band theory или band theory) — один из основных разделов квантовой теории твердого тела, описывающий движение электронов в кристаллах, и являющийся основой современной теории металлов, полупроводников и диэлектриков.

Описание

Энергетический спектр электронов в твердом теле существенно отличается от энергетического спектра свободных электронов (являющегося непрерывным) или спектра электронов, принадлежащих отдельным изолированным атомам (дискретного с определенным набором доступных уровней) — он состоит из отдельных разрешенных энергетических зон, разделенных зонами запрещенных энергий.

Согласно квантово-механическим постулатам Бора, в изолированном атоме энергия электрона может принимать строго дискретные значения (электрон находится на одной из орбиталей). В случае же системы нескольких атомов, объединенных химической связью, электронные орбитали расщепляются в количестве, пропорциональном количеству атомов, образуя так называемые молекулярные орбитали. При дальнейшем увеличении системы до макроскопического уровня, количество орбиталей становится очень велико, а разница энергий электронов, находящихся на соседних орбиталях, соответственно очень маленькой — энергетические уровни расщепляются до двух практически непрерывных дискретных наборов — энергетических зон.

Наивысшая из разрешенных энергетических зон в полупроводниках и диэлектриках, в которой при температуре 0 К все энергетические состояния заняты электронами, называется валентной, следующая за ней — зоной проводимости. В проводниках зоной проводимости называется наивысшая разрешенная зона, в которой находятся электроны при температуре 0 К. Именно по принципу взаимного расположения этих зон все твердые вещества и делят на три большие группы (см. рис.):

  • проводники — материалы, у которых зона проводимости и валентная зона перекрываются (нет энергетического зазора), образуя одну зону, называемую зоной проводимости (таким образом, электрон может свободно перемещаться между ними, получив любую допустимо малую энергию);
  • диэлектрики — материалы, у которых зоны не перекрываются и расстояние между ними составляет более 3 эВ (для того, чтобы перевести электрон из валентной зоны в зону проводимости требуется значительная энергия, поэтому диэлектрики ток практически не проводят);
  • полупроводники — материалы, у которых зоны не перекрываются и расстояние между ними (ширина запрещенной зоны) лежит в интервале 0,1–3 эВ (для того, чтобы перевести электрон из валентной зоны в зону проводимости требуется энергия меньшая, чем для диэлектрика, поэтому чистые полупроводники слабо пропускают ток).

Зонная теория является основой современной теории твердых тел. Она позволила понять природу и объяснить важнейшие свойства металлов, полупроводников и диэлектриков. Величина запрещенной зоны (энергетическая щель между зонами валентности и проводимости) является ключевой величиной в зонной теории и определяет оптические и электрические свойства материала. Например, в полупроводниках проводимость можно увеличить, создав разрешенный энергетический уровень в запрещенной зоне путем легирования — добавления в состав исходного основного материала примесей для изменения его физических и химических свойств. В этом случае говорят, что полупроводник примесный. Именно таким образом создаются все полупроводниковые приборы: солнечные элементы, диоды, транзисторы, твердотельные лазеры и др. Переход электрона из валентной зоны в зону проводимости называют процессом генерации носителей заряда (отрицательного — электрона, и положительного — дырки), а обратный переход — процессом рекомбинации.

Зонная теория имеет границы применимости, которые исходят из трех основных предположений: а) потенциал кристаллической решетки строго периодичен; б) взаимодействие между свободными электронами может быть сведено к одноэлектронному самосогласованному потенциалу (а оставшаяся часть рассмотрена методом теории возмущений); в) взаимодействие с фононами слабое (и может быть рассмотрено по теории возмущений).

Зонная теория позволила с единой точки зрения истолковать существование металлов, диэлектриков и полупроводников, объясняя различие в их электрических свойствах, во-первых, неодинаковым заселением электронами разрешенных зон, и во-вторых, шириной запрещенных зон.

Рассматривая заполнение электронами разрешенных зон необходимо использовать два правила: 1) Электроны стремятся занять самые низкие энергетические уровни. 2) Принцип Паули: на одном энергетическом уровне не может быть более двух электронов. Эти электроны должны иметь разные спины.

Степень заполнения электронами энергетических уровней в зоне определяется заполнением соответствующего атомного уровня. Если уровень атома полностью заполнен, то и зона полностью заполнена. Из незанятых уровней образуются свободные зоны, из частично заполненных – частично заполненные зоны. В общем случае можно говорить о валентной зоне, которая полностью заполнена и образовалась из энергетических уровней внутренних электронов свободных атомов и о зоне проводимости (свободной зоне), которая либо частично заполнена, либо свободна и образована из энергетических уровней внешних коллективизированных электронов изолированных атомов (рис.2).


Самая верхняя зона целиком занятая электронами (при Т=0 К) называется валентной. Зона, заполненная электронами частично (при Т = 0 К), называется зоной проводимости. Определим изменение энергии электрона, находящегося на некотором уровне в разрешенной зоне, под действием внешнего поля с напряженностью . Энергия приобретаемая электроном на длине свободного пробега , где - средняя длина свободного пробега электрона в кристалле равная примерно 10 -8 м в электрическом поле с напряженностью В/м, которая соответствует обычным источникам тока, эВ.
Рис.2.

Это означает, что возможны только внутризонные переходы, так как междузонные переходы имеют много большую энергию. Необходимым условием электрической проводимости является наличие в разрешенной зоне свободных энергетических уровней на которые электрическое поле сторонних сил могло бы перевести электроны. В зависимости от степени заполнения зон электронами и ширины запрещенной зоны возможны три случая, изображенных на рис.3.




(а) (б) (в)
Рис.3

3а). Зона проводимости заполнена лишь частично., то есть в ней имеются вакантные уровни. В этом случае электроны, получив сколь угодно малую энергетическую добавку (от поля или теплового движения) переходят на более высокий энергетический уровень той же зоны, то есть они участвуют в проводимости. Такой переход возможен, так как 1 К = 10 -4 эВ, что много больше расстояния между уровнями равному 10 -22 эВ. Таким образом, если в твердом теле имеется зона, лишь частично заполненная электронами, то это тело всегда будет проводником электрического тока. Именно это свойственно металлам.

3б). Возможно также такое перераспределение электронов между зонами, возникающими из уровней различных атомов, которое привело к тому, что вместо двух частично заполненных зон кристалла окажется одна целиком заполненная (валентная) зона и одна свободная зона (зона проводимости). Твердые тела, у которых энергетический спектр электронных состояний состоит только из валентной зоны и зоны проводимости, являются диэлектриками или полупроводниками в зависимости от ширины запрещенной зоны. Если ширина запрещенной зоны кристалла порядка нескольких электрон –вольт, то тепловое движение не может перебросить электроны из валентной зоны в зону проводимости и кристалл является диэлектриком, оставаясь им при всех реальных температурах.

3в). Если запрещенная зона достаточно узка ( эВ), то переход электронов из валентной зоны в зону проводимости может быть осуществлен сравнительно легко путем теплового возбуждения, либо за счет внешнего источника, способного передать электронам энергию , и кристалл является полупроводником.

Различие между металлами и диэлектриками с точки зрения зонной теории состоит в том, что при 0 К в зоне проводимости металлов имеются электроны, а в зоне проводимости диэлектриков они отсутствуют. Различие же между диэлектриками и полупроводниками определяется шириной запрещенных зон: для диэлектриков она довольно широка (например для NaCl =6 эВ), а для полупроводников достаточно узка (для германия =0,72 эВ). При температурах близких к 0 К полупроводники ведут себя как диэлектрики, то есть переброс электронов в зону проводимости не происходит.




Сущность зонной теории проводимости заключается в следующем:

1). При объединении атомов в кристалл твердого тела возникают энергетические зоны.

2). Ширина запрещенных зон и характер заполнения электронами разрешенных зон обуславливают электрические свойства твердого тела – оно может быть или металлом, или полупроводником, или диэлектриком.

Лекция 16
Электропроводность полупроводников. Термоэлектрические явления.

Зонная теория позволила с единой точки зрения истолковать существование металлов, диэлектриков и полупроводников, объясняя различие в их электрических свойствах, во-первых, неодинаковым заселением электронами разрешенных зон, и во-вторых, шириной запрещенных зон.

Рассматривая заполнение электронами разрешенных зон необходимо использовать два правила: 1) Электроны стремятся занять самые низкие энергетические уровни. 2) Принцип Паули: на одном энергетическом уровне не может быть более двух электронов. Эти электроны должны иметь разные спины.

Степень заполнения электронами энергетических уровней в зоне определяется заполнением соответствующего атомного уровня. Если уровень атома полностью заполнен, то и зона полностью заполнена. Из незанятых уровней образуются свободные зоны, из частично заполненных – частично заполненные зоны. В общем случае можно говорить о валентной зоне, которая полностью заполнена и образовалась из энергетических уровней внутренних электронов свободных атомов и о зоне проводимости (свободной зоне), которая либо частично заполнена, либо свободна и образована из энергетических уровней внешних коллективизированных электронов изолированных атомов (рис.2).


Самая верхняя зона целиком занятая электронами (при Т=0 К) называется валентной. Зона, заполненная электронами частично (при Т = 0 К), называется зоной проводимости. Определим изменение энергии электрона, находящегося на некотором уровне в разрешенной зоне, под действием внешнего поля с напряженностью . Энергия приобретаемая электроном на длине свободного пробега , где - средняя длина свободного пробега электрона в кристалле равная примерно 10 -8 м в электрическом поле с напряженностью В/м, которая соответствует обычным источникам тока, эВ.
Рис.2.

Это означает, что возможны только внутризонные переходы, так как междузонные переходы имеют много большую энергию. Необходимым условием электрической проводимости является наличие в разрешенной зоне свободных энергетических уровней на которые электрическое поле сторонних сил могло бы перевести электроны. В зависимости от степени заполнения зон электронами и ширины запрещенной зоны возможны три случая, изображенных на рис.3.




(а) (б) (в)
Рис.3

3а). Зона проводимости заполнена лишь частично., то есть в ней имеются вакантные уровни. В этом случае электроны, получив сколь угодно малую энергетическую добавку (от поля или теплового движения) переходят на более высокий энергетический уровень той же зоны, то есть они участвуют в проводимости. Такой переход возможен, так как 1 К = 10 -4 эВ, что много больше расстояния между уровнями равному 10 -22 эВ. Таким образом, если в твердом теле имеется зона, лишь частично заполненная электронами, то это тело всегда будет проводником электрического тока. Именно это свойственно металлам.

3б). Возможно также такое перераспределение электронов между зонами, возникающими из уровней различных атомов, которое привело к тому, что вместо двух частично заполненных зон кристалла окажется одна целиком заполненная (валентная) зона и одна свободная зона (зона проводимости). Твердые тела, у которых энергетический спектр электронных состояний состоит только из валентной зоны и зоны проводимости, являются диэлектриками или полупроводниками в зависимости от ширины запрещенной зоны. Если ширина запрещенной зоны кристалла порядка нескольких электрон –вольт, то тепловое движение не может перебросить электроны из валентной зоны в зону проводимости и кристалл является диэлектриком, оставаясь им при всех реальных температурах.

3в). Если запрещенная зона достаточно узка ( эВ), то переход электронов из валентной зоны в зону проводимости может быть осуществлен сравнительно легко путем теплового возбуждения, либо за счет внешнего источника, способного передать электронам энергию , и кристалл является полупроводником.

Различие между металлами и диэлектриками с точки зрения зонной теории состоит в том, что при 0 К в зоне проводимости металлов имеются электроны, а в зоне проводимости диэлектриков они отсутствуют. Различие же между диэлектриками и полупроводниками определяется шириной запрещенных зон: для диэлектриков она довольно широка (например для NaCl =6 эВ), а для полупроводников достаточно узка (для германия =0,72 эВ). При температурах близких к 0 К полупроводники ведут себя как диэлектрики, то есть переброс электронов в зону проводимости не происходит.

Сущность зонной теории проводимости заключается в следующем:

1). При объединении атомов в кристалл твердого тела возникают энергетические зоны.

2). Ширина запрещенных зон и характер заполнения электронами разрешенных зон обуславливают электрические свойства твердого тела – оно может быть или металлом, или полупроводником, или диэлектриком.

Зонная теория твердых тел позволила с единой точки зрения истолковать существование металлов, диэлектриков и полупроводников, объясняя различие в их электрических свойствах, во-первых, неодинаковым заполнением электронами разрешенных зон и, во-вторых, шириной запрещенных зон.

В зависимости от степени заполнения зон электронами и ширины запрещенной зоны возможны четыре случая, изображенные на рис. 314.

Помимо рассмотренного выше перекрытия зон возможно также перераспределение электронов между зонами, возникающими из уровней различных атомов, которое может привести к тому, что вместо двух частично заполненных зон в кристалле окажутся одна полностью заполненная (валентная) зона и одна свободная зона (зона проводимости). Твердые тела, у которых энергетический спектр электронных состояний состоит только из валентной зоны и зоны проводимости, являются диэлектриками или полупроводниками в зависимости от ширины запрещенной зоны DE.

Если ширина запрещенной зоны кристалла порядка нескольких электрон-вольт, то тепловое движение не может перебросить электроны из валентной зоны в зону проводимости и кристалл является диэлектриком, оставаясь им при всех реальных температурах (рис. 314, в). Если запрещенная зона достаточно узка (DЕ порядка 1 эВ), то переброс электронов из валентной зоны в зону проводимости может быть осуществлен сравнительно легко либо путем теплового возбуждения, либо за счет внешнего источ ника, способного передать электронам энергию DЕ,и кристалл является полупроводником (рис. 314, г).

Различие между металлами и диэлектриками с точки зрения зонной теории состоит в том, что при 0 К в зоне проводимости металлов имеются электроны, а в зоне проводимости диэлектриков они отсутствуют. Различие же между диэлектриками и полупроводниками определяется шириной запрещенных зон: для диэлектриков она довольно широка (например, для NaCl DЕ = 6 эВ), для полупроводников - достаточно узка (например, для германия DE = 0,72 эВ). При температурах, близких к 0 К, полупроводники ведут себя как диэлектрики, так как переброса электронов в зону проводимости не происходит. С повышением температуры у полупроводников растет число электронов, которые вследствие теплового возбуждения переходят в зону проводимости, т. е. электрическая проводимость проводников в этом случае увеличивается.

Зонная теория - это квантовая механическая теория, которая рассматривает движение электронов в твердом теле.

Зонная теория твердого тела

Согласно теории, свободные электроны могут обладать любой энергией. Электроны в атомах твердого тела могут иметь только определенные дискретные значения энергии. Другими словами, спектр энергии электронов в атомах состоит из разрешенных и запрещенных энергетических зон.

Положения зонной теории

Итак, согласно постулатам Бора, электрон в отдельном атоме может находится на одной из нескольких энергетических орбиталей. Иначе говоря, иметь лишь определенные дискретные значения энергии. Когда атомы образуют молекулу, количество орбиталей расщепляется пропорционально числу атомов в молекуле.

При увеличении количества молекул до макроскопического тела количество орбиталей становится очень большим, а разница между соответствующими им энергиям - очень маленькой. Орбитали сливаются, образуя энергетические зоны.

Валентная зона - в диэлектриках и полупроводниках наивысшая энергетическая зона, которая заполнена полностью при температуре 0 К. Зона проводимости - следующая за валентной зона. В металлах зоной проводимости называется наивысшая разрешённая зона, в которой находятся электроны при температуре 0 К.

Зонная теория объясняет различие в электрических свойствах материалов: проводников, полупроводников, диэлектриков. Можно выделить следующие причины различий:

  1. Ширина запрещенных энергетических зон
  2. Разница в заполнении разрешенных энергетических зон электронами.

Зонная структура диэлектриков

Вещество является диэлектриком, когда валентная зона заполнена полностью, в высших зонах нет электронов, также отсутствует перекрытие зон. Такое вещество не проводит ток. Ширина между зонами у диэлектриков условно составляет более 2 электронвольт.

Зонная структура диэлектриков

Зонная структура полупроводников

Вещество является полупроводником, если валентная зона разделена с соседними зонами узкой (менее 2 электронвольт) запрещающей зоной. Отметим, что такое вещество при температуре, близкой к абсолютному нулю, является диэлектриков. Однако при росте температуры электроны из верхней занятой зоны перескакивают в вакантную зону проводимости, и вещество становится электропроводным. Проводимость растет вместе с температурой и концентрацией электронов в зоне проводимости. Соответственно, в заполненной зоне, из которой электроны переходят в зону проводимости, растет концентрация дырок.

Зонная структура полупроводников

Разделение веществ на полупроводники и диэлектрики весьма условно. Вещества с шириной запрещённой зоны более 3—4 эВ и менее 4—5 эВ совмещают свойства диэлектриков и полупроводников.

Зонная структура проводников (металлов)

В металлах валентная зона занята не полностью, и при воздействия на проводник разности потенциалов электроны могут свободно перемещаться из точек с меньшим потенциалом в точку с большим потенциалом.

Зонная структура проводников (металлов)

Также в проводниках зона проводимости пересекается с валентной зоной. Получившаяся зона пересечения заполнена не полностью.

Зонная структура проводников (металлов)

Почему проводимость металлов не растет с увеличением валентности?

Валентность - это способность атома вещества образовать определенное число химических связей. Проще говоря, способность "прикрепить" к себе другой атом.

Однако электропроводность зависит не от количества валентных электронов на один атом, а от числа электронов в валентной зоне, для которых существуют свободные энергетические уровни. Так, у двухвалентных металлов число электронов, которые могут перейти под действием внешнего поля в свободное состояние меньше, чем у одновалентных. Таким образом, электропроводность двухвалентных металлов меньше, чем одновалентных.

Зонная теория твёрдых тел позволила с единой точки зрения истолковать существование металлов, диэлектриков и полупроводников, объяснив различие в их электрических свойствах, во-первых, неодинаковым заполнением электронами разрешенных зон и, во-вторых, шириной запрещенных зон. Степень заполнения электронами энергетических уровней в зоне определяется заполнением соответствующего атомного уровня. Если, например, какой-то уровень атома заполнен электронами в соответствии с принципом Паули, то образующаяся из него зона также полностью заполнена.

В общем случае можно говорить о валентной зоне, которая полностью заполнена электронами и образована из энергетических уровней внутренних электронов свободных атомов, и о зоне проводимости (свободной зоне), которая либо частично заполнена электронами, либо свободна и образована из энергетических уровней внешних "коллективизированных" электронов изолированных атомов. В зависимости от степени заполнения зон электронами и ширины запрещенной зоны возможны четыре случая (рис. 42). Самая верхняя зона, содержащая электроны, заполнена лишь частично, т.е. в ней имеются вакантные уровни (рис. 42,а). В данном случае электрон, получив сколь угодно малую энергетическую "добавку" (например, за счёт теплового движения или электрического поля), может перейти на более высокий энергетический уровень той же зоны, т.е. стать свободным и участвовать в проводимости. Внутризонный переход вполне возможен, т.к., например, при 1 К энергия теплового движения эВ, т.е. гораздо больше разности энергии между соседними уровнями зоны (примерно 10 –22 эВ). Таким образом, если в твердом теле имеется зона, лишь частично заполненная электронами, то это тело всегда будет проводником электрического тока.

Твердое тело является проводником электрического тока и в том случае, когда валентная зона перекрывается свободной, что в конечном счете приводит к не полностью заполненной (рис.42, б). Это имеет место для щелочноземельных элементов, образующих группу 2 таблицы Менделеева (Be,Mg,Ca,Zn. ). В данном случае образуется так называемая гибридная зона, которая заполняется валентными электронами лишь частично; следовательно, механические свойства щелочноземельных элементов обусловлены перекрытием валентной и свободной зон.

Помимо рассмотренного перекрытия зон, возможно также перераспределение электронов между зонами, возникающими из уровней различных атомов. Это может привести к тому, что вместо двух частично заполненных зон в кристалле окажется одна целиком заполненная (валентная) зона и одна свободная (зона проводимости). Твердые тела, у которых энергетический спектр электронных состояний состоит только из валентной зоны и зоны проводимости, являются диэлектриками или полупроводниками: в зависимости от ширины запрещенной зоны .

Если ширина запрещенной зоны кристалла порядка нескольких электрон-вольт, то тепловое движение не может перебросить электроны из валентной зоны в зону проводимости, такой кристалл является диэлектриком, оставаясь им при всех реальных температурах (рис.42, в). Если запрещенная зона достаточно узка ( порядка 1 эВ), то переброс электронов из валентной зоны в зону проводимости может быть осуществлен сравнительно легко: либо путем теплового возбуждения, либо за счёт внешнего источника, способного передать электронам энергию . Такой кристалл является полупроводником (рис.42, г).

Различие между металлами и диэлектриками, по зонной теории, состоит в том, что при 0 К в зоне проводимости металлов имеются электроны, а в зоне проводимости диэлектриков они отсутствуют. Различие же между диэлектриками и полупроводниками определяется шириной запрещенных зон: для диэлектрика она довольно широка (например, для NaCI =6 эВ), для полупроводников достаточно узка (например, для германия = 0,72 эВ) При температурах близких к 0 К полупроводники ведут себя как диэлектрики, т.к. перебросов в зону проводимости не происходит. С повышением температуры у полупроводников растет число электронов, которые вследствие теплового возбуждения переходят в

зону проводимости, т.е. электрическая проводимость проводников в этом случае увеличивается.

10.3. Собственная проводимость полупроводников

Полупроводниками являются твердые тела, которые при Т=0 характеризуются полностью занятой электронами валентной зоной, отделенной от зоны проводимости сравнительно узкой ( порядка 1 эВ) запрещенной зоной. Своим названием они обязаны тому, что их электропроводимость меньше электропроводимости металлов и больше электропроводимости диэлектриков. В природе полупроводники существуют в виде элементов, например, Si, Ge, As, Se, а также химических соединений, например, оксидов, сульфидов, селенидов, сплавов элементов различных групп. Различают собственные и примесные полупроводники. Собственными являются химически чистые полупроводники, а их проводимость называется собственной. Примером могут служить химически чистые Ge, Se, а также многие химические соединения: InSb, GaAs, CdS и др.

Рис. 43 полупроводников, обусловленная электронами, называется электронной проводимостью или проводимостью n-типа.

В результате тепловых забросов электронов из зоны 1 в зону 2 в валентной зоне возникают валентные состояния, получившие названия дырок. Во внешнем электрическом поле на освободившееся от электрона место (дырку) может переместиться электрон с соседнего уровня, а дырка появится в том месте, откуда ушел электрон, и т.д. Такой процесс заполнения дырок электронами равносилен перемещению дырки в направлении, противоположном движению электронов, т.к. если бы дырка обладала положительным зарядом, равным по величине заряду электрона. Проводимость собственных полупроводников, обусловленная дырками, называется дырочной проводимостьюили проводимостью Р-типа.

Таким образом, в собственных полупроводниках наблюдаются два механизма проводимости: электронный и дырочный. Число электронов в зоне проводимости равно числу дырок в валентной зоне, т.к. последние соответствуют электронам, возбужденным в зону проводимости. [AK1]


Рис. 44
В собственном полупроводнике уровень Ферми – уровень, на котором находятся электроны при Т=0 К, расположен в середине запрещенной зоны (рис.44).

Действительно, для переброса электрона с верхнего уровня валентной зоны на нижний затрачивается энергия активации, равная ширине запрещенной зоны . При появлении же электрона в зоне проводимости в валентной зоне обязательно возникает дырка. Следовательно, энергия, затраченная на образование пары носителей тока, должна делиться на две равные части. Так как энергия, соответствующая половине ширины запрещенной зоны, идет на переброс электрона и такая же энергия затрачивается на образование дырки, то начало отсчета для каждого из этих процессов должно находиться в середине запрещенной зоны.

Увеличение проводимости полупроводников с повышением температуры является их характерной особенностью (у металлов с повышением температуры проводимость уменьшается). По зонной теории это обстоятельство объяснить довольно просто: с повышением температуры растет число электронов, которые вследствие теплового возбуждения переходят в зону проводимости и участвуют в процессе.


Рис. 45
Если представить зависимость от 1/T, то для собственных полупроводников это прямая (рис. 45), по наклону которой можно определить ширину запрещенной зоны , а по ее продолжению - (прямая отсекает на оси ординат отрезок равный ). Одним из наиболее широко распространенных полупроводниковых элементов является германий, имеющий решетку, в которой каждый атом связан ковалентными связями с четырьмя ближайшими соседями.

Упрощенная плоская схема расположения атомов в кристалле Ge дана на рис.46, где каждая черточка, обозначает связь, осуществляемую одним электроном. В идеальном кристалле при 0 К такая структура представляет собой диэлектрик, т.к. все валентные электроны участвуют в образовании связей и, следовательно, не участвуют в проводимости. При повышении температуры (или влиянии других внешних факторов) тепловые колебания решетки могут привести к разрыву некоторых валентных связей. В результате, часть электронов отщепляется и они становятся свободными. В покинутом электроном месте возникает дырка (она изображена белым кружком), заполнить которую могут электроны из соседней пары. В результате дырка, так же как и освободившийся электрон, будет двигаться по кристаллу. Движение электронов проводимости и дырок в отсутствие электрического поля является хаотическим. Если же на кристалл наложить электрическое поле, то электроны начнут двигаться против поля, дырки - по полю, что приведет к возникновению собственной проводимости германия, обусловленной как электронами, так и дырками в полупроводниках. Наряду с процессом генераций электронов и дырок идет процесс рекомбинации: электроны переходят из зоны проводимости в валентную, отдавая энергию решетке и испуская кванты электромагнитного излучения. В результате для каждой температуры устанавливается определенная равновесная концентрация электронов и дырок, изменяющаяся с температурой.

Читайте также: