Механизм коагуляции гидрофобных коллоидов кратко

Обновлено: 02.07.2024

Коллоидные системы обладают высокоразвитой поверхностью раздела и, следовательно большим избытком свободной поверхностной энергии. Поэтому эти системы термодинамически неустойчивы. Если в силу создавшихся условий мицеллы золя приходят в тесное соприкосновение между собой, они соединяются в крупные агрегаты.

Коагуляция – это процесс укрепления коллоидных частиц в золях, происходящих под влиянием внешних воздействий

Седиментация – процесс осаждения укрупненных частиц твердой фазы золя.

Процесс коагуляции связан с уменьшением степени дисперсности и обусловлен агрегативной неустойчивостью коллоидных систем.

В коагуляции различают 2 стадии:

1) скрытую коагуляции – когда новорожденным газом еще нельзя наблюдать какие либо внешние изменения в золе.

2) явную коагуляцию, когда процесс агрегации частиц дисперсной фазы золя может быть легко обнаружен визуально.

Коагуляция может быть вызвана повышением температуры, длительным диализом, добавлением электролитов, разного рода механическими воздействиями (размешивание, встряхивание, взбалтывание), сильным охлаждением, ультрацентрифугированием, концентрированием, пропусканием электрического тока, действием на золь другим золем.

Поскольку главное условие уменьшения устойчивости коллоидных растворов – потеря электрического заряда, основными методами их коагулирования являются методы снятия зарядов.

Коагуляция гидрофобных золей электролитами

Чтобы начался процесс коагуляции нужно наличие некоторой минимальной концентрации электролита в золе.

Порог коагуляции – наименьшая концентрация ммоль/л электролита, вызывающая коагуляцию (помутнение раствора, изменение окраски).

Правило Шульце-Гарди – ионы коагуляторы высшей зарядности, вызывают коагуляцию при меньших концентрациях, чем ионы низшей зарядности.

Правило Шульце-Гарди имеет приближенный характер, т.к. коагулирующие действие электролита зависит не только от зарядности его ионов. Некоторые органические однозарядные ионы обладают более сильной адсорбируемостью.

По величине коагулирующей способности ионы щелочных металлов можно расположить в ряды ионов этих металлов – лиотропные ряды.

Cs + >Rb + >NH4 + >K + >Na + >Li +

Коагуляции гидрофобных золей можно вызвать при помощи смеси электролитов. При этом возможны 3 случая:

1)Коагулирующие действие смешиваемых электролитов суммируется.

2)Коагулирующие действие смеси электролитов меньше, чем в случае чистых электролитов. Это явление носит название антогонизма ионов. Оно характерно для смесей ионов, имеющих различную валентность.

3)В ряде случаев имеет место взаимное усиление коагулирующего действия смешиваемых ионов. Это явление называется синергизмом ионов.

Коагуляция гидрофобных коллоидов может быть вызвана смешиванием в определенных количественных соотношениях с другим гидрофобным золем, гранулы которого имеют противоположный знак. Это явление называется взаимной коагуляцией. Взаимная коагуляция происходит при смешивании морской и речной воды. При этом ионы солей морской воды адсорбируются на заряженных коллоидных частицах речной воды, в результате чего происходит их коагуляция. По этой причине на дне постоянно скапливается большое количество ила, образуется много мелей и островков.

В быту: чернила представляют собой коллоидные растворы различных красителей. Причем в разных чернилах коллоидные частицы заряжены по-разному. Вот почему при смешивании разных чернил имеет место взаимная коагуляция.

Механизм электролитной коагуляции

Гранула становится электронейтральной в том случае, если противоионы диффузного слоя, заряженные отрицательно, перемещаются в адсорбционный слой. Чем выше концентрация прибавляемого электролита, тем сильнее снижается диффузный слой, тем меньше становится потенциал, тем быстрее начинается процесс коагуляции. При определенной концентрации электролита практически все противоионы перейдут в адсорбированный слой, заряд гранулы снизится до нуля и коагуляция пойдет с максимальной скоростью.

Коагулирующее действие электролитов сводится к сжатию диффузного слоя и протекает избирательная адсорбция на коллоидной частице тех ионов электролитов, которые имеют заряд, противоположный грануле. Чем выше заряд иона, тем интенсивнее он адсорбируется. Накопление ионов в адсорбированном слое сопровождается уменьшением потенциала и диффузного слоя.

Вывод: коагулирующие действие электролитов заключается в уменьшении сил отталкивания между коллоидными частицами через понижение потенциала и изменение строение двойного электрического слоя и сжатия диффузной его части, обусловленное прибавлением электролита – коагулянта, влечет за собой понижение расклинивающего действия гидратных оболочек диффузных ионов, разъединяющих коллоидные частицы.

При добавлении к золям электролитов с многозарядными ионами, заряд которых противоположен по знаку заряду коллоидных частиц, может наблюдаться не коагуляция, а стабилизация золя и перемена потенциала. Это явление называется перезарядка золей.

Основные признаки растений: В современном мире насчитывают более 550 тыс. видов растений. Они составляют около.

Ограждение места работ сигналами на перегонах и станциях: Приступать к работам разрешается только после того, когда.

Группы красителей для волос: В индустрии красоты колористами все красители для волос принято разделять на четыре группы.

Как оформить тьютора для ребенка законодательно: Условием успешного процесса адаптации ребенка может стать.

Чтобы вызвать коагуляцию гидрофобных коллоидов, к ним необходимо прибавить незначительное количество разбавленного раствора электролита. Это является отличительным признаком лиофобных коллоидов от лиофильных, для которых, как уже бы­ло сказано, необходимо прибавление концентрированного рас­твора электролита

Прибавление электролита снижает величину электрокине­тического потенциала. Та величина ζ - потенциала, при которой наступает коагуляция, называется критической, а та минимальная концентрация электролита, которая вызвала коагуляцию, называется порогом коагуляции. Величина, обратная порогу коагуляцииэлектролита, вызвавшего коагуляцию, характеризует коагулирующую силу ионов этого электролита.

Было установлено, что коагуляцию гидрофобных (лиофобных) коллоидов вызывают ионы, противоположно заряженнные по отношению к заряду коллоидных частиц, и коагулирующая сила ионов тем больше, чем выше валентность этих ионов. Это правило получило название "правило значности и валентности" или правило Шульце-Гарди.

Действие иона-коагулятора на коллоидную систему зависит не только от знака заряда, но также от валентности и химической природы этого иона.

Различные ионы с одинаковой валентностью и одним и тем же знаком заряда оказывают различное по силе коагулирующее действие на одну и ту же коллоидную систему. Разница в дейст­вии этих ионов зависит от различной способности этих ионов адсорбироваться коллоидными частицами. Так, например, катио­ны натрия и серебра имеют одну и ту же валентность и один и тот же знак заряда, но ион серебра действует на коллоидные сис­темы значительно сильнее иона натрия, так как он быстрее и полнее адсорбируется коллоидными частицами. Тоже относится и к анионам. Так, например, если сравнивать коагулирующее действие аниона салициловой кислоты и аниона хлора, то анион салициловой кислоты всегда значительно сильнее и быстрее ад­сорбируется, например, белковыми коллоидными частицами. В связи с этим, и коагулирующее действие его будет сильнее, чем у аниона хлора.

Коагулирующая сила иона в зависимости от валентности, увеличивается в таком отношении: если принять коагулирующую силу одновалентных ионов за единицу, то коагулирующая сила двухвалентных ионов будет в десятки, а трехвалентных - в сотни раз больше ( 1 : 20 : 200 ).

Этому правилу не подчиняются ионы Н + и ОН - , коагулирующая сила которых равна или даже превышает коагулирующую силу двухвалентных ионов.

Возрастание коагулирующей силы с повышением валентности ионов объясняется двумя причинами: во-первых, более резким снижением ζ- потенциала многовалентными ионами и, во-вторых, более высокой адсорбционной способностью этих ионов, играющих роль противоионов в мицелле. Ионы, расположенные в порядке возрастания их коагулирующей силы, образуют лиотропный ряд:

Механизм коагуляции электролитами состоит в следующем. Коллоидные мицеллы имеют определенный заряд, который характеризуется величиной электрокинетического потенциала. Для устойчивых золей он находится в пределах 30-70 мВ. После добавления электролита величина этого потенциала начинает уменьшаться и даже может дойти до нуля. Это понижение потенциала объясняется действием ионов добавленного электролита, противоположно заряженных коллоидной частицы, которые ад­сорбируются поверхностью частицы, тем самым уменьшая ее заряд.

Для нейтрализации зарядов частиц требуется определенное время (скрытая и явная коагуляция) и определенное количество электролита (порог коагуляции). Однако, для коагуляции коллоидной системы не нужно вызывать полную нейтрализацию зарядов частиц. Коагуляция наступает значительно раньше, что можно объяснить следующим образом: коллоидные частицы находятся в непрерывном хаотическом движении, которое затрудняет их сближение. Соединение частиц между собой может наступить только в тех случаях, когда сила притяжения (сила межмолекулярного взаимодействия) будет больше, чем сила отталкивания (сила электростатического взаимодействия). Силы электростатического отталкивания естественно уменьшаются с уменьшением заряда коллоидных частиц.

Соединение частиц между собой наступает только при определенном расстоянии между ними. Вычислено, что минимальное расстояние между частицами, при котором происходит соединение, приблизительно, в 2-3 раза больше радиуса самих частиц.

Электрокинетический потенциал, при котором силы притяжения и силы отталкивания между коллоидными частицами равны, называется критическим потенциалом, величина которого колеблется в пределах 20-30 мВ. В этот момент и может начаться процесс коагуляции.




Многочисленными исследованиями было установлено, что растворы ВМС, прибавленные к гидрофобным золям, сообщают им повышенную устойчивость к электролитам. Подобное явление получило название защитного действия, а сами вещества, повышающие устойчивость гидрофобных золей - защитных. Так, например, прибавление даже небольшого количества раствора желатина в золь мастики или серы повышает агрегативную устойчивость этих золей при действии электролита.

Степень защитного действия растворов ВМС зависит как от природы растворенного полимера, так и от природы защищаемого гидрофобного золя. В качестве количественной меры защитного действия растворов ВМС применяют золотое, рубиновое и железное число. Например, под железным числом подразумевают минимальное число миллиграммов защищающего полимера, способного защитить 10 мл гидрозоля железа от коагулирующего действия 1 мл 0,005 н раствора сульфата натрия.

Пептизация коллоидов.

Процесс пептизации является процессом, обратным коагуляции - это процесс растворения коллоидного осадка (геля) и образование вновь коллоидного раствора (золя).

Процессу пептизации подвергаются не все коллоидные осадки, а только те, которые содержат в себе большое количество растворителя и коллоидные частицы которых еще сохраняют некоторые индивидуальные свойства. У лиофильных коллоидов устранение фактора, вызвавшего коагуляцию, вызывает переход образовавшегося геля вновь в состояние золя. Так, добавление воды в коагель, который был образован от добавления этилового спирта в гидрозоль желатина, вновь переводит этот гель в состояние золя. Такие коллоиды называются обратимыми.

Коагель, образованный в результате коагуляции лиофобного золя, разбавлением раствора, вызвавшего коагуляцию, перевести в состояние золя невозможно. Такие коллоиды называются необратимыми.

И все-таки гидрофобные коллоиды способны к пептизации. При пептизации лиофобных коллоидов основным процессом является восстановление зарядов на коллоидной частицах, утраченных в процессе коагуляции. Осуществить процесс пептизации может тот ион, который способен адсорбироваться на поверхности частицы и сообщить ей заряд. При пептизации происходит химическое взаимодействие между прибавляемым пептизатором (электролитом) и пептизируемым коллоидом. В качестве примера пептизации гидрофобного золя можно привести пептизацию коагулята гидроокиси железа добавлением очень малых количеств хлорного железа. При этом происходит адсорбция ионов железа поверхностью частиц геля. Другим примером пептизации является очищающее действие мыльных растворов.

Коагуляция лиофильных (гидрофильных) коллоидов.

К классу лиофильных коллоидов относятся растворы высо­комолекулярных соединений. Растворы ВМС аналогично истинным растворам обладают абсолютной агрегативной устойчивостью. Высокая устойчивость растворов ВМС определяется наличием на поверхности частиц двух оболочек - электрической и сольватной (гидратной). Поэтому для коагуляции растворов ВМС необходимо не только нейтрализовать заряд коллоидной частицы, но и разрушить жидкостную оболочку. Выделение ВМС из растворов по своей природе отличается от коагуляции типичных гидрофобных золей. Так, если для гидрофобных золей достаточно незначительных добавок электролитов, чтобы вызвать их коагуляцию, то для ВМС этого недостаточно. Для выделения дисперсной фазы полимеров необходимы высокие, вплотьдо насыщенных, концентрации электролитов. Явление выделения в осадок растворенного ВМС под действием большой концентрации электролита получило название высаливание.

Всякое вещество, способное сольватироваться растворителем ВМС и понижать его растворимость, пригодно для высаливания. Так, например, спирт и ацетон способны отлично высаливать желатину из ее водных растворов. Аналогично происходит осаждение спиртом белка из водного раствора или осаждение ацетоном каучука из раствора бензола.

Коагуляция лиофильных коллоидов достигается прибавлением к золю десольватирующих веществ. Такими десольватирующими веществами являются спирт, ацетон, пересыщенные растворы электролитов, т.е. такие вещества, которые, не изменяя самих частиц, отнимают воду у этих частиц. При коагуляции гидрофильных коллоидов под действием пересыщенных растворов электролитов имеет важнейшее значение гидратация самих ионов: чем менее гидратирован сам ион, тем выше его коагулирующая сила. При высаливании (коагуляции ВМС) решающую роль играет не валентность иона, а его способность к гидратации и к адсорбции на коллоидно-дисперсных частицах.

Как отмечалось выше, коагуляция лиофильных коллоидов носит обратимый характер.

Вопросы для самоконтроля:

1. В каком месте коллоидной мицеллы возникают полный и электрокинетический потенциалы?

2. Явление электрофореза и электроосмоса.

3. Что такое коагуляция коллоидных систем?

4. Правило Шульце-Гарди.

5. Чем можно вызвать коагуляцию гидрофобных коллоидов?

6. Как по коагуляции можно отличить гидрофобный коллоид от растворов ВМС?

7. Механизм коагуляции гидрофобных коллоидов.

8. Механизм высаливания растворов ВМС.

Экспериментальная часть:

Задание 1. Коагуляция гидрофобных коллоидов. Определение порога коагуляции и вычисление коагулирующей силы.

Коагуляцию гидрофобных золей осуществляют действием следующих растворов: КС1, K2SO4, СаС12 (все растворы 1 М).

Изучая коагулирующее действие указанных растворов, необходимо определить пороги коагуляции коллоидов этими электролитами. Чем меньше порог коагуляции, тем больше коагулирующая сила иона, вызвавшего коагуляцию данного коллоида (по правилу значности и валентности).

Результаты определения порога коагуляции гидрофобных золй.

№ п/п концентрация электролита С, ммоль/л номер испытуемого золя
КС1 K2SO4 СаС12
и т.д.

Как уже говорилось ранее, та минимальная концентрация электролита, при которой наблюдается коагуляция золя, называется порогом коагуляции данного электролита. Ее величину находят для каждого электролита и записывают в таблицу 24 (порог коагуляции для СаС12 и K2SO4 определяют так же, как и для КС1). По величине порогов коагуляции устанавливают ионы-коагуляторы. Затем вычисляют коагулирующую силу иона-коагулятора, условно принимая коагулирующую силу одновалентного иона равной единице. Коагулирующую силу двухвалентного иона (S) вычисляют по формуле: S = .

Пример: если С1= , а С2= , то S= =2 5 =32.

Результаты расчета коагулирующей силы испытуемого золя.

электролиты испытуемый золь
ионы-коагуляторы порог коагуляции коагулирующая сила
КС1
СаС12
K2SO4

Полученные данные показывают, что коагулирующая сила двухвалентного иона в десятки раз (в нашем случае в 32 раза) больше коагулирующей силы одновалентного иона.

На основании полученных данных определите знак заряда коллоидных частиц исследуемого золя и сделайте письменный вывод.

Задание 2. Коагуляция гидрофильных коллоидов дейст­вием дегидратирующих веществ.

Установление обрати­мости и необратимости коллоидов.

1.Налить в 2 пробирки по 2мл раствора сернистой сурьмы. В первую пробирку добавить 2 мл дистиллированной воды - этот раствор будет использоваться как контрольный. Во вторую пробирку из бюретки по каплям добавить насыщенный раствор сульфата аммония ДО ПОЯВЛЕНИЯ ХЛОПЬЕВ (сравнить с контрольным раствором). Отметить количество мл раствора сульфата аммония, вызвавшего коагуляцию и за­писать в таблицу 25. В эту же пробирку добавить 5 мл дис­тиллированной воды и убедиться в необратимости коагуля­ции гидрофобного золя.

2. Налить в 3 пробирки по 2 мл 0,5% раствора желатина. В первую пробирку добавить 5 мл дистиллированной воды - контрольный раствор.

Во вторую пробирку из бюретки приливать по 0,5 мл этилового спирта ДО ПОЯВЛЕНИЯ НЕБОЛЬШИХ ХЛОПЬЕВ ИЛИ ПОЯВЛЕНИЯ МУТИ (сравнить с контрольной пробиркой). Отметить количество прибавленного реактива, записав результат в таблицу 25. Затем в эту же пробирку прибавлять из бюретки дистиллированную воду по 0,5 мл ДО ИСЧЕЗНОВЕНИЯ ХЛОПЬЕВ (сравнить с контрольной пробиркой). Отметить количество прибавленной воды, записав результат в таблицу.

В третью пробирку с гидрозолем желатина из бюретки прибавлять по 0,5 мл насыщенного раствора сульфата аммония ДО ПОЯВЛЕНИЯ ХЛОПЬЕВ. Отметить количество прибавленного реактива, записав в тетрадь. Затем к содержимому пробирки прибавлять по 0,5 мл дистиллированной воды ДО ИСЧЕЗНОВЕНИЯ ХЛОПЬЕВ. Отметить количество прибавленной воды.

На основании опытов сделать вывод о коагуляции гидрофобных и гидрофильных золей и их обратимости.

Результаты коагуляции гидрофильных и гидрофобных золей и определение их обратимости

Едва ли существуют какие-либо внешние воздействия, которые при достаточной интенсивности не вызывали бы коагуляции. Действие теплоты и холода, электромагнитных полей, жестких излучений, механические воздействия, химические агенты приводят к нарушению агрегативной устойчивости и, следовательно, к коагуляции. Это происходит в результате разрушения энергетического барьера, и метастабильная система самопроизвольно переходит в более термодинамически устойчивое состояние в процессе коагуляции.

Поскольку частицы дисперсной фазы одинакового состава заряжены одноименно, легко себе представить, что электростатически они должны отталкиваться. Поэтому все без исключения сильные электролиты вызывают коагуляцию при увеличении концентрации их в растворе до некоторого (различного для разных электролитов) критического значения (Ск), называемого порогом коагуляции (или коагулирующей концентрацией). Очевидно, что Ск сильно различается для отдельных электролитов. При этом многочисленные исследования на гидрофобных коллоидах показали, что коагулирующей частью электролита является один из его ионов. Порог коагуляции тем меньше, чем выше валентность коагулирующего иона, а сам коагулирующий ион всегда несет заряд, противоположный заряду коллоидной частицы. Коагуляция наступает в тот момент, когда заряд частицы становится равным нулю, т.е. в изоэлектрической точке.

Установленные закономерности подтвердили представление о решающей роли структуры частицы в процессе коагуляции и нашли свое выражение в правиле Шульце – Гарди, которое сегодня звучит следующим образом: коагулирующее действие оказывает противоион, и коагулирующая способность возрастает пропорционально некоторой степени его заряда.

При действии многозарядных ионов часто наблюдается интересное явление, получившее название зон коагуляции. Оно заключается в появлении – с ростом концентрации электролита – второй зоны устойчивости после зоны коагуляции. В этой второй зоне заряд частиц оказывается противоположным по знаку начальному заряду. С дальнейшим ростом концентрации при некотором новом критическом значении Ск′ наступает вторая зона коагуляции. Это явление хотя и подтверждает представление об электрической природе сил отталкивания между дисперсными частицами, однако указывает на сложный механизм коагулирующего действия электролитов. Действительно, можно видеть, что частица в целом, вместе со своим двойным электрическим слоем (ДЭС), строго электронейтральна в состоянии равновесия с окружающей средой. В этом случае на некоторый пробный заряд, находящийся за пределами двойного электрического слоя, никакая сила со стороны частицы не действует, поскольку все лишние поля, идущие от поверхностного заряда, экранированы противоионами. Однако при введении этого пробного заряда в диффузный слой поле поверхностного заряда экранировано не полностью и должно смещать пробный заряд к периферии, если его знак совпадает со знаком ядра частицы.

Эти представления лежат в основе современной теории устойчивости гидрофобных коллоидов, развитой первоначально Дерягиным совместно с Ландау, а позднее Фервеем и Овербеком и получившей название теории ДЛФО. В классическом варианте теория рассматривает процесс коагуляции как результат совместного действия сил притяжения (сил Лондона – Ван-дер-Ваальса) и электростатических сил отталкивания между частицами. В зависимости от баланса этих сил в тонкой прослойке жидкости между сближающимися телами возникает либо положительное расклинивающее давление, препятствующее их соединению, либо отрицательное, приводящее к утончению прослойки и образованию контакта между частицами и, следовательно, к коагуляции. Укажем, что теория ДЛФО, устанавливающая связь между свойствами двойного электрического слоя и устойчивостью дисперсных систем, лежит в основе всех современных работ в области коллоидной химии. Тем не менее она находится в постоянном развитии, что связано с чрезвычайной сложностью и большим многообразием процессов коагуляции.

3.3. адсорбционно-сольватный барьер
как фактор стабилизации коллоидных систем

С большой долей вероятности можно утверждать, что даже в случае типично гидрофобных коллоидов (например, золей металлов) нет систем, в которых бы полностью отсутствовало взаимодействие между веществами дисперсной фазы и дисперсионной среды. Это взаимодействие приводит к образованию на поверхности частицы сольватного слоя жидкости с измененными свойствами. Этот слой (слои) обладает свойствами, характерными для квазитвердых тел: высокой вязкостью, упругостью, сопротивлением сдвигу, что препятствует взаимопроникновению слоев при сближении частиц. Очевидны термодинамические причины формирования сольватной оболочки, заключающиеся в наличии избыточной поверхностной энергии частиц с молекулами растворителя. Для потери коллоидной системой ее агрегативной устойчивости необходимо сближение частиц до определенных расстояний. С учетом особых свойств сольватных слоев это может быть достигнуто либо путем затраты работы на преодоление упругих сил (структурная составляющая), либо путем затраты работы на частичную десорбцию молекул сольватной оболочки, ведущую к уменьшению зазора между частицами (адсорбционная составляющая). Понятно, что чем более развита и прочна сольватная оболочка, тем большей потенциальной энергией должны обладать коллоидные частицы для преодоления адсорбционно-сольватного барьера, и тем устойчивее будут коллоидные системы. Отметим, что с ростом лиофильности коллоидных систем вклад в их агрегативную устойчивость адсорбционно-сольватационной составляющей повышается, приводя к значительному увеличению пороговой концентрации электролитов, необходимой для начала процесса коагуляции. Известно, что многие золи, например гидроксиды Al, Si, Fe, Mn, характеризуются большим развитием и прочностью гидратных оболочек и их коагуляция происходит с образованием рыхлых структурированных агрегатов.

Еще большого развития достигают сольватные слои в результате адсорбции длинноцепочечных поверхностно – активных веществ (ПАВ) и в особенности высокомолекулярных соединений (ВМС). Большие размеры молекул, несущих собственные сольватные оболочки, создают на поверхности частиц адсорбционно-сольватные слои большой протяженности и плотности. Устойчивость таких дисперсий близка к устойчивости истинно лиофильных систем. Способность ВМС к образованию адсорбционно-сольватных слоев на поверхности частиц называют защитным действием и широко используют в практике. Например, коллоидные частицы кварца или металла, защищенного слоем белка, устойчивы и по своему поведению не отличаются от макромолекул белка. Вещество дисперсной фазы скрыто оболочкой, и частицы различного химического состава, защищенные одинаковыми оболочками, не различаются между собой по поверхностным свойствам.

Лиофобные коллоиды обладают очень высокой поверхностной энергией и являются поэтому термодинамически неустойчивыми; это делает возможным самопроизвольный процесс уменьшения степени дисперсности дисперсной фазы (т.е. объединение частиц в более крупные агрегаты) – коагуляцию золей. Тем не менее золям присуща способность сохранять степень дисперсности – агрегативная устойчивость, которая обусловлена, во-первых, снижением поверхностной энергии системы благодаря наличию на поверхности частиц дисперсной фазы двойного электрического слоя и, во-вторых, наличием кинетических препятствий для коагуляции в виде электростатического отталкивания частиц дисперсной фазы, имеющих одноименный электрический заряд.

Строение структурной единицы лиофобных коллоидов – мицеллы – может быть показано лишь схематически, поскольку мицелла не имеет определенного состава. Рассмотрим строение коллоидной мицеллы на примере гидрозоля иодида серебра, получаемого взаимодействием разбавленных растворов нитрата серебра и иодида калия:

Коллоидная мицелла золя иодида серебра образована микрокристаллом иодида серебра, который способен к избирательной адсорбции из окружающей среды катионов Ag+ или иодид-ионов. Если реакция проводится в избытке иодида калия, то кристалл будет адсорбировать иодид-ионы; при избытке нитрата серебра микрокристалл адсорбирует ионы Ag+. В результате этого микрокристалл приобретает отрицательный либо положительный заряд; ионы, сообщающие ему этот заряд, называются потенциалопределяющими, а сам заряженный кристалл – ядром мицеллы. Заряженное ядро притягивает из раствора ионы с противоположным зарядом – противоионы; на поверхности раздела фаз образуется двойной электрический слой. Некоторая часть противоионов адсорбируется на поверхности ядра, образуя т.н. адсорбционный слой противоионов; ядро вместе с адсорбированными на нем противоионами называют коллоидной частицей или гранулой. Остальные противоионы, число которых определяется, исходя из правила электронейтральности мицеллы, составляют диффузный слой противоионов; противоионы адсорбционного и диффузного слоев находятся в состоянии динамического равновесия адсорбции – десорбции.

Схематически мицелла золя иодида серебра, полученного в избытке иодида калия (потенциалопределяющие ионы – анионы I–, противоионы – ионы К+) может быть изображена следующим образом:

При получении золя иодида серебра в избытке нитрата серебра коллоидные частицы будут иметь положительный заряд:

Рис.1 Строение коллоидной мицеллы

Агрегативная устойчивость золей обусловлена, таким образом, рядом факторов: во-первых, снижением поверхностной энергии дисперсной фазы (т.е. уменьшения движущей силы коагуляции) в результате образования двойного электрического слоя и, во-вторых, наличием кинетических препятствий для коагуляции в виде электростатического отталкивания имеющих одноименный заряд коллоидных частиц и противоионов. Еще одна причина устойчивости коллоидов связана с процессом гидратации (сольватации) ионов. Противоионы диффузного слоя сольватированы; эта оболочка из сольватированных противоионов также препятствует слипанию частиц.

Коагуляция лиофобных коллоидов

Как было показано выше, лиофобные коллоиды являются термодинамически неустойчивыми системами, существующими благодаря стабилизации за счет возникновения двойного электрического слоя. Изменение состояния ДЭС может, следовательно, привести к потере агрегативной устойчивости – слипанию частиц в более крупные агрегаты, т.е. коагуляции золя. Коагуляция золей может быть вызвана различными факторами: прибавлением электролитов, нагреванием или замораживанием, механическим воздействием и т.д. Наиболее важным и изученным фактором коагуляции гидрофобных коллоидов является воздействие на них растворов электролитов.

Для коагуляции золей электролитами установлен ряд эмпирических закономерностей.

1. Для начала коагуляции золя необходима некоторая минимальная концентрация электролита, называемая порогом коагуляции γ.

2. Коагулирующим действием обладает тот из ионов электролита, заряд которого противоположен заряду коллоидных частиц, причем коагулирующее действие иона тем сильнее, чем больше его заряд (правило Шульце – Гарди или правило значности). Величины порогов коагуляции двухзарядных ионов примерно на порядок, а трехзарядных – на два порядка меньше, чем для однозарядных ионов. Правило значности имеет приближенный характер и справедливо только для неорганических ионов; некоторые однозарядные органические ионы обладают более сильным коагулирующим действием, чем двухзарядные неорганические ионы, что обусловлено их сильной специфической адсорбируемостью.

3. В рядах неорганических ионов с одинаковыми зарядами коагулирующее действие возрастает с уменьшением гидратируемости ионов; например, в ряду однозарядных катионов щелочных металлов коагулирующее действие возрастает от лития к рубидию:

γ (Li+) > γ (Na+) > γ (К+) > γ (Rb+)

Ряды, в которые сгруппированы по возрастанию либо по убыванию коагулирующего действия ионы с одинаковым зарядом, называют лиотропными рядами.

4. В осадках, получаемых при коагуляции золей электролитами, всегда присутствуют ионы, вызвавшие коагуляцию.

5. При коагуляции золей смесями электролитов сравнительно редко наблюдается их независимое (аддитивное) действие; обычно имеет место взаимное усиление либо ослабление коагулирующего действия (синергизм либо антагонизм ионов).

Читайте также: