Механизмы гипоксического некробиоза кратко

Обновлено: 30.06.2024

Стадии повреждения: Обратимая и необратимая.

Обратимая: стадия повреждения и стадия восстановления.

Необратимая: паранекроз – некроз – аутолиз – фагоцитоз.

Начальная стадия повреждения – паранекроз: характерны - внутриклеточный ацидоз, исчезновение гликогена, повышение сорбционных свойств цитоплазмы (красители), потеря К + и буферных систем клетки, набухание клетки и ее органелл.

Некроз – это уже посмертные изменения клетки - ферментативное разрушение и денатурация белков (сухой – коагуляционный (доминирует раннее повреждение митохондрий, пример – действие кислот) и колликвационный (доминируют гидролазные процессы лизосом, пример – действие щелочей); комбинация их – казеозный некроз (туберкулезный например). Продукты распада клеток фагоцитируются, вокруг развивается воспаление.

Важное деление некробизоа по механизму: Гипоксический (недостаток кислорода) и свободно-радикальный (избыток кислорода) некробиоз (но чаще всего – смешанный тип).

Гипоксический некробиоз: стойкое прекращение дыхания и кровообращения делает гипоксию конечным механизмом всех типов умирания. Механизмы: снижение аэробного окисления в митохондриях и АТФ-энергодефицит, активируется фосфофоруктокиназа для компенсации - активируется анаэробный гликолиз (расходование гликогена клеток; одновременно стрессовая реакция организма, выделение катехоламинов и глюкокортикодиов, также активирует гликолиз) – идет накопление лактата – внутриклеточный ацидоз – тормозит фосфофруктокиназу (тормозит гликолиз и продукцию энергии!) - углубляется энергодефицит (порочный круг при гипоксиях).

Блок наиболее энергоемких процессов (К + -Na + АТФазы и сократительных систем клетки) ведет к уменьшению электрического потенциала клеток даже до обратного (с положительного на отрицательный!) – развиваются агрегация и адгезия эритроцитов ведет к сладжу эритроцитов и белым тромбам, нарушающим кровообращение – присоединение циркуляторной гипоксии, снижение возбудимости клеток – нейроторможение - кома. Углубление гипоксии и энергодефицита ведет к входу в клетки Na + - гипергидратация клеток (балонная дистрофия клеток) с денатурацией белков, коагуляцией и декомпозицией цитоплазмы (иногда жировая трансформация клетки – но она полностью обратима!), накопление жирных кислот с Са 2+ и Na + омыляет мембрану и лизирует клетки; на глубоких стадиях некробиоза важен избыток ионов кальция – активация мембранных фосфолипаз и дезинтеграция мембран); затем идет распад лизосом и деструкция митохондрий – прекращение продукции энергии и аутолиз.

Свободно-радикальный некробиоз (см. выше): направления повреждения: Перекисное окисление липидов (ПОЛ); сшивки мембранных, внутри и внеклеточных белков через сульфгидрильные мостики, образование сульфоновых кислот и радикалов с образованием белковых агрегатов; повреждение ДНК и мутагенез и цитостатичность.

МЕХАНИЗМЫ АДАПТАЦИИ КЛЕТКИ К ПОВРЕЖДЕНИЮ:Компенсация энергетических повреждений: переход на гликолитический синтез АТФ, активация ферментов транспорта энергии в клетке, повышение к.п.д. АТФаз; снижение функциональной активности и пластических процессов клетки.

Защита мембран и ферментов: активация антиоксидантной системы, буферных систем (снижение внутриклеточного ацидоза в т.ч. транспорт Н + в митохондрии, саркоплазматический ретикулум и из клетки); повышение активности ферментов микросом (окисление, восстановление, деметилирование и пр. патогенных агентов); активация репарации мембранных структур клеток (белковый синтез репарации).

Нормализация водно-ионного баланса клетки: активация ионных насосов (мембран клеток и саркоплазматического ретикулума, меньше - митохондрий), активация буферный систем.

Репарация генетических дефектов: ферменты репарации ДНК. Компенсация процессов регуляции клетки: изменение числа рецепторов клеток, их чувствительности (аффинности), внутриклеточных посредников (G-белки, цАМФ, кальмодулин, Са 2+ ). Активация всех типов обратных связей ведет к аутоадаптации метаболизма.




Стереотипные приспособления клетки: гипертрофия, гиперплазия, дисплазия, метаплазия (предрак), белки теплового шока: при гипертермии, гипоксии, интоксикациях, вирусном повреждении и пр. – интенсификация продукции БТШ (70 и 90 кДа массой) – защита клетки от самых различных стрессов и патогенов.

Межклеточная адаптация: нервные, эндокринные, цитокинные влияния, обмен метаболитами, ионами, Н2О2 в т.ч. и пр.; изменение периферического кровообращения и лимфотока.

ТИПОВЫЕ ФОРМЫ КЛЕТОЧНОЙ ПАТОЛОГИИ: ДИСТРОФИИ (нарушения обмена): характерны – синтез аномальных белков (амилоид), избыточное превращение жиров и белков в углеводы или углеводов в жиры и т.п.; декомпозиция (фанероз) – распад субклеточных структур; инфильтрация клеток и межклеточного вещества – ЛПНП, холестерином, Са 2+ (при атеросклерозе),

ВИДЫ: Диспротеинозы – зернистая (инфильтрация или деструкция клеточных элементов), гиалиново-капельная (нарушение проницаемости мембран), гидропическая (вакуольная) – повышение онкотического давления (гипоксии, ионизирующее облучение, токсины).

Минеральные дистрофии – изменение обмена Ca, K, Fe, Zn, Cu – кальциноз, сидероз; меди - при гепатоцеребральной дистрофии и пр.

Липидозы – появление, увеличение, изменение жиров: первичные ферментопатии и вторичные токсические (этанол, СCl4, соединения фосфора), в миокарде (жировая дистрофия), печени, почках, мозгу.

Диспигментозы (гемоглобиногенные – ферритин, гемосидерин, билирубин, порфирин – гемохроматоз и порфирия; тирозиногенные – меланин, адренохром – меланоз, охроноз и альбинизм, липопротеидогенные – липофусцин, цероид). Врожденные и приобретенные ферментопатии, изменение транспорта пигментов через мембраны, избыточное накопление пигмента (в фагоцитах например).

Углеводные дистрофии: нарушения обмена: А) полисахаридов – гликогенозы (сахарный диабет, ферментопатии), Б) гликопротеинов (накопление муцина и мукоида – слизистые дистрофии при гипотиреозе, токсических повреждениях клеток).

БОЛЕЗНИ НАКОПЛЕНИЯ:ферментопатии обычно аутосомно-рецессивного типа: липидозы, гликогенозы, мукополисахаридозы, муколипозы, а также лизосомные и пероксисомного болезни.

ДИСПЛАЗИИ:нарушения дифференцировки клеток с изменением их структуры, метаболизма и функции, ведущие к нарушениям жизнедеятельности. Рассматриваются как предраковые состояния: В12-дефицитная анемия; серповидно-клеточные эритроциты при патологии гемоглобина; туберозный склероз (нейронов); болезнь Реклингхаузена – образование многоядерных гигантских клеток со своеобразным расположением хроматина; метаплазия однослойного мерцательного эпителия в многослойных плоский при хронических воспалительных заболевананиях легких (в т.ч. курении); фиброзно-кистозная болезнь молочной железы; гетеротопная оссификация (рубцовой ткани), оссифицирующий миозит.

Стадии повреждения: Обратимая и необратимая.

Обратимая: стадия повреждения и стадия восстановления.

Необратимая: паранекроз – некроз – аутолиз – фагоцитоз.

Начальная стадия повреждения – паранекроз: характерны - внутриклеточный ацидоз, исчезновение гликогена, повышение сорбционных свойств цитоплазмы (красители), потеря К + и буферных систем клетки, набухание клетки и ее органелл.

Некроз – это уже посмертные изменения клетки - ферментативное разрушение и денатурация белков (сухой – коагуляционный (доминирует раннее повреждение митохондрий, пример – действие кислот) и колликвационный (доминируют гидролазные процессы лизосом, пример – действие щелочей); комбинация их – казеозный некроз (туберкулезный например). Продукты распада клеток фагоцитируются, вокруг развивается воспаление.

Важное деление некробизоа по механизму: Гипоксический (недостаток кислорода) и свободно-радикальный (избыток кислорода) некробиоз (но чаще всего – смешанный тип).

Гипоксический некробиоз: стойкое прекращение дыхания и кровообращения делает гипоксию конечным механизмом всех типов умирания. Механизмы: снижение аэробного окисления в митохондриях и АТФ-энергодефицит, активируется фосфофоруктокиназа для компенсации - активируется анаэробный гликолиз (расходование гликогена клеток; одновременно стрессовая реакция организма, выделение катехоламинов и глюкокортикодиов, также активирует гликолиз) – идет накопление лактата – внутриклеточный ацидоз – тормозит фосфофруктокиназу (тормозит гликолиз и продукцию энергии!) - углубляется энергодефицит (порочный круг при гипоксиях).

Блок наиболее энергоемких процессов (К + -Na + АТФазы и сократительных систем клетки) ведет к уменьшению электрического потенциала клеток даже до обратного (с положительного на отрицательный!) – развиваются агрегация и адгезия эритроцитов ведет к сладжу эритроцитов и белым тромбам, нарушающим кровообращение – присоединение циркуляторной гипоксии, снижение возбудимости клеток – нейроторможение - кома. Углубление гипоксии и энергодефицита ведет к входу в клетки Na + - гипергидратация клеток (балонная дистрофия клеток) с денатурацией белков, коагуляцией и декомпозицией цитоплазмы (иногда жировая трансформация клетки – но она полностью обратима!), накопление жирных кислот с Са 2+ и Na + омыляет мембрану и лизирует клетки; на глубоких стадиях некробиоза важен избыток ионов кальция – активация мембранных фосфолипаз и дезинтеграция мембран); затем идет распад лизосом и деструкция митохондрий – прекращение продукции энергии и аутолиз.

Свободно-радикальный некробиоз (см. выше): направления повреждения: Перекисное окисление липидов (ПОЛ); сшивки мембранных, внутри и внеклеточных белков через сульфгидрильные мостики, образование сульфоновых кислот и радикалов с образованием белковых агрегатов; повреждение ДНК и мутагенез и цитостатичность.

МЕХАНИЗМЫ АДАПТАЦИИ КЛЕТКИ К ПОВРЕЖДЕНИЮ:Компенсация энергетических повреждений: переход на гликолитический синтез АТФ, активация ферментов транспорта энергии в клетке, повышение к.п.д. АТФаз; снижение функциональной активности и пластических процессов клетки.

Защита мембран и ферментов: активация антиоксидантной системы, буферных систем (снижение внутриклеточного ацидоза в т.ч. транспорт Н + в митохондрии, саркоплазматический ретикулум и из клетки); повышение активности ферментов микросом (окисление, восстановление, деметилирование и пр. патогенных агентов); активация репарации мембранных структур клеток (белковый синтез репарации).

Нормализация водно-ионного баланса клетки: активация ионных насосов (мембран клеток и саркоплазматического ретикулума, меньше - митохондрий), активация буферный систем.

Репарация генетических дефектов: ферменты репарации ДНК. Компенсация процессов регуляции клетки: изменение числа рецепторов клеток, их чувствительности (аффинности), внутриклеточных посредников (G-белки, цАМФ, кальмодулин, Са 2+ ). Активация всех типов обратных связей ведет к аутоадаптации метаболизма.

Стереотипные приспособления клетки: гипертрофия, гиперплазия, дисплазия, метаплазия (предрак), белки теплового шока: при гипертермии, гипоксии, интоксикациях, вирусном повреждении и пр. – интенсификация продукции БТШ (70 и 90 кДа массой) – защита клетки от самых различных стрессов и патогенов.

Межклеточная адаптация: нервные, эндокринные, цитокинные влияния, обмен метаболитами, ионами, Н2О2 в т.ч. и пр.; изменение периферического кровообращения и лимфотока.

ТИПОВЫЕ ФОРМЫ КЛЕТОЧНОЙ ПАТОЛОГИИ: ДИСТРОФИИ (нарушения обмена): характерны – синтез аномальных белков (амилоид), избыточное превращение жиров и белков в углеводы или углеводов в жиры и т.п.; декомпозиция (фанероз) – распад субклеточных структур; инфильтрация клеток и межклеточного вещества – ЛПНП, холестерином, Са 2+ (при атеросклерозе),

ВИДЫ: Диспротеинозы – зернистая (инфильтрация или деструкция клеточных элементов), гиалиново-капельная (нарушение проницаемости мембран), гидропическая (вакуольная) – повышение онкотического давления (гипоксии, ионизирующее облучение, токсины).

Минеральные дистрофии – изменение обмена Ca, K, Fe, Zn, Cu – кальциноз, сидероз; меди - при гепатоцеребральной дистрофии и пр.

Липидозы – появление, увеличение, изменение жиров: первичные ферментопатии и вторичные токсические (этанол, СCl4, соединения фосфора), в миокарде (жировая дистрофия), печени, почках, мозгу.

Диспигментозы (гемоглобиногенные – ферритин, гемосидерин, билирубин, порфирин – гемохроматоз и порфирия; тирозиногенные – меланин, адренохром – меланоз, охроноз и альбинизм, липопротеидогенные – липофусцин, цероид). Врожденные и приобретенные ферментопатии, изменение транспорта пигментов через мембраны, избыточное накопление пигмента (в фагоцитах например).

Углеводные дистрофии: нарушения обмена: А) полисахаридов – гликогенозы (сахарный диабет, ферментопатии), Б) гликопротеинов (накопление муцина и мукоида – слизистые дистрофии при гипотиреозе, токсических повреждениях клеток).

БОЛЕЗНИ НАКОПЛЕНИЯ:ферментопатии обычно аутосомно-рецессивного типа: липидозы, гликогенозы, мукополисахаридозы, муколипозы, а также лизосомные и пероксисомного болезни.

ДИСПЛАЗИИ:нарушения дифференцировки клеток с изменением их структуры, метаболизма и функции, ведущие к нарушениям жизнедеятельности. Рассматриваются как предраковые состояния: В12-дефицитная анемия; серповидно-клеточные эритроциты при патологии гемоглобина; туберозный склероз (нейронов); болезнь Реклингхаузена – образование многоядерных гигантских клеток со своеобразным расположением хроматина; метаплазия однослойного мерцательного эпителия в многослойных плоский при хронических воспалительных заболевананиях легких (в т.ч. курении); фиброзно-кистозная болезнь молочной железы; гетеротопная оссификация (рубцовой ткани), оссифицирующий миозит.

Длительное отсутствие кислорода нарушает работу митохондрий и делает их неспособными к тканевому дыханию. т На начальном этапе при кислородном голодании в митохондриях снижается скорость аэробного окисления и окислительного фосфорилирования. Это ведет к понижению количества АТФ и возрастанию содержания аденозиндифосфата (АДФ) и аденозинмонофосфата (АМФ). Уменьшается коэффициент АТФ\ АДФ+АМФ. Это позволяет резко увеличить пропускную способность реакций анаэробного гликолиза. Клетка расходует гликоген, обеспечивая себя энергией за счет бескислородного распада глюкозы. Гипоксия провоцирует стресс и гормоны стресса — катехоламины и глюкокортикоиды — усиливают гликолиз, гликогенолиз, глюконеогенез и транспорт экзогенной глюкозы в наиболее жизненно важные органы и ткани. Конечным продуктом гликолиза является молочная кислота. Содержание лактата и свободного фосфата в клетках возрастает. Это вызывает в клетке ацидоз, и рН цитоплазмы понижается. Ацидоз оказывает стабилизирующее действие на клеточные мембраны. Ацидоз внутриклеточной среды может вызвать денатурацию некоторых белков и формирование в цитоплазме зерен, что, проявляется в появлении при гипоксии помутнения. Идет образование хроматиновых глыбок. Усиленное освобождение лактата при гипоксии дает метаболический лактацидоз. Фундаментальное значение для клетки имеет влияние ацидоза на фосфофруктокиназа. В зрелых клетках ФФК — кислотоугнетаемый фермент. Это лимитирует адаптацию: гипоксия усиливает гликолиз, гликолиз порождает ацидоз, ацидоз тормозит гликолиз! В этой стадии гипоксии, в клетке формируется настоящий дефицит АТФ, поскольку аэробный механизм не работает из-за кислородного дефицита, а анаэробный — из-за ацидоза.

Дефицит энергии не дает калий – натриевой АТФазе нормально работать, и результат выражается в утрате нормального калий — натриевого градиента. Клетки утрачивают ионы калия, а вне клеток возникает его избыток. Уменьшается потенциал покоя. Вследствие этого положительный поверхностный заряд, свойственный нормальным клеткам, уменьшается и может меняться на отрицательный.

Одним из проявлений набухания клетки служит расширение цистерн эндоплазматического ретикулюма.

Дефицит энергии при клеточной гипоксии расстраивает работу цитоскелета. Нарушаются процессы сборки микротрубочек, что отражается на форме клеточной поверхности. Клетки могут утрачивать микроворсинки или наоборот, развивать поверхностные выступы-вздутия. Внутриклеточная гипергидратация служит наиболее частым и типичным, но не единственным сценарием обратимой стадии некробиоза. При гипоксии некоторых клеток, которым свойственны активные процессы липолиза и липогенеза, ранние стадии некробиоза сопровождаются накоплением липидов, особенно, нейтральных жиров, в клетках. Этот процесс носит название жировой трансформации. В миокарде данный тип некробиоза происходит при нарушении митохондриальной утилизации жирных кислот. Типичным примером служит дифтерийный миокардит, при котором экзотоксин бациллы Леффлера блокирует кофактор митохондриального

7.8.Этиология — это учение о причинах и условиях возникновения болезни. Монокаузализм — это такое направление в этиологии, согласно которому всякая болезнь имеет одну-единственную причину и столкновение организма с этой причиной должно непременно привести к болезни. Монокаузализм основан на метафизических принципах в философии и не мог указать правильный путь решения проблемы. Монокаузализм не учитывал взаимодействие болезнетворного фактора и организма, изменчивость первого и огромные защитные возможности второго. Он не учитывал и того, что причина болезни действует не одна. Вместе с ней организм испытывает влияние и многих других факторов, которые могут способствовать или препятствовать действию причины.Монокаузализм как этап в учении о причинах болезней был закономерен и необходим, поскольку отражал более прогрессивные взгляды на причины болезней. Но метафизический материализм не мог способствовать решению проблемы.Кондиционализм (от греч. conditio — условие) представляет собой направление в патологии, основные положения которого заключаются в следующем: механическое понятие причинности, как и каузальное мышление вообще, стали догмой, и изжили себя. Истинно научный подход заключается не в поисках причин болезней, а в рассмотрении всей совокупности условий, в которых эта болезнь проявилась. Все условия принципиально равнозначны.Ферворн утверждал, что причин болезней не существует и поиски их бесполезны. Ищущий причину лишь обнаруживает недостаточность своего мышления, он уподобляется дикарю, который думает, что "после этого" означает "вследствие этого", например причиной дня является ночь. На самом же деле болезнь является следствием множества разных факторов, и ни один из нил не может быть выделен, возвышен над другими и назван причиной. Все эти факторы суть условия, и полный анализ может быть достигнут только тогда, когда они все будут изучены. Выделение одного из факторов ничего не меняет, так как является субъективным мнением врача.Диалектико-материалистическое представление о причинности в патологии опирается на основные положения материалистической диалектики:1. Все явления в природе имеют свою причину.2. Причина материальна, она существует вне и независимо от нас,3. Причина болезни взаимодействует с организмом, т. е. изменяя его, она изменяется и сама.4. Причина придает процессу (болезни) специфичность.5. Причина действует в определенных условиях, которые могут повлиять на конечный эффект.Самым важным в данном представлении является признание объективной реальности причины. Далее — взаимодействие причины и организма. Это необходимо подчеркнуть, поскольку никакой Материальный фактор (микроорганизм, канцероген, яд) не является причиной болезни (фурункулеза, рака, отравления) до тех пор, пока он не подействовал на организм и последний не среагировал. При этом меняются обе стороны: в организме, например, вырабатываются антитела, в микробе происходят мутации и меняются наследственные свойства. Строго говоря, причины вне взаимодействия нет. причиной можно назвать только то, что придает патологическому процессу специфичность, т. е. среди множества факторов, действующих на организм, есть один, который придает процессу своеобразные, неповторимые черты. Все остальное есть условия. Стоя на этих позициях, исследователь ищет причину и, найдя ее, определяет пути устранения не только болезни, но самой возможности ее возникновения. И сколь ни важны условия возникновения болезни, они не могут создать нозологической единицы. В последнее время в медицинской практике широко применяется термин ''факторы риска". Так, при анализе причин атеросклероза называют ожирение, курение, гиподинамию, наследственные дефекты ферментов, стресс, сахарный диабет. Это помогает из огромного количества внутренних и внешних факторов выделить такие, которые имеют ближайшее отношение к формированию данного заболевания. В то же время следует иметь в виду, что к факторам риска относят такие, которые являются причинами или условиями или даже звеньями патогенеза данного заболевания, требующими дальнейшего разделения и самостоятельного анализа.Условия возникновения болезни. Взаимодействие причины болезни с организмом всегда происходит в определенных условиях. Отличие условий от причины состоит в том, что причина одна, а условий много и что последние не обязательны для возникновения болезни и не придают ей специфичностиРазличают условия, способствующие действию причины и препятствующие ему.

9. КонституционализмКонституциональный тип — это единый комплекс достаточно устойчивых морфологических, функциональных, в том числе психических, существенных особенностей организма, определяющих его реактивность и сложившихся на наследственной основе под влиянием факторов внешней среды.Конституциональные особенности влияют на индивидуальную реактивность организма, его адаптационные особенности, своеобразие течения физиологических и патологических, процессов, патологическое предрасположение. Течение любого заболевания, его прогноз и лечение зависят не только от характера и силы патогенного воздействия, но и от индивидуальных особенностей организма. В трактовке понятия конституция существуют две противоположно направленные точки зрения. Сторонники одной отождествляют возникновения болезни и невозможность ее предупреждения при наличии патологического предрасположения к ней. Вместе с тем не следует переоценивать роль внешних факторов и считать, что конституциональные особенности организма можно произвольно изменять (вторая точка зрения). Правильная позиция заключается в том, чтобы при воспитании и лечении человека ориентироваться на слабые и сильные стороны его конституции, своевременно выявлять патологическое предрасположение и по возможности влиять на его проявление. Классификация конституциональных типов. За основу классификации принимают различные признаки, например морфологические, биохимические, возбудимость отдельных частей вегетативной нервной системы, темперамент, типы высшей нервной деятельности и др.Первая классификация была предложена Гиппократом. Он обратил внимание на различие между людьми, заключающееся в особенностях темперамента и поведения в обществе. Именно эти наблюдения Гиппократ положил в основу своей классификации. Холерик, сангвиник, флегматик и меланхолик. Холерик — порывист, вспыльчив, иногда необуздан, раздражителен. Работоспособность его высокая, но непостоянная. Сангвиник — общительный, живой, подвижный, эмоциональный. Флегматик — спокойный и медлительный, но устойчивый. Меланхолик — замкнутый, иногда подавленный, нерешительный. Древние врачи в общих чертах отмечали даже склонности людей того или иного темперамента к определенным заболеваниям и стремились дать каждому человеку рекомендации рационального поведения в жизни. Сангвиник, например, склонен к полнокровию, апоплексии, головной боли и сахарной болезни. Ему больше, чем другим людям, полезно столь популярное в древнее время кровопускание. В основу классификации более позднего времени положен морфологический принцип. Отличительными признаками служили пропорции скелета, соотношение между вертикальными и горизонтальными размерами тела, преимущественное развитие той или иной физиологической системы. Морфологическое направление в конституции доминирует и в настоящее время. классификация Сиго. По преимущественному развитию той или иной физиологической системы он различал следующие четыре конституцио­нальных типа: дыхательны и, или респираторный; пищеварительный, или дигестивный; мышечный; мозговой или церебральный. В клинике классификация М. В. Черноруцкого. Каждому из конституциональных типов — гипостеническому, гиперстеническому и нормостеническому — он дал характеристику с точки зрения основных функций и обмена веществ. Так, у гипостеника снижены артериальное давление и всасывательная способность кишок, повышен обмен веществ. Для гиперстеника характерно более высокое артериальное давление, замедленные обменные процессы, сниженная толерантность к углеводам, медленное выведение продуктов обмена, склонность к ожирению. Ценность Астенический тип, по А. А. Богомольцу, характеризуется преобладанием тонкой, нежной соединительной ткани; фиброзный — более плотной и волокнистой; липоматозный обильным развитием жировой ткани, способностью элементов мезенхимы к жировой инфильтрации и разного рода декомпозиции липоидного характера; пастозный — преобладанием отечной, рыхлой соединительной ткани. И. П. Павлов выделил следующие конституциональные типы: сильный неуравновешенный возбудимый, или безудержный (с сильными процессами возбуждения и торможения, но с относительным преобладанием первого); сильный уравновешенный под­вижный, или быстрый; сильный уравновешенный спокойный, или медленный (инертность основных нервных процессов); слабый (слабость обоих процессов с относительным преобладанием торможения). Для человека И. П. Павлов предложил еще одну классификацию, в основу которой положил преобладание I или II сигнальной системы. В зависимости от этого различал мыслительный и художественный При изучении конституциональных типов становится очевидным, что к чистым типам относится меньшинство людей, большинство представляет собой промежуточные типы. При изучении конституциональных типов человека необходимо учитывать биологические ритмы, которые, как и конституциональные признаки, влияют на реактивность организма и должны приниматься во внимание при изучении патогенеза заболеваний.при туберкулезе первичное инфицирование не зависит от телосложения, но течение болезни более тяжелое и частота смертельных исходов выше среди лиц астенического типа. Атеросклероз и коронарная болезнь чаще наблюдаются у людей пикнического типа; язвенная и гипертоническая болезнь, неврастения — у людей с возбудимым типом нервной системы. Замечено также, что характер симптомов при неврозах связан с телосложением. Например, истерия и депрессия более свойственны лицам атлетического и пикнического типов, страх и тревога — лицам астенического типа. один локус хромосомы контролирует одновременно группу признаков — морфологических, функциональных и психических

11. Общий патогенез — это учение о механизмах развития, течения, индивидуальных особенностей и исходов заболеваний. Как и общая этиология, патогенез имеет дело с причинно-следственными связями, последовательностью событий, наступающих вслед за первичным взаимодействием патогенного фактора и организма. в предмете патогенеза выделяются механизмы выздоровления (саногенез) и механизмы вторичного повреждения (аутоальтерация). Патогенез дает клинической медицине объяснение наблюдаемых ею симптомов и синдромов, позволяет объединять симптомы в синдромы, устанавливать родство или отличие нозологических форм по их механизмам и, таким образом, поставляет информацию, необходимую для классификации болезней, их диагностики и патогенетического лечения. Общий патогенез, оперируя причинно-следственными взаимодействиями, может представлять развитие заболевания в виде параллельных, ветвящихся и пересекающихся цепей каузальных связей. В патогенезе нередко отмечается усиление или нарастание масштаба причинного явления под обратным воздействием следствий — так называемый порочный круг, или circulus viciosus. При порочных кругах отклонение системы от некоторого состояния порождает такое воздействие, которое еще больше отклоняет ее от этого состояния. Примером может служить патогенез гипоксии. При гипоксии нехватка кислорода порождает стимуляцию гликолиза, но гликолиз ведет к накоплению лактата, а лактат — ацидоз тормозит гликолиз и усиливает энергодефицит. Вследствие энергодефицита плохо работает калий-натриевый насос, поэтому клетки набухают. Набухание клеток ведет к сдавливанию части капилляров, ухудшению микроциркуляции и обратному усиливающему влиянию на степень гипоксии, ибо нарушается перфузия органа. В патогенезе заболеваний принято выделять ключевое звено, к которому ведут или которое усиливают многие причинно-следственные взаимодействия, и которое, в свою очередь, является определяющим для широкого круга следствий, специфичных при данной болезни. Если речь идет о полиэтиологических процессах, то с единого ключевого звена может начаться их монопатогенез. Так, при компенсированном шоке различной этиологии ключевую роль может играть централизация кровообращения, которая и отличает этот процесс, скажем, от коллапса. При декомпенсированном прогрессирующем шоке центральная роль принадлежит, независимо от вида шока, системному действию медиаторов воспаления. При артериальной гиперемии решающим звеном, порождающим широкий круг следствий и, соответственно, симптомов служит расширение артериол.

12. Роль защитно-присопособит мех-мов в патогенезе


Обзор

Автор
Редактор

Обратите внимание!

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.

История открытия

Профессор Грегг Семенза

Рисунок 1. Первооткрыватель HIF, профессор Грегг Семенза.

Как и многие истории, всё началось с пивных баров и, увы, весьма печально. В середине 1960-х годах по США, Бельгии и ряду других стран среди отчаянных любителей пива прокатилась необычная хворь — кардиомиопатия, имеющая по всем характеристикам признаки токсической, обусловленной накоплением неизвестного тяжелого металла. Довольно быстро виновник был найден: им оказался хлорид кобальта (II) — популярный среди ряда крупных пивоварен эффективный пеногаситель. Интересно, что помимо кардиомиопатии у бедняг-пьяниц наблюдался высокий уровень гемоглобина, который коррелировал с высоким уровнем эритропоэтина [1]. Да-да, именно того самого эритропоэтина, на выработку которого так уповают спортсмены, тренируясь в условиях высокогорной гипоксии. Означало ли это, что гипоксию можно заменить приемом двухвалентого пива кобальта? Похоже, что так!

Неизвестно, был ли знаком с этой историей молодой врач-педиатр Грегг Семенза из госпиталя Джонса Хопксинса (рис. 1). Задача постдока Грегга состояла в поиске фактора, регулирующего активность промотора гена эритропоэтина в условиях гипоксии. Постепенно, шаг за шагом, в 1992 году был найден фактор, в 1995 году стало ясно, что фактор представляет собой гетеродимер, в котором одна из субъединиц является кислород-зависимой, в 2001 году был определен механизм, благодаря которому происходит регуляция стабильности кислород-зависимой субъединицы — гидроксилирование с помощью пролилгидроксилаз. Фактору дали красноречивое название — hypoxia-induced factor, или, сокращенно, HIF [2].

Следует отметить, что во всех клеточных экспериментах Семензы гипоксия могла быть заменена добавлением хлорида двухвалентного кобальта. И это уже не просто совпадение, это научный факт.

Некоторые современные сведения о факторах HIF

Далее дорогой читатель будет вынужден простить мне несколько справочный раздел, суммирующий часть современных сведений о факторе HIF.

Принцип работы кислород-чувствительных систем

Рисунок 2. Принцип и сходство работы кислород-чувствительных систем прокариот и эукариот. Согласно статье [4] у бактерий Pseudomonas spp. в условиях нормоксии функционирует Fe 2+ -содержащий фермент PPHD, который гидроксилирует фактор элонгации EF-Tu, что модулирует трансляцию по крайней мере одного очень важного фактора патогенности бактерии — пиоцианина. У эукариот в условиях нормоксии активны Fe 2+ -содержащие пролилгидроксилазы PHD, регулирующие протеолитическое разрушение фактора транскрипции HIF.

Простейшее многоклеточное животное

Факторы транскрипции HIF 1-3

Рисунок 4. Факторы транскрипции HIF 1-3 и классический кислород-зависимый путь регуляции их активности.

Различия HIF-1 и HIF-2

Рисунок 5. Различия HIF-1 и HIF-2.

Понятие переключения изоформ HIF

Рисунок 6. Понятие переключения изоформ HIF-1 → HIF-2. По мере роста сосуда (а) опухолевой ткани (б) в след за изменением степени гипоксии от острой до умеренной происходит переключение с HIF-1 изоформы на HIF-2 (в) c экспрессией различного спектра факторов. Рисунок из [12] с изменениями.

Негипоксическая активация HIF-2

Рисунок 7. Этапы моей дипломной работы, иллюстрирующие то, как негипоксическая активация HIF-2 может вносить свои коррективы в экспрессию хемокинов.

Итак, дорогой читатель, я надеюсь, что вы не сильно утомились ознакомлением первой части рассказа. Скорее перейдем к его иммунологическому разделу!

Роль факторов HIFs в иммунных клетках

И для начала несколько соображений общего характера [16, 17]:

Тема неимоверно интересная и обширная, поэтому я ограничусь парой историй.

История 1: Treg-лимфоциты vs. Th17-лимфоциты

Наивные CD4+ T клетки в зависимости от микроокружения способны дифференцироваться в различные субпопуляции с весьма отличающимися друг от друга функциями: Th1, Th2, Tfh, Th17 и iTreg. Огромное внимание в вопросах аутоиммунных заболеваний и противоопухолевого иммунитета обращено к двум не так давно открытым популяциям T лимфоцитов — Th17 и iTreg [17].

Th17-клетки дифференцируются из наивных CD4+ лимфоцитов под действием TGF-β и IL-6; критичным является активация транскрипционных факторов STAT3 и RORgt. Th17-лимфоциты обладают мощным бактерицидным и фунгицидным действием за счет секреции IL-17 и IL-22. Однако вследствие своего избыточного воспалительного потенциала, Th17 печально известны как участники многих аутоиммунных заболеваний.

Индуцированные iTreg дифференцируются из наивных CD4+ лимфоцитов под действием TGF-β и IL-2; критичным является активация транскрипционного фактора Foxp3. Treg вырабатывают IL-10, TGFβ, экспрессируют на своей поверхности много интересных молекул (типа рецептора к IL-2 СD25, ингибиторного корецептора CTLA-4), за счет которых проявляют свои иммуносупрессивные свойства.

Итого, мы имеем две субпопуляции лимфоцитов, обладающих диаметрально противоположными свойствами, не способными перепрограммироваться друг в друга и происходящие из единого предшественника — наивных CD4+ лимфоцитов. Часто говорят о балансе Treg и Th17, сдвиге баланса либо в иммуносупрессивную, либо в провоспалительную сторону при разных заболеваниях, и подчеркивают первостепенную важность механизмов, определяющих дифференцировку по одному из двух путей. Кратко рассмотрим механизмы и попытаемся понять, в чем соль.

Первое, на что внимательный читатель обратит внимание, это общий для двух субпопуляций индуктор TGFβ. Известно, что сами по себе высокие концентрации TGFβ способны поддерживать активацию Foxp3 и коммитировать образование iTreg. Однако для Th17 также характерна активация Foxp3, которая в обязательном порядке должна быть подавлена. Подавляется она за счет активации фактора STAT3 (под действием IL-6, IL-21 или IL-23), что, в свою очередь, активирует RORgt, который активно подавляет активность Foxp3 и определяет экспрессию Th17-специфичных хемокинов.

Теперь о роли HIF-1. Для немиелоидных клеток показано, что активация STAT3 может приводить к негипоксической активации HIF-1. HIF-1, в свою очередь, способен ингибировать Foxp3, причем, вероятно, за счет механизма активации полиубиквитинирования с последующей протеасомной деградацией, т.е. механизма по которому HIF-1 разрушается сам. Ингибируя Foxp3, HIF-1 способствует дифференцировке CD4+ наивных лимфоцитов в Th17 направлении. Что интересно, данную STAT3-зависимую негипоксическую активацию HIF-1 с последующим ингибированием Foxp3 можно заменить циклами периодической гипоксии-нормоксии, которая приводит к стабилизации и накоплению HIF-1 (рис. 8).

Роль HIF-1 в дифференцировке наивных лимфоцитов

Рисунок 8. Роль HIF-1 в дифференцировке CD4+ наивных лимфоцитов в Treg и Th17.

Любопытно, что то же самое не случается в условиях длительной гипоксии. И виной здесь отрицательная обратная связь — длительная гипоксия повышает экспрессию HIF-зависимой микроРНК-210, которая способна подавлять трансляцию HIF-1α.

Приведенную выше концепцию особой роли HIF-1 в активации фактора RORgt (критичного для Th17) и ингибирования Foxp3 (критичного для Treg) подтверждает недавняя замечательная статья о роли фактора Deltex1 в поддержании стабильности Foxp3 за счет ингибирования его негативного регулятора HIF-1 [18].

Не так давно была открыта новая субпопуляция лимфоцитов — Tr1, обладающих иммуносупрессивными свойствами, при этом не экспрессирующих Foxp3 (маркер регуляторных T-лимфоцитов). Tr1 играют особую роль в супрессии воспаления в нервной системы и кишечнике [19].

Интересно, что гипоксия и повышенная концентрация внеклеточного АТФ — частые атрибуты воспаления — способны угнетать дифференцировку Tr1-лимфоцитов. Весьма красивым оказался механизм: критичным фактором для дифференцировки в Tr1 лимфоциты является фактор AHR, который при взаимодействии со своим ядерным переносчиком ARNT, переносится в ядро и активирует экспрессию IL-10, IL-21 и прочих факторов, определяющих иммуносупрессивные свойства Tr1-лимфоцитов. Однако ARNT хорошо известен нам как HIF-1β, кислород независимая субъединица, с которой димеризуется HIF-1α. Между HIF-1α и AHR в указанных условиях происходит конкуренция за ARNT и HIF-1α в этой конкуренции побеждает. Впрочем, если условия позволяют, и в схватке побеждает ARNT, ему есть чем ответить — активируясь, он способствует деградации HIF-1α, предположительно за счет повышения экспрессии пролилгидроксилаз PHDs по кислород-зависимому механизму (рис. 9).

Роль HIF-1 в дифференцировке иммуносупрессивных лимфоцитов

Рисунок 9. Роль HIF-1 в дифференцировке иммуносупрессивных Tr1-лимфоцитов.

Хочется отметить также, что угнетающая роль HIF-1α на дифференцировку Tr1-лимфоцитов оказалась не столь уж однозначной — исследователи отмечают то, что активность HIF-1α важна на ранних стадиях дифференцировки, главным образом, за счет своей способности переключать метаболизм на гликолитический тип.

История 2: Врожденный иммунитет и макрофаги

М1-макрофаги

Как в случае с провоспалительными Th17 и супрессорными Treg, между провоспалительными M1 и противоспалительными M2 в тканях наблюдается баланс, нарушение которого может приводить к различным заболеваниям. Так, например, сдвиг в сторону M1-макрофагов в жировой ткани патогенетически связан с развитием метаболического синдрома за счет постоянного хронического воспаления в жировой ткани, ее инсулинрезистентностью, секрецией в кровь провоспалительных хемокинов и адипокинов [22].

Вместо заключения

В настоящее время разработаны/разрабатываются методы селективного ингибирования HIF-1 и HIF-2; селективного ингибирования различных изоформ пролилгидроксилаз PHDs, за счет чего возможно активировать HIF-1 и HIF-2, причем также селективно; можно ингибировать фермент FIH-1и прочие участники пути регуляции кислород-зависимого пути деградации. При желании и достаточной фантазии можно пробовать воздействовать на кислород-независимые пути.

Все это, несомненно, должно найти и, я уверен, найдет применение в практической медицине. Но это потребует крайней обдуманности, многостадийного контроля и досконального изучения. Чем далеко ходить, лучше приведу пример.

Не так давно, в начале-середине 2000-х годов, наблюдался некоторый бум: для многих типов онкологических заболеваний была показана сверхэкспрессия HIF-1α, что вполне соответствовало понятиям об опухолевой биологии: быстрорастущая опухолевая масса в условиях жесткой гипоксии переходит на гликолитический анаэробный тип метаболизма [23], при этом активно секретируя вокруг себя многочисленные факторы роста сосудов, факторы инвазии и т.д. Что делать? Подавим экспрессию HIF-1α и дело в шляпе! Не тут-то было — реальность оказалась сложнее и запутанней.

Так, например, при применении siRNA против HIF-1α на культуре пигментного эпителия сетчатки и эндотелия сосудов, наблюдалось вполне закономерное снижение секреции таких ангиогенных факторов как VEGF, TGF-β (это очень хорошо), но росла секреция IL-8, мощного хемокина с ярко выраженными ангиогенными свойствами (это очень плохо) [24]. Позднее, группой профессора Лобода был раскрыт механизм — дело в том, что HIF-1 подавляет экспрессию IL-8, а HIF-2 — активирует. Подавляя HIF-1 в клетках, исследователи добивались реципрокной активации HIF-2 и экспрессии IL-8 [25]. Такая неоднозначная выходила терапия.

Также нужно быть аккуратными с иммунной системой. Системное подавление HIF-1 при аутоиммунных заболеваниях, возможно, и приведет к снижению популяции Th17 и росту числа Treg, что теоретически способно облегчить течение заболевания, но также способно привести к искусственному комбинированному иммунодефициту за счет дисфункции M1-макрофагов, нейтрофилов, Th1, Th2, Th17 и СD8+ T лимфоцитов.


В опытах на беспородных белых мышах с экспериментальной острой гипоксической гипок­сией обнаружено резкое увеличение содержания в крови промежуточных продуктов липопероксидации - диеновых конъюгатов (ДК) и малонового диальдегида (МДА) на фоне подавления активно­сти ферментного и неферментного звеньев антиоксидантной системы крови. Достигнута эффективная коррекция метаболических сдвигов, спус­тя 30 мин с момента развития острой гипоксической гипоксии, с помощью комплексного препа­рата - цитофлавина. Последний обеспечивает активацию НАД - зависимых, а также флавинзависимых дегидрогеназ, усиливает энергообеспе­чение клеток, а также их антирадикальную защи­ту в процессе активации убихиноновых оксиредуктаз и восстановления глутатиона.

Процессы свободнорадикального окисле­ния являются необходимым звеном метаболиче­ской активности клеток в условиях нормы при наличии сбалансированности антирадикальной защиты клеток и интенсивности образования свободных радикалов, в частности, активных форм кислорода (АФК). В настоящее время дано четкое объяснение происхождению свободных радикалов при различных формах патологии, осложненных развитием гипоксического синдро­ма.

Как известно, в условиях нормы около 98% молекулярного кислорода подвергается тетравалентному восстановлению в митохондриях в биологическом процессе, связанном с генерацией АТФ (Ерохин И.А., Шляпников С.Н., 1997).

Около 1-2% общего количества потреб­ляемого кислорода подвергается одновалентному восстановлению с образованием так называемых свободнорадикальных соединений, имеющих неспаренный электрон на внешней орбитали. В условиях гипоксии различного генеза в связи с дефицитом кислорода происходит разгрузка ды­хательной цепи за счет утечки электронов на пу­ти следования к цитохромоксидазе. При этом возникает последовательное одновалентное вос­становление кислорода с образованием суперок­сидного анион - радикала, перекиси водорода, гидроксильного радикала. Последние обладают выраженным цитотоксическим действием [7].

В цитозоле клеток образование суперок­сидного анион - радикала возможно при участии ксантиноксидазы, активируемой в условиях ги­поксии, а также в процессе метаболизма и взаи­мопревращения катехоламинов, простагландинов, лейкотриенов в системах, содержащих ки­слоты переменной валентности, в микросомах и т.д.

Вышеизложенное делает очевидным тот факт, что в механизмах развития гипоксического некробиоза клеток важная роль должна быть от­ведена избыточному образованию свободных радикалов и соответственно дестабилизации структурных компонентов клеток различной функциональной значимости под влиянием ука­занных соединений [2]. Последнее определяет целесообразность апробации различных антигипоксантов, антиоксидантов, мембранопротекторов при различных видах гипоксии [5].

Целью настоящего исследования явилось изучение метаболических эффектов цитофлавина в условиях экспериментальной острой гипоксической гипоксии.

Материалы и методы исследования

Эксперименты проведены на 360 беспо­родных белых мышах - самцах массой 20-22 г.

Острую экзогенную гипоксическую гипок­сию моделировали, помещая животного в герме­тически закрытый сосуд объемом 250 мл. Про­должительность жизни животных без медикамен­тозной коррекции составляла в среднем 32,2 мин.

Проведена сравнительная оценка состоя­ния процессов липопероксидации и активности антиоксидантной системы крови в 3-х группах наблюдения:

  1. в интактной группе животных;
  2. в группе животных с эксперимен­тальной гипоксической гипоксией без медика­ментозной коррекции;
  3. в группе животных с эксперимен­тальной гипоксией, развивающейся на фоне предварительного введения цитофлавина.

Цитофлавин вводили внутрибрюшинно в дозе 1,2 мл/кг за 5 мин до моделирования гипок­сии.

О состоянии процессов липопероксидации судили по содержанию в крови гидроперекисей липидов (ГПЛ) и малонового диальдегида (МДА), определяемых общепринятыми спектро-фотометрическими методами [4,9]. О состоянии ферментного звена антиоксидантной системы крови судили по активности супероксиддисмутазы (СОД) и каталазы, определяемых соответст­венно спектрофотометрическими методами ис­следования в модификации Fried R. et al., 1975; Conen S. et al., 1970. О состоянии неферментного звена антирадикальной защиты клеток судили по уровню витамина Е в сыворотке крови [3]. Одно­временно определяли уровень общих сульфгидрильных групп (-SH-) [10], перекисную резистентность эритроцитов (ПРЭ) [8]. Интегративным показателем оценки состояния аутоинтокси­кации явилось определение молекул средней мас­сы (МСМ) в сыворотке крови [6].

Результаты и их обсуждение Как показа­ли результаты проведенных исследований зако­номерными особенностями системных метаболи­ческих расстройств, формирующихся на фоне острой гипоксической гипоксии, является акти­вация процессов липопероксидации, недостаточ­ность ферментного и неферментного звеньев антиоксидантной системы крови с последующей дестабилизацией биологических мембран.

Об этом свидетельствовало избыточное накопление в крови ГПЛ и МДА (табл. 1), сниже­ние активности СОД и уровня витамина Е в кро­ви (табл. 2). Показателями абсолютной недоста­точности антирадикальной защиты клеток яви­лось снижение общих SH - групп в сыворотке крови и ПРЭ (табл. 2).

Характерным признаком острой гипоксической гипоксии явилось увеличение содержания в крови МСМ (табл. 1).

Целью последующих экспериментальных исследований явилось определение возможности медикаментозной коррекции обнаруженных ме­таболических сдвигов и соответственно депотенцирование молекулярно-клеточных механизмов развития гипоксической дезорганизации структуры и функции клеток различных органов и тка­ней.

Для частичного решения этого вопроса ис­пользовали введение цитофлавина, предшест­вующее развитию гипоксической гипоксии.

Как известно, цитофлавин является ком­плексным лекарственным препаратом, обладаю­щим свойством антигипоксанта субстратного и регуляторного действия, а также антиоксиданта. Основными метаболическими активными компо­нентами цитофлавина являются янтарная кисло­та, никотинамид, рибоксин и рибофлавин мононуклеотид.

Как показали результаты исследований, цитофлавин подавляет чрезмерную интенсифи­кацию липопероксидации и обеспечивает частич­ную реактивацию ферментного звена антиоксидантной системы крови.

Так, введение цитофлавина, предшест­вующее развитию гипоксической гипоксии, при­водило к снижению уровня МДА, ГПЛ по срав­нению с таковыми показателями в группе живот­ных с гипоксией без медикаментозной коррекции (табл. 1).

Одновременно имело место возрастание активности СОД. Уровень витамина Е оставался сниженным, как и в опытах без медикаментозной коррекции. Активность каталазы несколько сни­жалась по сравнению с таковыми показателями без медикаментозной коррекции, но оставалась значительно выше показателей контроля (табл. 2).

Введение цитофлавина обеспечивало по­вышение стабильности эритроцитарных мембран и соответственно ПРЭ, а также увеличение уров­ня SH - групп, не достигающее, однако, показа­телей нормы (табл. 2).

Цитофлавин препятствовал развитию ау­тоинтоксикации, на что указывала нормализация уровня МСМ в сыворотке крови животных с гипоксической гипоксией, развивающейся на фоне медикаментозной коррекции (табл. 1). Положи­тельные метаболические эффекты цитофлавина сопровождались резким увеличением продолжи­тельности жизни животных до 52,2 мин. (р>0,001) [1].

Установлено, что для восстановления ды­хательной цепи митохондрии необходима акти­вация не только флавинзависимых ферментов, но и никотинадениннуклеотид (НАД) - зависимых ферментов.

Один из компонентов цитофлавина - ри­бофлавина - никотинамид активирует НАД-зависимые ферменты клеток, в том числе антиоксидантные компоненты убихиноновых оксиретуктаз, защищающие мембраны клеток от дест­руктивного действия свободных радикалов.

Третий компонент цитофлавина - янтарная кислота - усиливает активность НАД-зависимых ферментов, дезактивирует пероксидазы в мито­хондриях.

И, наконец, последний компонент - ри­боксин - агонист пуринергических рецепторов, оказывает выраженные метаболические эффекты через ГТФ - связанные белки (Gi - белки), уси­ливает энергообеспечение клеток.

Таким образом, все компоненты цитофлавина обладают взаимопотенцирующим антигипоксическим и антиоксидантным действием, пре­пятствует развитию гипоксического некробиоза, пролонгирует время выживания животных при острой экзогенной гипоксической гипоксии.

Результаты проведенных исследований по­зволяют сделать следующие выводы:

  1. Эффективная коррекция метаболиче­ских сдвигов возможна спустя 30 мин с момента развития острой гипоксической гипоксии с по­мощью комплексного препарата - цитофлавина.
  2. Цитофлавин обеспечивает активацию НАД - зависимых, а также флавинзависимых дегидрогеназ, усиливает энергообеспечение кле­ток, а также их антирадикальную защиту в про­цессе активации убихиноновых оксиредуктаз и восстановления глутатиона.

Таблица 1. Влияние цитофлавина на показатели липопреоксидации крови и аутоинтоксикации при острой экспериментальной гипоксической гипоксии

Читайте также: