Механизм вдоха и выдоха физиология кратко

Обновлено: 05.07.2024

Атмосфера Земли состоит на 99,9% из воздуха, водяного пара, природных (действие вулканов) и промышленных газов, твердых частиц. В результате природных факторов Земли и процессов жизнедеятельности человека, состав атмосферы в том или ином регионе планеты может подвергаться незначительным изменениям. Одной из главных составных частей атмосферы является воздух. Воздух представляет собой смесь газов, основными компонентами которого являются: Азот (N2) – 78%; Кислород (О2) – 21%; Углекислый газ (СО2) – 0,03%; Инертные газы и другие вещества – до 1 %. В воздухе также присутствуют в незначительном количестве водород, оксид азота, озон, сероводород, водяной пар, инертные газы: аргон, неон, гелий, аргон, криптон, ксенон, радон, а также пыль и микроорганизмы.

Общая информация

Поступление в организм кислорода и удаление углекислого газа обеспечивает дыхательная система человека.

Транспорт газов и других необходимых организму веществ обеспечивается с помощью кровеносной системы.

Обмен О2 и CO2 между организмом и окружающей средой осуществляется благодаря ряду последовательных процессов:

  • Легочная вентиляция – обмен газами между окружающей средой и легкими.
  • Легочное дыхание – обмен газами между альвеолами легких и кровью.
  • Внутреннее (тканевое) дыхание – обмен газами между кровью и тканями тела.

Дыхательная система – совокупность органов и тканей, обеспечивающих легочную вентиляцию и легочное дыхание. Дыхательная система состоит из воздухоносных путей и собственно легких.

Воздухоносные пути включают в себя:

Дыхательная система человека

Дыхательная система человека

Воздух вдыхает человек, он попадает в нос и носовую полость. В носовой полости находятся обонятельные рецепторы, с помощью которых мы различаем запахи. Также в носовой полости есть волосы, предназначенное для задержки частиц пыли, поступающего вместе с воздухом из атмосферы.

Воздух, проходя через нос и носовую полость попадает в носоглотку. Носоглотка покрыта слизистой оболочкой, обогащенной кровеносными сосудами, благодаря чему осуществляется нагрев и увлажнение воздуха.

Наименьший структурный элемент легкого – долька, которая состоит из конечной бронхиолы и альвеолярного мешочка. Стенки легочной бронхиолы и альвеолярного мешочка образуют альвеолы.

Легкие (легочные дольки) состоят: конечные бронхиолы; альвеолярные мешочки; легочные артерии; капилляры; вены легочного круга кровообращения.

Строение бронх человека

Строение бронх человека

Воздух, проходя через бронхи и бронхиолы, заполняет большое количество альвеол – легочных пузырьков, в которых осуществляется газообмен между кровью и альвеолярным воздухом. Стенки альвеол состоят из тонкой пленки, которая вмещает большое количество эластичных волокон.

С помощью которых альвеолярные стенки могут расширяться, тем самым увеличивать объем альвеол. Диаметр каждой альвеолы составляет около 0,2 мм. А площадь ее поверхности около 0,125 мм. В легких взрослого человека около 700 млн. альвеол. То есть, общая площадь их поверхности составляет около 90 м 2 .

Таким образом, дыхательная поверхность в 60-70 раз превышает поверхность кожного покрова человека. При глубоком вдохе альвеолы растягиваются, и дыхательная поверхность достигает 250 м 2 , превышая поверхность тела более чем в 125 раз.

Процесс газообмена при дыхании

Сущность процесса газообмена заключается в переходе кислорода из альвеолярного воздуха в венозную кровь, которая циркулирует по легочных капиллярах (поглощение кислорода), и в переходе углекислого газа из венозной крови в альвеолярный воздух (выделение углекислого газа).

Этот обмен проходит через тонкие стенки легочных капилляров по законам диффузии, вследствие разности парциальных давлений газов в альвеолах и крови.

Обогащенная кислородом кровь из легких разносится по всей кровеносной системе, отдавая для обогащения тканям кислород и забирая от них углекислый газ. Кислород, поступающий в кровь, доставляется во все клетки организма. В клетках происходят важные для жизни окислительные процессы. Отдавая кислород клеткам, кровь захватывает углекислоту и доставляет их в альвеолы. Этот процесс и является внутренним, или тканевым дыханием.

Основные параметры процесса дыхания

Основным параметрами, характеризующими процесс дыхания человека являются:

  1. жизненная емкость легких;
  2. мертвое пространство органов дыхания;
  3. частота дыхания;
  4. легочная вентиляция;
  5. доза потребления кислорода.

Жизненная емкость легких – это максимальное количество воздуха (л), которую может вдохнуть человек после максимально глубокого выдоха. Этот показатель измеряется прибором, который называется спирометр. Нормальная жизненная емкость легких взрослого человека – примерно 3,5 л.

У тренированного человека занимающегося спортом, жизненная емкость легких составляет 4,7-5 л.

Общий объем легких человека состоит из жизненной емкости и остаточного объема. Остаточный объем, это количество воздуха, который всегда остается в легких человека после максимального выдоха. Этот объем составляет 1,5 л и его человек никогда не может удалить из органов дыхания.

Распределение воздуха в легких человека

Распределение воздуха в легких человека

Как видно из диаграммы, после спокойного вдоха в легких человека находится 3,5 л воздуха, а после спокойного выдоха остается только 3 л воздуха. Таким образом, при дыхании в спокойном состоянии человек использует при каждом вдохе только 0,5 л воздуха, называется дыхательным.

После спокойного вдоха, при желании, человек может продлить вдох и дополнительно вдохнуть еще 1,5 л воздуха. Этот воздух называется дополнительным. После спокойного выдоха человек также может дополнительно выдохнуть из легких еще 1,5 л воздуха. Этот воздух называется запасным или резервным.

Таким образом, жизненная емкость легких состоит из суммы дыхательного, дополнительного и запасного объемов воздуха.

При конструировании изолирующих аппаратов с замкнутым циклом дыхания, в которых используются емкости для приготовления и хранения дыхательной смеси (дыхательные мешки), необходимо учитывать, что их объем должен быть не менее максимальную жизненную емкость легких человека. Поэтому в современных изолирующих аппаратах используются дыхательные мешки, которые имеют объем 4,5-5 л, из расчета, что в них могут работать хорошо физически развитые люди.

Во время выдоха не весь выдыхаемый воздух выходит из организма человека в окружающею среду. Часть воздуха остается в носовой полости, гортани, трахее и бронхах. Эта часть воздуха не участвует и в процессе газообмена и пространство которое она занимает, называется мертвым пространством.

Воздух, находящийся в мертвом пространстве, содержит малую концентрацию кислорода и насыщенный углекислым газом. При вдохе, воздух мертвого пространства, вместе с воздухом вдыхаемого, попадает в легкие человека, вредно влияет на процесс дыхания. Поэтому мертвое пространство еще иногда называют вредным пространством. Объем мертвого пространства у взрослого человека составляет примерно 140 мл.

Каждый изолирующий аппарат также имеет свое мертвое пространство которое в общем прилагается к мертвому пространству органов дыхания человека. Мертвое пространство изолирующих аппаратов содержат маска и дыхательные шланги. Пространство между маской и лицом газодымозащитника (органов дыхания) называется подмасочным пространством, оно также является мертвым пространством.

Мертвое пространство

Легочная вентиляция (л/мин.) – количество воздуха, вдыхаемого человеком за одну минуту.

Частота дыхания – это количество циклов (вдох-выдох), происходящих за одну минуту. Частота дыхания является не постоянной величиной и зависит от многих факторов.

Частота дыхания в зависимости от возраста человека

В зависимости от возраста человека, частота дыхания меняется и составляет:

  • у только что родившихся – 60 вдохов / мин;
  • у годовалого младенца – 50 вдохов / мин;
  • у пятилетних детей – 25 вдохов / мин;
  • у 15-летних подростков – 12-18 вдохов / мин.

С возрастом человека, частота дыхания значительно не изменяется. Однако следует отметить, что у физически хорошо развитого человека частота дыхания уменьшается до 6-8 вдохов/мин.

При выполнении работы с физической нагрузкой, ускоряются физико-химические процессы в организме человека и возрастает потребность в большем количестве кислорода. Согласно этому, увеличивается частота дыхания, при значительной нагрузке может достигать 40 вдохов в минуту.

Однако следует помнить, что полностью используется жизненный объем легких только при частоте дыхания 15-20 вдохов/мин. При увеличении частоты дыхания возможность использования полной емкости легких уменьшается. Дыхание становится поверхностным.

При частоте дыхания 30 вдохов / мин., Емкость легких используется только на 2/3, а при 60 вдохов/мин. всего лишь на 1/4. Количество кислорода, поглощаемого человеком из воздуха при дыхании в единицу времени, называется дозой потребления кислорода. Доза потребления кислорода человеком, величина не постоянная и зависит от частоты дыхания и легочной вентиляции.

При увеличении физической нагрузки на организм человека, увеличивается частота дыхания и легочная вентиляция. Соответственно, растет доза потребления кислорода и увеличивается концентрация углекислого газа в выдыхаемом воздухе. Интересным свойством организма является то, что при вдыхании воздуха через нос в организм попадает на 25% больше кислорода, чем при вдыхании через рот.

Газообмен между атмосферным воздухом и альвеолярным пространством легких происходит в результате циклических изменений объема легких в течение фаз дыхательного цикла. В фазу вдоха объем легких увеличивается, воздух из внешней среды поступает в дыхательные пути и затем достигает альвеол. Напротив, в фазу выдоха происходит уменьшение объема легких и воздух из альвеол через дыхательные пути выходит во внешнюю среду. Увеличение и уменьшение объема легких обусловлены биомеханическими процессами изменения объема грудной полости при вдохе и выдохе.

Биомеханика дыхания. Биомеханика вдоха.

Внешнее дыхание. Биомеханика дыхания. Процесс дыхания. Биомеханика вдоха. Как люди дышат?

Рис. 10.1. Влияние сокращения диафрагмальной мышцы на объем грудной полости. Сокращение диафрагмальной мышцы при вдохе (пунктирная линия) вызывает опускание диафрагмы вниз, смещение органов брюшной полости вниз и вперед. В результате увеличивается объем грудной полости.

Увеличение объема грудной полости при вдохе происходит в результате сокращения инспираторных мышц: диафрагмы и наружных межреберных. Основной дыхательной мышцей является диафрагма, которая находится в нижней трети грудной полости и разделяет грудную и брюшную полости. При сокращении диафрагмальной мышцы диафрагма движется вниз и смещает органы брюшной полости вниз и кпереди, увеличивая объем грудной полости преимущественно по вертикали (рис. 10.1).

Дыхание. Дыхательная система. Функции дыхательной системы.

Увеличению объема грудной полости при вдохе способствует сокращение наружных межреберных мышц, которые поднимают грудную клетку вверх, увеличивая объем грудной полости. Этот эффект сокращения наружных межреберных мышц обусловлен особенностями прикрепления мышечных волокон к ребрам — волокна идут сверху вниз и сзади кпереди (рис. 10.2). При подобном направлении мышечных волокон наружных межреберных мышц их сокращение поворачивает каждое ребро вокруг оси, проходящей через точки сочленения головки ребра с телом и поперечным отростком позвонка. В результате этого движения каждая нижележащая реберная дуга поднимается вверх больше, чем опускается вышерасположенная. Одновременное движение вверх всех реберных дуг приводит к тому, что грудина поднимается вверх и кпереди, а объем грудной клетки увеличивается в сагиттальной и фронтальной плоскостях. Сокращение наружных межреберных мышц не только увеличивает объем грудной полости, но и препятствует опусканию грудной клетки вниз. Например, у детей, имеющих неразвитые межреберные мышцы, грудная клетка уменьшается в размере во время сокращения диафрагмы (парадоксальное движение).

Внешнее дыхание. Биомеханика дыхания. Процесс дыхания. Биомеханика вдоха. Как люди дышат?

Рис. 10.2. Направление волокон наружных межреберных мышц и увеличение объема грудной полости при вдохе. а — сокращение наружных межреберных мышц при вдохе поднимает нижнее ребро больше, чем опускает вниз верхнее. В результате реберные дуги поднимаются вверх и увеличивают (б) объем грудной полости в сагиттальной и фронтальной плоскости.

При глубоком дыхании в биомеханизме вдоха, как правило, участвует вспомогательная дыхательная мускулатура — грудино-ключично-сосцевидные и передние лестничные мышцы, и их сокращение дополнительно увеличивает объем грудной клетки. В частности, лестничные мышцы поднимают верхние два ребра, а грудино-ключично-сосцевидные — поднимают грудину. Вдох является активным процессом и требует расхода энергии при сокращении инспираторных мышц, которая затрачивается на преодоление эластического сопротивления относительно ригидных тканей грудной клетки, эластического сопротивления легко растяжимой легочной ткани, аэродинамического сопротивления дыхательных путей потоку воздуха, а также на повышение внутриабдоминального давления и возникающего при этом смещения органов брюшной полости книзу.

Процесс дыхания, поступление кислорода в организм при вдохе и удаление из него углекислого газа и паров воды при выдохе. Строение респираторной системы. Ритмичность и различные типы дыхательного процесса. Регуляция дыхания. Разные способы дыхания.

Для нормального протекания обменных процессов в организме человека и животных в равной мере необходим как постоянный приток кислорода, так и непрерывное удаление углекислого газа, накапливающегося в ходе обмена веществ. Такой процесс называется внешним дыханием.

Дыхание – это совокупность процессов, обеспечивающих потребление организмом кислорода и выделение углекислого газа.

Таким образом, дыхание – одна из важнейших функций регулирования жизнедеятельности человеческого организма. В организме человека функцию дыхания обеспечивает дыхательная (респираторная система).

В дыхательную систему входят легкие и респираторный тракт (дыхательные пути), который, в свою очередь, включает носовые ходы, гортань, трахею, бронхи, мелкие бронхи и альвеолы (смотри рисунок 1.5.3). Бронхи разветвляются, распространяясь по всему объему легких, и напоминают крону дерева. Поэтому часто трахею и бронхи со всеми ответвлениями называют бронхиальным деревом.

Кислород в составе воздуха через носовые ходы, гортань, трахею и бронхи попадает в легкие. Концы самых мелких бронхов заканчиваются множеством тонкостенных легочных пузырьков – альвеол (смотри рисунок 1.5.3).

Альвеолы – это 500 миллионов пузырьков диаметром 0,2 мм, где происходит переход кислородом в кровь, удаление углекислого газа из крови.

Здесь и происходит газообмен. Кислород из легочных пузырьков проникает в кровь, а углекислый газ из крови – в легочные пузырьки (рисунок 1.5.4).

Рисунок 1.5.4. Легочный пузырек. Газообмен в легких

Важнейший механизм газообмена – это диффузия, при которой молекулы перемещаются из области их высокого скопления в область низкого содержания без затраты энергии (пассивный транспорт). Перенос кислорода из окружающей среды к клеткам производится путем транспорта кислорода в альвеолы, далее в кровь. Таким образом, венозная кровь обогащается кислородом и превращается в артериальную. Поэтому состав выдыхаемого воздуха отличается от состава наружного воздуха: в нем содержится меньше кислорода и больше углекислого газа, чем в наружном, и много водяных паров (смотри рисунок 1.5.4). Кислород связывается с гемоглобином, который содержится в эритроцитах, насыщенная кислородом кровь поступает в сердце и выталкивается в большой круг кровообращения. По нему кровь разносит кислород по всем тканям организма. Поступление кислорода в ткани обеспечивает их оптимальное функционирование, при недостаточном же поступлении наблюдается процесс кислородного голодания (гипоксии).

Недостаточное поступление кислорода может быть обусловлено несколькими причинами как внешними (уменьшение содержания кислорода во вдыхаемом воздухе), так и внутренними (состояние организма в данный момент времени). Пониженное содержание кислорода во вдыхаемом воздухе, так же как и увеличение содержания углекислого газа и других вредных токсических веществ наблюдается в связи с ухудшением экологической обстановки и загрязнением атмосферного воздуха. По данным экологов только 15% горожан проживают на территории с допустимым уровнем загрязнения воздуха, в большинстве же районов содержание углекислого газа увеличено в несколько раз.

При очень многих физиологических состояниях организма (подъем в гору, интенсивная мышечная нагрузка), так же как и при различных патологических процессах (заболевания сердечно-сосудистой, дыхательной и других систем) в организме также может наблюдаться гипоксия.

Природа выработала множество способов, с помощью которых организм приспосабливается к различным условиям существования, в том числе к гипоксии. Так компенсаторной реакцией организма, направленной на дополнительное поступление кислорода и скорейшее выведение избыточного количества углекислого газа из организма является углубление и учащение дыхания. Чем глубже дыхание, тем лучше вентилируются легкие и тем больше кислорода поступает к клеткам тканей.

К примеру, во время мышечной работы усиление вентиляции легких обеспечивает возрастающие потребности организма в кислороде. Если в покое глубина дыхания (объем воздуха, вдыхаемого или выдыхаемого за один вдох или выдох) составляет 0,5 л, то во время напряженной мышечной работы она увеличивается до 2-4 л в 1 минуту. Расширяются кровеносные сосуды легких и дыхательных путей (а также дыхательных мышц), увеличивается скорость тока крови по сосудам внутренних органов. Активируется работа дыхательных нейронов. Кроме того, в мышечной ткани есть особый белок (миоглобин), способный обратимо связывать кислород. 1 г миоглобина может связать примерно до 1,34 мл кислорода. Запасы кислорода в сердце составляют около 0,005 мл кислорода на 1 г ткани и этого количества в условиях полного прекращения доставки кислорода к миокарду может хватить для того, чтобы поддерживать окислительные процессы лишь в течение примерно 3-4 с.

Миоглобин играет роль кратковременного депо кислорода. В миокарде кислород, связанный с миоглобином, обеспечивает окислительные процессы в тех участках, кровоснабжение которых на короткий срок нарушается.

В начальном периоде интенсивной мышечной нагрузки увеличенные потребности скелетных мышц в кислороде частично удовлетворяются за счет кислорода, высвобождающегося миоглобином. В дальнейшем возрастает мышечный кровоток, и поступление кислорода к мышцам вновь становится адекватным.

Все эти факторы, включая усиление вентиляции легких, компенсируют кислородный “долг”, который наблюдается при физической работе. Естественно, увеличению доставки кислорода к работающим мышцам и удалению углекислого газа способствует согласованное увеличение кровообращения в других системах организма.

Саморегуляция дыхания. Организм осуществляет тонкое регулирование содержания кислорода и углекислого газа в крови, которое остается относительно постоянным, несмотря на колебания количества поступающего кислорода и потребности в нем. Во всех случаях регуляция интенсивности дыхания направлена на конечный приспособительный результат – оптимизацию газового состава внутренней среды организма.

Частота и глубина дыхания регулируются нервной системой – ее центральными (дыхательный центр) и периферическими (вегетативными) звеньями. В дыхательном центре, расположенном в головном мозге, имеются центр вдоха и центр выдоха.

Дыхательный центр представляет совокупность нейронов, расположенных в продолговатом мозге центральной нервной системы.

При нормальном дыхании центр вдоха посылает ритмические сигналы к мышцам груди и диафрагме, стимулируя их сокращение. Ритмические сигналы образуются в результате спонтанного образования электрических импульсов нейронами дыхательного центра.

Сокращение дыхательных мышц приводит к увеличению объема грудной полости, в результате чего воздух входит в легкие. По мере увеличения объема легких возбуждаются рецепторы растяжения, расположенные в стенках легких; они посылают сигналы в мозг – в центр выдоха. Этот центр подавляет активность центра вдоха, и поток импульсных сигналов к дыхательным мышцам прекращается. Мышцы расслабляются, объем грудной полости уменьшается, и воздух из легких вытесняется наружу (смотри рисунок 1.5.5).

Рисунок 1.5.5. Регуляция дыхания

Процесс дыхания, как уже отмечалось, состоит из легочного (внешнего) дыхания, а также транспорта газа кровью и тканевого (внутреннего) дыхания. Если клетки организма начинают интенсивно использовать кислород и выделять много углекислого газа, то в крови повышается концентрация угольной кислоты. Кроме того, увеличивается содержание молочной кислоты в крови за счет усиленного образования ее в мышцах. Данные кислоты стимулируют дыхательный центр, и частота и глубина дыхания увеличиваются. Это еще один уровень регуляции. В стенках крупных сосудов, отходящих от сердца, имеются специальные рецепторы, реагирующие на понижение уровня кислорода в крови. Эти рецепторы также стимулируют дыхательный центр, повышая интенсивность дыхания. Данный принцип автоматической регуляции дыхания лежит в основе бессознательного управления дыханием, что позволяет сохранить правильную работу всех органов и систем независимо от условий, в которых находится организм человека.

Ритмичность дыхательного процесса, различные типы дыхания. В норме дыхание представлено равномерными дыхательными циклами “вдох – выдох” до 12-16 дыхательных движений в минуту. В среднем такой акт дыхания совершается за 4-6 с. Акт вдоха проходит несколько быстрее, чем акт выдоха (соотношение длительности вдоха и выдоха в норме составляет 1:1,1 или 1:1,4). Такой тип дыхания называется эйпноэ (дословно – хорошее дыхание). При разговоре, приеме пищи ритм дыхания временно меняется: периодически могут наступать задержки дыхания на вдохе или на выходе (апноэ). Во время сна также возможно изменение ритма дыхания: в период медленного сна дыхание становится поверхностным и редким, а в период быстрого – углубляется и учащается. При физической нагрузке за счет повышенной потребности в кислороде возрастает частота и глубина дыхания, и, в зависимости от интенсивности работы, частота дыхательных движений может достигать 40 в минуту.

При смехе, вздохе, кашле, разговоре, пении происходят определенные изменения ритма дыхания по сравнению с так называемым нормальным автоматическим дыханием. Из этого следует, что способ и ритм дыхания можно целенаправленно регулировать с помощью сознательного изменения ритма дыхания.

Человек рождается уже с умением использовать лучший способ дыхания. Если проследить как дышит ребенок, становится заметным, что его передняя брюшная стенка постоянно поднимается и опускается, а грудная клетка остается практически неподвижной. Он “дышит” животом – это так называемый диафрагмальный тип дыхания.

Диафрагма – это мышца, разделяющая грудную и брюшную полости.Сокращения данной мышцы способствуют осуществлению дыхательных движений: вдоха и выдоха.

В повседневной жизни человек не задумывается о дыхании и вспоминает о нем, когда по каким-то причинам становится трудно дышать. Например, в течение жизни напряжение мышц спины, верхнего плечевого пояса, неправильная осанка приводят к тому, что человек начинает “дышать” преимущественно только верхними отделами грудной клетки, при этом объем легких задействуется всего лишь на 20%. Попробуйте положить руку на живот и сделать вдох. Заметили, что рука на животе практически не изменила своего положения, а грудная клетка поднялась. При таком типе дыхания человек задействует преимущественно мышцы грудной клетки (грудной тип дыхания) или области ключиц (ключичное дыхание). Однако как при грудном, так и при ключичном дыхании организм снабжается кислородом в недостаточной степени.

Недостаток поступления кислорода может возникнуть также при изменении ритмичности дыхательных движений, то есть изменении процессов смены вдоха и выдоха.

В состоянии покоя кислород относительно интенсивно поглощается миокардом, серым веществом головного мозга (в частности, корой головного мозга), клетками печени и корковым веществом почек; клетки скелетной мускулатуры, селезенка и белое вещество головного мозга потребляют в состоянии покоя меньший объем кислорода, то при физической нагрузке потребление кислорода миокардом увеличивается в 3-4 раза, а работающими скелетными мышцами – более чем в 20-50 раз по сравнению с покоем.

Интенсивное дыхание, состоящее в увеличении скорости дыхания или его глубины (процесс называется гипервентиляцией), приводит к увеличению поступления кислорода через воздухоносные пути. Однако частая гипервентиляция способна обеднить ткани организма кислородом. Частое и глубокое дыхание приводит к уменьшению количества углекислоты в крови (гипокапнии) и защелачиванию крови – респираторному алкалозу.

Подобный эффект прослеживается, если нетренированный человек осуществляет частые и глубокие дыхательные движения в течение короткого времени. Наблюдаются изменения со стороны как центральной нервной системы (возможно появление головокружения, зевоты, мелькания “мушек” перед глазами и даже потери сознания), так и сердечно-сосудистой системы (появляется одышка, боль в сердце и другие признаки). В основе данных клинических проявлений гипервентиляционного синдрома лежат гипокапнические нарушения, приводящие к уменьшению кровоснабжения головного мозга. В норме у спортсменов в покое после гипервентиляции наступает состояние сна.

Следует отметить, что эффекты, возникающие при гипервентиляции, остаются в то же время физиологичными для организма – ведь на любое физическое и психоэмоциональное напряжение организм человека в первую очередь реагирует изменением характера дыхания.

При глубоком, медленном дыхании (брадипноэ) наблюдается гиповентиляционный эффект. Гиповентиляция – поверхностное и замедленное дыхание, в результате которого в крови отмечается понижение содержание кислорода и резкое увеличение содержания углекислого газа (гиперкапния).

Количество кислорода, которое клетки используют для окислительных процессов, зависит от насыщенности крови кислородом и степени проникновения кислорода из капилляров в ткани.Снижение поступления кислорода приводит к кислородному голоданию и к замедлению окислительных процессов в тканях.

В 1931 году доктор Отто Варбург получил Нобелевскую премию в области медицины, открыв одну из возможных причин возникновения рака. Он установил, что возможной причиной этого заболевания является недостаточный доступ кислорода к клетке.

Используя простые рекомендации, а также различные физические упражнения, можно повысить доступ кислорода к тканям.

  • Правильное дыхание, при котором воздух, проходящий через воздухоносные пути, в достаточной степени согревается, увлажняется и очищается – это спокойное, ровное, ритмичное, достаточной глубины.
  • Во время ходьбы или выполнения физических упражнений следует не только сохранять ритмичность дыхания, но и правильно сочетать ее с ритмом движения (вдох на 2-3 шага, выдох на 3-4 шага).
  • Важно помнить, что потеря ритмичности дыхания приводит к нарушению газообмена в легких, утомлению и развитию других клинических признаков недостатка кислорода.
  • При нарушении акта дыхания уменьшается приток крови к тканям и понижается насыщение ее кислородом.

Необходимо помнить, что физические упражнения способствуют укреплению дыхательной мускулатуры и усиливают вентиляцию легких. Таким образом, от правильного дыхания в значительной мере зависит здоровье человека.

Эволюционно сложилось так, что для жизнедеятельности человека необходим кислород. Как доставить его к органам и тканям? Сегодня говорим о дыхательной системе и особенностях её функционирования.

Как всё устроено?

Дыхательная система представлена целым рядом анатомических образований. Классификационно их подразделяют на дыхательные пути (верхние и нижние) и дыхательные органы. Верхние дыхательные пути - это полость носа, носовая и ротовая часть глотки. Нижние - гортань, трахея и бронхи. К дыхательным органам относят легкие. В обиходе и по факту, говоря об органах дыхания человека, могут подразумеваться отдельные анатомические образования и дыхательных путей. Например, гортань, трахея - это не только часть нижних дыхательных путей, но и самостоятельные органы.

Но как кислороду дойти до конечных целей - органов? Снаружи альвеола покрыта сетью мелких кровеносных сосудов, по которым непрерывно течет кровь. Одна из разновидностей клеток крови - эритроциты, заполненные веществом гемоглобином. Именно он и осуществляет перенос газов в организме.

Определенную роль в процессе дыхания играет отрицательное внутриплевральное давление.

Процесс дыхания человека сложен и регулируется различными способами. Рассмотрим некоторые из них.

За дыхание отвечает дыхательный центр - скопление нервных клеток в продолговатом мозге.

Поток нервных импульсов идет к мышцам, отвечающим за вдох, задавая им определенный размах движений. У дыхательного центра имеется автоматия: приблизительно раз в четыре секунды здесь возникает возбуждение, стимулирующее мышцы, обеспечивающие вдох. Затем оно сменяется торможением, мышцы вдоха расслабляются - происходит выдох. Ритмичная смена этих состояний - врожденное свойство.

Частота и глубина дыхания зависит от интенсивности процессов окисления, происходящих в организме. Физическая нагрузка приводит к увеличению поглощения кислорода и повышению концентрации в тканях и крови углекислого газа. Последний через кровь активирует работу дыхательного центра, и, как следствие, усиливается сокращение дыхательных мышц. Это позволяет быстрее удалить избыток углекислого газа и восполнить недостаток кислорода.

Не на пользу телу: что вредит нашей дыхательной системе?

Человек сформировался в условиях с определенным содержанием кислорода. Однако для оптимального процесса дыхания необходимо не только само его наличие, но и определенные характеристики вдыхаемого воздуха. Их обеспечивают наши дыхательные пути, поэтому к легким - в норме - поступает очищенный, увлажненный и согретый воздух.

На любой из этих параметров могут воздействовать изменения окружающей среды.

Чистота. Пыль различного происхождения, выхлопные газы автомобилей, выбросы вредных веществ в атмосферу, табачный дым, шерсть животных, пыльца растений. Список можно было бы продолжить.

Увлажненность. Наверняка многим знакомо чувство сухости и першения в горле в помещениях в зимнее время года, особенно поутру. Причина до банальности проста: отопление в квартирах и домах пересушивает воздух, который затем сушит слизистые оболочки дыхательных путей. В результате повышается восприимчивость их к инфекции.

Читайте материал по теме: Чем отличаются ОРВИ и ОРЗ?

Низкая температура. Дышать через нос, а не через рот, советуют не просто так: помимо очищения и увлажнения, слизистая носовой полости согревает проходящий транзитом воздух.

Среди других факторов, способных нанести вред нашим органам дыхания - многочисленные инфекции. ОРВИ, бактерии, грибки - все эти представители микромира способны вызывать различные заболевания.

Когда дышать тяжело. Что говорит статистика?

Пневмония, острый ларингит, трахеит и бронхит. По данным министерства здравоохранения РФ наиболее распространенные заболевания среди взрослых связаны с дыхательной системой.

Сохраняют актуальность бронхиальная астма, хроническая обструктивная болезнь легких (ХОБЛ), рак и туберкулез легких.

А над нами - километры воды, а над нами бьют хвостами киты…

Сколько воздуха в день вдыхает человек?

Давайте посчитаем. В норме в покое объем воздуха, вдыхаемого или выдыхаемого взрослым человеком при одном дыхательном цикле, составляет 500 мл, а частота дыхания у него - от 16 до 20 (во время сна - до 12). Таким образом, в покое в минуту человек вдыхает от 8 литров воздуха, а в течение суток - около 11 500 литров (с поправками на частоту дыхания во время сна - соответственно меньше).

Сколько человек может не дышать?

Ответ на этот вопрос зависит от многих факторов. Находится ли человек в покое или двигается? Какова температура окружающей среды? И т.д.

Итак, сколько может не дышать человек? Диапазон колебаний составляет от менее чем 1 минуты до нескольких минут. Один из мировых рекордов принадлежит датскому ныряльщику Стигу Северинсену - 22 минуты. Правда, перед своей попыткой он почти 20 минут активно дышал чистым кислородом. Ткани организма обогатились этим газом и одновременно снизилось содержание углекислоты.

Критичен не только дефицит кислорода, но и избыток углекислого газа. При невозможности организма избавиться от углекислоты через легкие, начинает увеличиваться ее содержание в крови. Возможно нарушение ориентации, спазмы в мышцах, учащенное сердцебиение, потеря сознания и смерть.

Что будет, если часто задерживать дыхание?

Исходя из описанного выше, в зависимости от частоты и длительности задержек в организме может постепенно накапливаться углекислый газ. При выходе его за границы нормы и сравнительно длительном сохранении этого состояния возможны пагубные влияния на здоровье.

Обычно после ощутимой задержки дыхания и закономерном повышении уровня углекислоты отмечается углубление дыхания: организм удаляет ее избыток и стремится получить кислород.

Лечебное дыхание

На пользу стройности

Существуют методики для похудения, основанные на различных способах дыхания - например бодифлекс, оксисайз.

Мнения ученых по поводу снижения веса с помощью только дыхательных упражнения противоречивы. Кроме того, необходимо помнить, что слишком глубокие вдохи и выдохи могут нарушить равновесие между кислородом и углекислым газом. Это может вызвать головокружение, а у кого-то и обморок.

Поэтому перед началом такой практики необходимо посоветоваться с врачом, в том числе и особенно если имеются какие-то проблемы со здоровьем.

Вдох, выдох, покой

Схема работает примерно так. Когда организм эмоционально возбуждается, обнаруженные клетки передают сигналы на нейроны, учащающие дыхание. Однако, как оказалось, работает система и в обратном направлении. Иными словами, если начать дышать чаще, то мозг может возбуждаться. Отсюда напрашивается вывод, почему глубокое замедленное дыхание может успокаивать.

Как дышать, чтобы быстро уснуть?

- поместите кончик языка на слизистую оболочку сразу за верхними передними зубами (с внутренней стороны) и держите его там на протяжении всего упражнения;

- полностью выдохните через рот со свистящим звуком;

- закройте рот и спокойно вдохните через нос, досчитав про себя до четырех;

- задержите дыхание, посчитав мысленно до семи;

- полностью выдохните через рот, издавая свистящий звук, посчитав до восьми.

Это одно дыхание. Теперь повторите цикл еще три раза.

Если вам сложно задерживать дыхание, вы можете ускорить упражнение, но придерживайтесь соотношения 4:7:8 для трех фаз. Выполняйте упражнение дважды в день.

Метод относится к альтернативным методам лечения и, возможно, не проверялся с точки зрения принципов доказательной медицины.

Сохраняем здоровье

Как же сохранить здоровье дыхательной системы? С учетом неблагоприятных факторов, которые могут влиять на ее состояние, целесообразны достаточная физическая активность - в идеале на свежем воздухе; регулярное проветривание помещений; увлажнение воздуха; избавление от вредных привычек (курение); использование во время работы, связанной с профессиональными вредностями, индивидуальных средств защиты (маски, респираторы).

Важна профилактика респираторных инфекций, а также своевременное лечение любых заболеваний органов дыхания.

Необходимо обязательно проходить плановые диспансеризации и профосмотры с выполнением флюорографии с частотой, предусмотренной ими.

Читайте также: