Механизм наследования rh кратко

Обновлено: 04.07.2024

Упрощенно каждый признак в организме (цвет волос, глаз, группа крови, резус-фактор.) кодируется двумя генами. Реально количество генов, определяющих признак, значительно больше. По каждому признаку один ген ребенок получает от матери, другой - от отца. В генетике выделяют доминантные и рецессивные гены. Доминантный ген обозначается заглавной буквой латинского алфавита, и в его присутствии рецессивный ген, как правило, не проявляет свои свойства. Рецессивный ген обозначается прописной буквой латинского алфавита. Если по какому-то признаку организм содержит два одинаковых гена (два рецессивных, либо два доминантных), то он называется гомозиготой по данному признаку. Если же организм содержит один доминантный и один рецессивный ген, то он называется гетерозиготным по данному признаку и при этом проявляются те свойства признака, которые кодируются доминантным геном.

Например:
А - доминантный ген,определяющий карий цвет глаз
а - рецессивный ген,определяющий голубой цвет глаз

Возможные варианты генотипа:
АА - гомозигота, карие глаза
Аа - гетерозигота, карие глаза
aа - гомозигота, голубые глаза

Пример 1:
жена АА - гомозигота, карие глаза, оба гена доминантны
муж аа - гомозигота, голубые глаза, оба гена рецессивны

При образовании половых клеток (яйцеклетка и сперматозоид) в каждую половую клетку (гамету) идет по одному гену, т.е. в данном случае женский организм образует две гаметы, содержащие по одному доминантному гену, а мужской организм - две гаметы, содержащие по одному рецессивному гену. При слиянии половых клеток зародыш получает по данному признаку один материнский и один отцовский ген.

жена АА + муж аа
Гаметы: А А а а
Ребенок: Аа Аа Аа Аа

Таким образом, в данной ситуации в 100% дети будут иметь карие глаза и являться гетерозиготами по этому признаку.

Пример 2:
жена Аа - гетерозигота, карие глаза
муж Аа - гетерозигота, карие глаза
жена Аа + муж Аа
гаметы: А а А а
ребенок: АА , Аа, Аа, аа

В данном случае вероятность рождения детей в 25% с карими глазами(гомозиготы), в 50% с карими глазами гетерозиготы, в 25% голубые глаза(гомозиготы).

Пример 3:
жена Аа - гетерозигота, карие глаза
муж аа - гомозигота, голубые глаза
Жена Аа + муж аа
Гаметы: А а а а
Ребенок: Аа , Аа, аа , аа

В данном случае 50% детей имеют карие глаза и являются гетерозиготами и 50% имеют голубуе глаза (гомозиготы)

Закономерности наследования группы крови и резус-фактора.

Наследование группы крови контролируется аутосомным геном. Локус этого гена обозначают буквой I, а три его аллеля буквами А, В и 0. Аллели А и В доминантны в одинаковой степени, а аллель 0 рецессивен по отношению к ним обоим. Существует четыре группы крови. Им соответствуют следующие генотипы:
Первая (I) 00
Вторая (II) АА ; А0
Третья (III) ВВ ; В0
Четвертая (IV) АВ

Пример 1:

жена имеет первую группу крови (00)
муж имеет вторую группу крови и является гомозиготой (АА)
жена 00 + муж АА
гаметы: 0 0 А А
ребенок: А0 А0 А0 А0

Все дети имеют вторую группу крови и являются гетерозиготами по данному признаку.

Пример 2:

жена имеет первую группу крови (00) муж имеет вторую группу крови и является гетерозиготой (А0)
жена 00 + муж А0
гаметы: 0 0 А 0
ребенок: А0 А0 00 00

В данной семье в 50% возможно рождение ребенка, имеющего вторую группу крови, и в 50% группа крови ребенка окажется первой.

Наследование резус-фактора кодируется тремя парами генов и происходит независимо от наследования группы крови. Наиболее значимый ген обозначается латинской буквой D. Он может быть доминантным - D, либо рецессивным - d. Генотип резус-положительного человека может быть гомозиготным - DD, либо гетерозиготным - Dd. Генотип резус-отрицательного человека может быть - dd.

Пример 1:

жена имеет отрицательный резус-фактор (dd) муж имеет положительный резус-фактор и является гетерозиготой(Dd)
жена dd + муж Dd
гаметы: d d D d
ребенок: Dd Dd dd dd

В данной семье вероятность рождения резус-положительного ребенка составляет 50% и вероятность рождения резус-отрицательного ребенка также составляет 50%.

Пример 2:

жена имеет отрицательный резус-фактор (dd)
муж имеет положительный резус-фактор и является гомозиготой по данному признаку (DD)
жена dd + муж DD
гаметы: d d D D
ребенок: Dd Dd Dd Dd

В данной семье вероятность рождения резус-положительного ребенка составляет 100%.

Особенности течения беременности при несовместимости по резус-фактору. Резус-конфликт.

Гемолитическая болезнь плода и новорожденного это состояние, возникающее в результате несовместимости крови матери и плода по некоторым антигенам. Наиболее часто гемолитическая болезнь новорожденного развивается вследствие резус-конфликта. При этом у беременной женщины резус-отрицательная кровь, а у плода резус-положительная. Во время беременности резус-фактор с эритроцитами резус-положительного плода попадает в кровь резус-отрицательной матери и вызывает в ее крови образование антител к резус-фактору (безвредных для нее, но вызывающих разрушение эритроцитов плода). Распад эритроцитов приводит к повреждению печени, почек, головного мозга плода, развитию гемолитической болезни плода и новорожденного. В большинстве случаев заболевание быстро развивается после рождения, чему способствует поступление большого количества антител в кровь ребенка при нарушении целостности сосудов плаценты.

Реже гемолитическая болезнь новорожденного вызывается групповой несовместимостью крови матери и плода (по системе АВ0). При этом за счет агглютиногена (А или В), имеющегося в эритроцитах плода, но отсутствующего у матери, в материнской крови происходит образование антител к эритроцитам плода. Чаще иммунная несовместимость проявляется при наличии у матери I группы крови, а у плода - II, реже III группы крови.

Процесс иммунизации беременной женщины начинается с момента образования антигенов в эритроцитах плода. Поскольку антигены системы резус содержаться в крови плода с 9-10й недели беременности, а групповые антигены - с 5-6й недели, то в некоторых случаях возможна ранняя сенсибилизация организма матери. Проникновению антигенов в материнский кровоток способствуют инфекционные факторы, повышающие проницаемость плаценты, мелкие травмы, кровоизлияния и другие повреждения плаценты. Как правило, первая беременность у резус-отрицательной женщины при отсутствии в прошлом сенсибилизации организма протекает без осложнений. Сенсибилизация организма резус-отрицательной женщины возможна при переливаниях несовместимой крови (проводимых даже в раннем детском возрасте), при беременностях и родах (если у плода резус-положительная кровь), после абортов, выкидышей, операций по поводу внематочной беременности. По данным литературы после первой беременности иммунизация возникает у 10% женщин. Если женщина с резус-отрицательной кровью избежала резус-иммунизации после первой беременности, то при последующей беременности резус-положительным плодом вероятность иммунизации вновь составляет 10%. Поэтому после любого прерывания беременности у женщины с резус-отрицательной кровью с профилактической целью необходимо введение антирезус-иммуноглобулина. В течении беременности у женщины с резус-отрицательной кровью обязательно необходимо определение титра резус-антител в крови в динамике.

Наиболее часто задаваемые вопросы.

Обязательно ли у ребенка должна быть папина или мамина группа крови и резус, или эти показатели могут достаться ему, к примеру, от родственников?

Ответ: Наследование группы крови и резус-фактора подчиняется законам генетики. Ребенок может иметь группу крови и резус-фактор, несовпадающий с родительскими. Наследование группы крови и резус-фактора осуществляется независимо друг от друга.

Вопрос 2:

У меня отрицательный резус-фактор. Недавно я сделала аборт. Смогу ли я иметь детей? Есть ли вероятность того, что при следующей беременности ребенок будет больным?

Ответ: Наличие отрицательного резус-фактора непосредственно на зачатие не влияет. Во время аборта (если он был произведен на сроках 9-10 недель беременности) существовала вероятность возникновения сенсибилизации организма к резус-фактору. До планируемой беременности желательно сделать анализ крови на наличие антител к резус-фактору.

Вопрос 3:

Какая доза антирезус-иммуноглобулина и в какие сроки вводится женщине с резус-отрицательной кровью после родов? Правда ли, что вводимая доза препарата должна быть увеличена после операции кесарево сечение?

Ответ: Женщинам с резус-отрицательной кровью после родов с профилактической целью вводится антирезус-иммуноглобулин в количестве 1-1.5 мл (200-300мкг) не позднее 24-48 часов после родов. При оперативных вмешательствах трансплацентарное кровотечение может увеличиваться, и поэтому вводимую дозу антирезус-иммуноглобулина увеличивают в 1,5 раза.

Вопрос 4:

Действительно ли, что резус-конфликт может возникнуть только в случае, когда женщина имеет отрицательный резус-фактор, а мужчина - положительный. Есть ли вероятность возникновения конфликта в обратном случае, когда женщина имеет положительный резус-фактор, а мужчина - отрицательный?

Ответ: Вероятность резус-конфликта при таком соотношении очень невелика. Однако в некоторых случаях возникновение конфликта возможно при любом несовпадении резус-фактора у беременной женщины и плода. Во многих клиниках на Западе проводится обследование на наличие антирезус-антител всех женщин независимо от резус-принадлежности.

Генетика группы крови и их полиморфизмы

Хотя весь полиморфизм — результат различий в последовательности ДНК, некоторые полиморфные локусы исследованы проверкой изменений в белках, кодируемых этими аллелями, а не изучением различий в ДНК-последовательности самих аллелей. Считают, что любой человек вероятно гетерозиготен по аллелям, определяющим структурно различающиеся полипептиды, приблизительно в 20% всех локусов; при сравнении индивидуумов из разных этнических групп полиморфизм обнаруживают даже в большей доле белков.

Таким образом, в пределах человеческого вида существует поразительная степень биохимической индивидуальности в характеристиках ферментов и других продуктов генов. Кроме того, поскольку продукты многих биохимических путей взаимодействуют, можно правдоподобно предположить, что каждый человек, независимо от состояния его здоровья, имеет уникальные, генетически определяемые биохимические характеристики и, таким образом, уникально отвечает на влияния окружающей среды, диетические и фармакологические факторы.

Это понятие химической индивидуальности, впервые выдвинутое столетие назад замечательным британским врачом Арчибальдом Гарродом, оказалось правильным.

Здесь мы обсудим несколько полиморфизмов, имеющих медицинское значение: группы крови АВО и резус-фактор Rh (важные в определении совместимости для переливаний крови) и МНС (играющий важную роль в пересадке органов и тканей). Исследования изменений в белках, а не в кодирующей их ДНК, дают реальную пользу; в конце концов, именно различные белковые продукты различных полиморфных аллелей часто ответственны за различные фенотипы и, следовательно, определяют, как генетические изменения в локусе влияют на взаимодействие организма и среды.

Группы крови и их полиморфизмы

Первые примеры генетически предопределенных изменений белков были обнаружены в эритроцитах, так называемые антигены групп крови. Известно большое число полиморфизмов в компонентах человеческой крови, особенно в АВО и Rh антигенах эритроцитов. В частности, системы АВО и Rh важны при переливании крови, пересадке тканей и органов и при гемолитической болезни новорожденного.

группы крови

Система АВО групп крови

Человеческая кровь может относиться к одной из четырех групп, в соответствии с наличием на поверхности эритроцитов двух антигенов, А и В, и присутствия в плазме двух соответствующих антител, анти-А и анти-В. Существует четыре основных фенотипа: 0, А, В и АВ. Люди с группой А имеют на эритроцитах антиген А, с группой В имеют антиген В, с группой АВ — как антигены А, так и В, и наконец с группой 0 не имеют ни одного антигена.

Одна из характеристик групп АВО не распространяется на другие системы групп крови — это реципрокные отношения между наличием антигенов на эритроцитах и антител в сыворотке. Когда на эритроцитах отсутствует антиген А, сыворотка содержит анти-А антитела; когда отсутствует антиген В, сыворотка содержит анти-В антитела. Причина реципрокного отношения неизвестна, но полагают, что образование анти-А и анти-В антител — ответ на присутствие А- и В-подобных антигенов в окружающей среде (например, в бактериях).

Группы крови АВО определяются локусом в хромосоме 9. Аллели А, В и 0 в этом локусе — классический пример мультиаллелизма, когда три аллеля, два из которых (А и В) наследуются как кодоминантные, а третий (0) — как рецессивный признак, определяют четыре фенотипа. Антигены А и В определяются действием аллелей А и В на поверхностный гликопротеид эритроцитов, названный антигеном Н.

Специфичность антигенов определяется концевыми углеводами, добавляемыми к субстрату Н. Аллель В кодирует гликозилтрансферазу, преимущественно опознающую сахар D-галактозу и добавляющую его к концу цепочки олигосахаридов, содержащейся в антигене Н, тем самым создавая антиген В. Аллель А кодирует немного отличающуюся форму фермента, распознающую и добавляющую к субстрату вместо D-галактозы N-ацетилгалактозамин, создавая тем самым антиген А. Третий аллель, 0, кодирует мутантную версию трансферазы, не обладающую трансферазной активностью и не влияющую на субстрат Н.

Определены молекулярные различия в гене гликозилтрансферазы, ответственной за аллели А, В и 0. Последовательность из четырех различных нуклеотидов, различающаяся между аллелями А и В, приводит к изменениям аминокислот, изменяющим специфичность гликозилтрансферазы. Аллель 0 имеет однонуклеотидную делецию в кодирующей области гена АВО, вызывающую мутацию сдвига рамки и инактивирующую активность трансферазы у людей с группой 0. Теперь, когда известны ДНК-последовательности, определение групповой принадлежности по системе АВО можно выполнять непосредственно на уровне генотипа, а не фенотипа, особенно когда есть технические трудности в серологическом анализе, что часто случается в судебной практике или при установлении отцовства.

группы крови

На видео представлена техника определения группы крови стандартными сыворотками: Видео определения группы крови

Постоянное присутствие анти-А и анти-В антител объясняет неудачи многих ранних попыток переливания крови, поскольку эти антитела могут вызывать быстрое уничтожение АВО-несовместимых клеток. При пересадке тканей и органов для успешного приживания необходима совместимость донора и реципиента по группе АВО и HLA (описанной позже).

Система Rh групп крови

По клиническому значению система Rh сравнима с системой АВО из-за своей роли в развитии гемолитической болезни новорожденных и в несовместимости при переливаниях крови. Название Rh происходит от обезьян резусов (Rhesus), использовавшихся в экспериментах, приведших к открытию системы. Проще говоря, популяция разделяется на Rh-положительных индивидуумов, экспрессирующих в эритроцитах антиген Rh D, полипептид, закодированный геном (RHD) в хромосоме 1, и Rh-отрицательных, не экспрессирующих этот антиген. Отрицательный Rh-фенотип обычно вызван гомозиготностью по нефункциональному аллелю гена RHD. Частота Rh-отрицательных индивидуумов сильно изменяется в разных этнических группах. Например, 17% белых и 7% афроамериканцев Rh-отрицательны, тогда как среди японцев — всего 0,5%.

Гемолитическая болезнь новорожденных и группы крови

Главное клиническое значение системы Rh — то, что Rh-отрицательные лица могут легко формировать анти-Rh антитела после встречи с Rh-положительными эритроцитами. Это становится проблемой, когда Rh-отрицательная беременная вынашивает Rh-положительный плод. В норме в течение беременности небольшие количества крови плода пересекают плацентарный барьер и попадают в материнский кровоток. Если мать Rh-отрицательна, а плод Rh-положителен, мать формирует антитела, возвращающиеся к плоду и повреждающие его эритроциты, вызывая гемолитическую болезнь новорожденных с серьезными последствиями.

В свое время считавшаяся наиболее частым генетическим заболеванием у человека, гемолитическая болезнь новорожденных теперь встречается сравнительно редко из-за профилактических мер, ставших в акушерстве установившейся практикой.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Группы крови системы Rh определяются в основном двумя аллелями:

доминантный ген Rh обусловливает наличие в эритроцитах резус-антигена,

рецессивный ген rh – отсутствие его. При несовместимости крови по резус-

фактору матери и плода (мать резус-отрицательная, плод – резус-

положительный) ребенок нередко рождается с гемолитической желтухой. В

тяжелых случаях возможна гибель плода.

Формирование группы крови системы резус (Rh) определяют сцепленные

гены С, D, Е (расстояние 3 – 5 сМ). Ген D отвечает за формирование у человека

резус-антигена (положительный резус-фактор). Если гены С и D находятся в

цис-фазе, то активность гена D ослаблена. В этом случае несовместимость

матери и плода по резус-фактору протекает легче.

Не для всех людей с резус-отрицательной кровью риск иммунизации

резус-положительными эритроцитами одинаков. Так, в случае несовместимости

матери и плода одновременно по системе АВО и резус-фактору резус-конфликт

не развивается, так как попавшие в организм матери эритроциты плода будут

разрушаться ее антителами (против А и В антигенов) и не смогут вызвать

Резус-отрицательная женщина со II (А) группой крови (мать ее имеет I

группу крови) выходит замуж за мужчину, имеющего IV (АВ) группу крови и

Rh+, но гетерозиготного по этому гену.

Вопрос 21. Моногенное наследование. Характеристика сцепленного с полом типа наследования признаков (Х-Р, Х-Д, У-сцепленного).

Вопрос 22. Особенности наследования признаков при их сцеплении с Х-хромосомой. Наследование гемофилии.

Х-Д: болеют как мужчины, так и женщины; типичный брак ХАХа х ХаУ. Больной мужчина передает пораженный ген только дочерям, а больная женщина – и дочерям, и сыновьям. Наследование заболевания и по горизонтали, и по вертикали. Заболевания: витамин-Д-устойчивый рахит, коричневая эмаль зубов.

Х-Р: болеют преимущественно мужчины, типичный брак ХАХа х ХАУ. Больные сыновья могут родиться у здоровых родителей. В родословной пробанда родственники мужского пола со стороны матери больны. Заболевания: гемофилия А и В, дальтонизм – невосприятие зеленого и красного цветов.

Вопрос 23. Закономерности независимого наследования двух и более признаков (3й закон Менделя). Виды взаимодействия неаллельных генов (комплементарность).

3 закон Менделя, закон независимого наследования, согласно которому каждый признак наследуется независимо от других признаков: при скрещивании двух дигетерозигот образуется 16 возможных генотипов, дающих проявление в четырех типах фенотипов в соотношении 9:3:3:1.

Комплементарность – один из видов взаимодействия неаллельных генов. При комплементарности определенный конечный признак формируется только при наличии в генотипе двух комплементарных генов. Нормальный слух у человека определяется двумя комплементарными доминантными генами, расположенных в разных парах хромосом. Если в генотипе только 1из комплементарных генов или только их рецессивные аллели, то развивается врожденная глухонемота.

Вопрос 24. Полигенное наследование. Мультифакторные болезни человека, особенности их генетического формирования и прогнозирования (определение риска для потомства).

Мультифакторные заболевания (МФЗ) – болезни, причиной которых является множество факторов среды (в т.ч. – социальные), эти болезни возникают преимущественно у людей с полигенно обусловленной предрасположенностью (предрасположенность к МФЗ – полигенный признак). Наследуется предрасположенность, а не болезнь!

На сегодня разработаны две модели генетической природы

наследственной предрасположенности к МФЗ: простая аддитивность

(суммирование эффекта многих генов) и с порогом накопления.

Коэффициент наследуемости при МФЗ больше 50%, но меньше 100%.

Например, при врожденном пилоростенозе он равен 80%, при язвенной болезни

12-перстной кишки – 60%, при ишемической болезни сердца – более 50%.

Прогнозирование при МФЗ:

Степень родства определяет долю общих генов у родственников. Чем

ближе степень родства, тем больше доля общих генов у родственников (табл. 2)

поэтому возрастает вероятность риска заболеть МФЗ. При близкородственных

браках доля общих генов также возрастает.

Группы крови системы Rh определяются в основном двумя аллелями:

доминантный ген Rh обусловливает наличие в эритроцитах резус-антигена,

рецессивный ген rh – отсутствие его. При несовместимости крови по резус-

фактору матери и плода (мать резус-отрицательная, плод – резус-

положительный) ребенок нередко рождается с гемолитической желтухой. В

тяжелых случаях возможна гибель плода.

Формирование группы крови системы резус (Rh) определяют сцепленные

гены С, D, Е (расстояние 3 – 5 сМ). Ген D отвечает за формирование у человека

резус-антигена (положительный резус-фактор). Если гены С и D находятся в

цис-фазе, то активность гена D ослаблена. В этом случае несовместимость

матери и плода по резус-фактору протекает легче.

Не для всех людей с резус-отрицательной кровью риск иммунизации

резус-положительными эритроцитами одинаков. Так, в случае несовместимости

матери и плода одновременно по системе АВО и резус-фактору резус-конфликт

не развивается, так как попавшие в организм матери эритроциты плода будут

разрушаться ее антителами (против А и В антигенов) и не смогут вызвать

Резус-отрицательная женщина со II (А) группой крови (мать ее имеет I

группу крови) выходит замуж за мужчину, имеющего IV (АВ) группу крови и

Rh+, но гетерозиготного по этому гену.

Вопрос 21. Моногенное наследование. Характеристика сцепленного с полом типа наследования признаков (Х-Р, Х-Д, У-сцепленного).

Вопрос 22. Особенности наследования признаков при их сцеплении с Х-хромосомой. Наследование гемофилии.

Х-Д: болеют как мужчины, так и женщины; типичный брак ХАХа х ХаУ. Больной мужчина передает пораженный ген только дочерям, а больная женщина – и дочерям, и сыновьям. Наследование заболевания и по горизонтали, и по вертикали. Заболевания: витамин-Д-устойчивый рахит, коричневая эмаль зубов.

Х-Р: болеют преимущественно мужчины, типичный брак ХАХа х ХАУ. Больные сыновья могут родиться у здоровых родителей. В родословной пробанда родственники мужского пола со стороны матери больны. Заболевания: гемофилия А и В, дальтонизм – невосприятие зеленого и красного цветов.

Вопрос 23. Закономерности независимого наследования двух и более признаков (3й закон Менделя). Виды взаимодействия неаллельных генов (комплементарность).

3 закон Менделя, закон независимого наследования, согласно которому каждый признак наследуется независимо от других признаков: при скрещивании двух дигетерозигот образуется 16 возможных генотипов, дающих проявление в четырех типах фенотипов в соотношении 9:3:3:1.

Комплементарность – один из видов взаимодействия неаллельных генов. При комплементарности определенный конечный признак формируется только при наличии в генотипе двух комплементарных генов. Нормальный слух у человека определяется двумя комплементарными доминантными генами, расположенных в разных парах хромосом. Если в генотипе только 1из комплементарных генов или только их рецессивные аллели, то развивается врожденная глухонемота.

Вопрос 24. Полигенное наследование. Мультифакторные болезни человека, особенности их генетического формирования и прогнозирования (определение риска для потомства).

Мультифакторные заболевания (МФЗ) – болезни, причиной которых является множество факторов среды (в т.ч. – социальные), эти болезни возникают преимущественно у людей с полигенно обусловленной предрасположенностью (предрасположенность к МФЗ – полигенный признак). Наследуется предрасположенность, а не болезнь!

На сегодня разработаны две модели генетической природы

наследственной предрасположенности к МФЗ: простая аддитивность

(суммирование эффекта многих генов) и с порогом накопления.

Коэффициент наследуемости при МФЗ больше 50%, но меньше 100%.

Например, при врожденном пилоростенозе он равен 80%, при язвенной болезни

12-перстной кишки – 60%, при ишемической болезни сердца – более 50%.

Прогнозирование при МФЗ:

Степень родства определяет долю общих генов у родственников. Чем

ближе степень родства, тем больше доля общих генов у родственников (табл. 2)

поэтому возрастает вероятность риска заболеть МФЗ. При близкородственных

браках доля общих генов также возрастает.



Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.


Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Множественный аллелизм. Генетика групп крови человека

Множественный аллелизм
Наследование групп крови системы ABO
Понятие об антигенных системах групп крови
Взаимодействие генов
Тестовые задания
Множественный аллелизм
Развитие признака определяется двумя аллелями одного гена (А и а), которые занимают идентичные локусы гомологичных хромосом. Иногда ген имеет не два, а большее число аллелей, которые возникают в результате мутации. Многократное мутирование одного и того же гена образует серию множественных аллелей, а само явление называется явлением множественного аллелизма. Оно имеет широкое распространение: окраска шерсти у кроликов, цвет глаз у дрозофилы, система групп крови АВО у человека.
Имеются определенные закономерности множественного аллелизма:
— каждый ген может иметь большое число аллелей;
— любой аллель может возникнуть в результате прямой и обратной мутации любого члена серии множественных аллелей или от аллеля дикого типа;
— в диплоидном организме могут одновременно находиться два любых аллеля из серии множественных аллелей;
— аллели находятся в сложных доминантно-рецессивных отношениях между собой: один и тот же аллель может быть доминантным по отношению к одному аллелю и рецессивным по отношению к другому, а между иными аллелями доминирование может отсутствовать, и наблюдается кодоминирование и др.;
— члены серии множественных аллелей наследуются так же, как и пара аллелей, т. е. наследование подчиняется менделевским закономерностям (кроме кодоминирования);
— разные сочетания аллелей в генотипе обуславливают различные фенотипические проявления одного и того же признака;
— серии аллелей увеличивают комбинатов ну ю изменчивость.


Наследование групп крови системы ABO
Примером множественного аллелизма у человека является наличие трех аллелей гена, определяющего наследование групп крови системы АВО.
• система определяется тремя аллелями одного гена I (IA, 1в, 1°); ген I расположен в 9-й хромосоме: 9q34;
• из всей серии аллелей одновременно в генотипе диплоидного организма находятся два аллеля (I°I0, IAIA, IAI°, 1в1в и др.);
• аллели IA, 1в доминантны по отношению к аллелю 1° — полное доминирование, между собой аллели 1А и 1в — кодоминантны;
• доминантный аллель гена может проявлять свое действие в гомо- (IAIA, IBIB) и гетерозиготном организмах (1А1°, 1в 1°), а рецессивный аллель гена — только в гомозиготном организме (1° 1°);
• различные сочетания аллелей в генотипе дают разные фенотипы: 4 группы крови I (0), II (А), III (В), IV (АВ), которые различаются между собой антигенными свойствами эритроцитов. Антигены (агглютиногены) находятся на поверхности эритроцитов (гликокаликс);
• особенностью системы является наличие в сыворотке крови спецефических антител (агглютининов), разноименных по отношению к собственным агглютиногенам (они одновременно находятся в крови);
• разнообразие групп крови обеспечивает фенотипический полиморфизм в популяциях человека по данному признаку.
Ген I обладает 100% пенетрантностью.
Группы крови являются примером однозначной нормы реакции организма (группа крови не изменяется в течение жизни ни при каких изменениях среды).
Понятие об антигенных системах групп крови
В Европе у 85% людей на поверхности эритроцитов имеется антиген (белок), который называется резус-фактор (они условно называются резус-положительными), у 15% — в эритроцитах такого антигена нет (они условно называются резус-отрицательными). Наличие антигена определяют три тесно сцепленных гена С, Д, К (хромосома 1р35), они наследуются совместно как один ген и обозначаются одним символом Rh. Резус-фактор наследуется по доминантному типу (наличие резус-фактора RhRh, Rhrh, его отсутствие — rhrh). Иногда при переливании крови и некоторых вариантах браков возникает резус-несовместимость. Классическим примером несовместимости по резус-фактору матери и плода является вариант, когда в организме резус-отрицательной матери развивается резус-положительный плод.


Кровь матери и плода разделена (плацента — биологическая мембрана), эритроциты через мембрану не проникают. Во время родов эритроциты плода, имеющие антиген, могут попасть в кровоток матери и вызвать образование антител. Антитела свободно перемещаются через плаценту из организма матери в организм плода. Эритроциты второго ребенка с момента начала кроветворения в эмбриогенезе уже будут подвергаться воздействию образовавшихся антител матери (реакция антитело-антиген на ПАК эритроцитов) и разрушаться (гемолиз эритроцитов). В результате гемолиза эритроцитов возникает гемолитическая болезнь, симптомами которой являются анемия, желтуха, водянка. Для спасения ребенка после рождения ему осуществляют обменное переливание одногрупповой крови, при котором восстанавливается дыхательная функция крови и удаляются токсические продукты.
Для профилактики гемолитической болезни у последующих детей женщине до родов или сразу после родов вводят антирезусные антитела, которые связывают антигены (эритроциты плода), попавшие в кровь (эффект Кларка — профилактика резус-несовместимости). Иммунная система матери остается интактной.
Определение групп крови систем АВО и РЕЗУС используется при изучении близнецов (определение конкордантности по изучаемому признаку в парах монозиготных и дизиготных близнецов), судебно-медицинской экспертизе, переливании крови, трансплантации, установлении отцовства и др.
Для изучения систем групп крови нужно знать иммуногенетику: строение антигенов, взаимоотношения между антигенами и антителами, возможность агглютинации эритроцитов при несовместимости по группам крови донора и реципиента, беременной и плода.


Взаимодействие генов
В настоящее время в эритроцитах обнаружено более 200 различных агглютиногенов, 140 из которых объединены в 20 систем (групп), а остальные являются общими или индивидуальными. Это определяет антигенную неповторимость людей (и в этом смысле каждый человек имеет свою группу крови). Данные системы агглютиногенов отличаются от системы АВО тем, что не содержат в плазме естественных агглютининов, подобных а и Р агглютининам. Среди систем агглютиногенов, кроме системы АВО, наиболее важны Rh; MN, S, Р, А, Levis, Kell, Duppi, Kidd и др. В каждой из этих систем имеется один или несколько агглютиногенов, составляющих разные комбинации.
Например, система Kell состоит из двух агглютиногенов Кик, они образуют 3 группы крови: КК, Кк, кк. Все эти системы агглютиногенов имеют значение лишь при частых переливаниях крови, поэтому в обычной медицинской практике повторно переливать кровь больному от одного и того же донора не рекомендуется.

Читайте также: