Механизм электропроводности газов кратко

Обновлено: 05.07.2024

В естественном состоянии газы и их смеси (в том числе воздуха) не проводят электрический ток. Газы, в отличие от металлов и электролитов, состоят из электрически нейтральных атомов и молекул и при нормальных условиях не содержат свободных носителей тока (электронов и ионов).

Однако при некоторых условиях можно заметно повысить электропроводность газа. Достаточно, например, подействовать пламенем спички на воздух у заряженного электроскопа, как он сразу же разряжается. Из этого опыта делают вывод, что при воздействии пламени воздух теряет свои изоляционные свойства, то есть в нем появляются свободные заряды. Воздух, как и другие газы, можно сделать электропроводным и в случае воздействия на него ультрафиолетового, рентгеновского и радиоактивного излучений.

Для отрыва электрона от атома необходима определенная энергия, называется энергией ионизации.

? Ионизация газов — отрыв от их атомов или молекул электронов.

Противоположным процесса ионизации газов является процесс рекомбинации — воссоединение противоположно заряженных частиц в нейтральные молекулы.

Ионизатор ежесекундно создает в пространстве между электродами некоторое число ионов и электронов. Столько же ионов и электронов, соединяясь между собой, образуют нейтральные атомы. Такая динамическое равновесие существует до тех пор, пока между электродами нет электрического поля. Как только между электродами будет создано поле, сразу же на частицы, несущие заряды разного знака, начнут действовать силы, направленные в противоположные стороны. Поэтому, несмотря беспорядочного движения, заряженные частицы будут перемещаться в направлении действия на них электрического поля. Это направленное движение частиц под действием электрического поля и представляет собой ток в газе.

Процесс протекания электрического тока через газ называют газовым разрядом.

В ионизированном газе есть носители зарядов трех сортов: электроны, положительные и отрицательные ионы.

Электропроводность газов

Газы в нормальном состоянии являются хорошими диэлектриками (например чистый, неионизированный воздух). Однако, если газы содержат в себе влагу с примесью органических и неорганических частиц и при этом они ионизированы, то они проводят электричество.

Во всех газах еще до воздействия на них электрического напряжения всегда имеется некоторое количество электрически заряженных частиц - электронов и ионов, которые находятся в беспорядочном тепловом движении. Это могут быть заряженные частицы газа, а также заряженные частицы твердых и жидких веществ - примесей, находящихся, например, в воздухе.

Образование электрически заряженных частиц в газообразных диэлектриках вызывается ионизацией газа внешними источниками энергии (внешними ионизаторами) : космическими и солнечными лучами, радиоактивными излучениями Земли и др.

Электропроводимость газов зависит главным образом от степени их ионизации, которая может быть осуществлена различными способами. В основном ионизация газов осуществляется в результате отщепления электронов от нейтральной молекулы газа.

Выделившийся из молекулы газа электрон перемешается в междумолекулярном пространстве газа, и здесь в зависимости от рода газа он может сохранить относительно долго "самостоятельность" своего движения (например, в таких газах, кик водород H2, азот N2 ) или, наоборот, быстро проникнуть в нейтральную молекулу, превратив ее в отрицательный ион (например, в кислороде).

Наибольший эффект ионизации газов достигается путем облучения их рентгеновыми, катодными лучами или лучами, испускаемыми радиоактивными веществами.

Атмосферный воздух летом весьма интенсивно ионизируется под влиянием солнечных лучей. Влага, находящаяся в воздухе, конденсируется на его ионах, образуя мельчайшие капельки воды, заряженные электричеством. В конечном итоге из отдельных электрически заряженных капелек воды образуются грозовые тучи, сопровождаемые молниями, т. с. электрическими разрядами атмосферного электричества.

Процесс ионизации газа внешними ионизаторами заключается в том, что они сообщают часть энергии атомам газа. При этом валентные электроны приобретают дополнительную энергию и отделяются от своих атомов, которые превращаются в положительно заряженные частицы - положительные ионы .

Образовавшиеся свободные электроны могут длительно сохранять самостоятельность движения в газе (например, в водороде, азоте) или через некоторое время они присоединяются к электрически нейтральным атомам и молекулам газа, превращая их в отрицательно заряженные ионы .

Появление электрически заряженных частиц в газе может быть также вызвано выходом электронов с поверхности металлических электродов при их нагревании или воздействии на них лучистой энергии. Находясь в беспорядочном тепловом движении, некоторая часть противоположно заряженных (электронов) и положительно заряженных (ионов) частиц воссоединяется друг с другом и образует электрически нейтральные атомы и молекулы газа. Этот процесс называется восстановлением или рекомбинацией .

Если между металлическими электродами (диски, шары) заключить какой-то объем газа, то при приложении к электродам электрического напряжения на заряженные частицы в газе будут действовать электрические силы - напряженности электрического поля .

Под действием этих сил электроны у и ионы будут перемещаться от одного электрода к другому, создавая электрический ток в газе .

Ток в газе будет тем больше, чем разного диэлектрика больше заряженных частиц образуется в нем в единицу времени и чем большую скорость приобретают они под действием сил электрического поля.

Ясно, что с повышением напряжения, приложенного к данному объему газа, электрические силы, действующие на электроны и ионы, увеличиваются. При этом скорость заряженных частиц, а следовательно, и ток в газе возрастают.

Изменение величины тока в зависимости от напряжения, приложенного к объему газа, выражается графически в виде кривой, называемой вольтамперной характеристикой .

Вольтамперная характеристика для газообразного диэлектрика

Вольтамперная характеристика для газообразного диэлектрика

Вольтамперная характеристика показывает, что в области слабых электрических полей, когда электрические силы, действующие на заряженные частицы, относительно невелики (область I на графике), ток в газе возрастает пропорционально величине приложенного напряжения. В этой области изменение тока происходит согласно закону Ома.

С дальнейшим ростом напряжения (область II) пропорциональность между током и напряжением нарушается. В этой области ток проводимости не зависит от напряжения. Здесь происходит накопление энергии заряженными частицами газа - электронами и ионами.

С дальнейшим же повышением напряжения (область III) скорость заряженных частиц резко возрастает, вследствие чего происходят частые соударения их с нейтральными частицами газа. При этих упругих соударениях электроны и ионы передают часть накопленной ими энергии нейтральным частицам газа. В результате электроны отделяются от своих атомов. При этом образуются новые электрически заряженные частицы: свободные электроны и ионы.

Ввиду того что летящие заряженные частицы соударяются с атомами и молекулами газа очень часто, образование новых электрически заряженных частиц происходит весьма интенсивно. Этот процесс называется ударной ионизацией газа .

В области ударной ионизации (область III на рисунке) ток в газе интенсивно возрастает при малейшем повышении напряжения. Процесс ударной ионизации в газообразных диэлектриках сопровождается резким уменьшением величины удельного объемного сопротивления газа и возрастанием тангенса угла диэлектрических потерь.

Естественно, что газообразные диэлектрики могут использоваться при напряжениях, меньших тех значений, при которых возникает процесс ударной ионизации. В этом случае газы являются очень хорошими диэлектриками, у которых удельное объемное сопротивление очень велико (1020 ом х см), а тангенс угла диэлектрических потерь очень мал ( tg δ ≈ 10 - 6 ). Поэтому газы, в частности воздух, используются в качестве диэлектриков в образцовых конденсаторах, газонаполненных кабелях и высоковольтных выключателях.

Роль газа ка диэлектрика в электроизоляционных конструкциях

Роль газа ка диэлектрика в электроизоляционных конструкциях

В любой изоляционной конструкции в качестве элемента изоляции присутствует в той или иной мере воздух или какой-либо иной газ. Провода воздушных линий (ВЛ), шины распределительных устройств, выводы трансформаторов и различных аппаратов высокого напряжения отделены друг от друга промежутками, единственной изолирующей средой в которых является воздух.

Нарушение электрической прочности таких конструкций может произойти как путем пробоя диэлектрика, из которого изготовлены изоляторы, так и в результате разряда в воздухе или вдоль поверхности диэлектрика.

В отличие от пробоя изолятора, который приводит к полному выходу его из строя, разряд вдоль поверхности обычно повреждением не сопровождается. Следовательно, если изоляционную конструкцию выполнить таким образом, чтобы напряжение перекрытия по поверхности или разрядные напряжения в воздухе были меньше пробивных напряжений изоляторов, то фактическая электрическая прочность таких конструкций будет определяться электрической прочностью воздуха.

В указанных выше случаях воздух имеет значение как естественная газовая среда, в которой находятся изоляционные конструкции. Наряду с этим воздух или иной газ часто применяется в качестве одного из основных изоляционных материалов при выполнении изоляции кабелей, конденсаторов, трансформаторов и других электрических аппаратов.

Для обеспечения надежной и безаварийной работы изоляционных конструкций необходимо знать, как влияют на электрическую прочность газа различные факторы, такие, как форма и длительность действия напряжения, температура и давление газа, характер электрического поля и т. п.

Газы в обычных условиях – диэлектрики. Воздух используют в технике как изолятор:

– между обкладками конденсатора;

– в контактах выключателей.

При высокой температуре и под действием ультрафиолетового, рентгеновского и гамма-излучения (внешних ионизаторов) газы становятся проводниками.

В этом легко убедиться, если взять заряженный плоский воздушный конденсатор с подключенным к нему электрометром, и нагреть воздух между пластинами.

Природа газового разряда

При внесении пламени между пластинами воздушного конденсатора происходит ионизация газа и возникновение ионов и электронов. Под действием электрического поля они начнут упорядоченно двигаться между пластинами.

Протекание тока через газ называется газовым разрядом.

При удалении пламени ток прекращается вследствие того, что положительные ионы и электроны не могут долго существовать раздельно и воссоединяются в нейтральную молекулу. Такой процесс называется рекомбинацией .

Газовый разряд, протекающий под действием ионизатора, называется несамостоятельным.

ионизация газа

С увеличением разности потенциалов между пластинами кинетическая энергия электрона возрастает настолько, что при соударении его с нейтральной молекулой газа происходит выбивание электрона. Такой процесс называется ударной ионизацией молекул газа. Число электронов и ионов растет лавинообразно, что приводит к увеличению разрядного тока.

Газовый разряд, протекающий в отсутствии ионизатора, называется самостоятельным.

Интенсивность такого газового разряда зависит от напряженности электрического поля между пластинами и давления газа.

Вольтамперная характеристика газового разряда.

Вольтамперная характеристика газового разряда.

ОА – только часть заряженных частиц доходит до электродов, часть их рекомбинирует;

АВ – ток почти не увеличивается (ток насыщения);

ВС – самостоятельный разряд.

Виды газовых разрядов

Искровой разряд – это прерывистый самостоятельный лавинообразный разряд в газе, вызванный ударной ионизацией и сопровождающийся треском и ярким свечением. Искровой разряд возникает при условии, когда мощность источника недостаточна для поддержания непрерывного разряда.

искровой разряд

Дуговой разряд впервые был получен в 1802 году российским академиком В. В. Петровым. При соприкосновении электродов в цепи возникает сильный ток короткого замыкания, что приводит к сильному нагреванию электродов. Затем электроды постепенно раздвигаются. Ток продолжает идти через межэлектродное пространство, заполненное высокотемпературной плазмой. Концы электродов раскаляются до 3000-4000 градусов и начинают испаряться.

дуговой разряд

Дуговой разряд является самостоятельным разрядом в газе и происходит за счет энергии термоэлектронной эмиссии с катода. Является источником сильного светового и ультрафиолетового излучения.

Тлеющий разряд возникает в разряженном газе при сравнительно невысоком напряжении в виде светящегося газового столба. Тлеющий разряд вызывается ударной ионизацией и выбиванием электронов из катода положительными ионами (вторичная ионизация).

Свечение при тлеющем разряде объясняется тем, что при рекомбинации молекул газа высвобождается энергия в виде светового излучения. Свечение будет иметь разные цвета в зависимости от вида газа.

Коронный разряд возникает в сильно неоднородных электрических полях. Например, вблизи острия напряженность электрического поля настолько велика, что ионизация электронным ударом возможна даже при атмосферном давлении. В этой области возникает характерное сферическое свечение в виде короны.

коронный разряд

Применение газовых разрядов

Искровой разряд используется в технике в системе зажигания двигателей внутреннего сгорания. Катушка зажигания дает напряжение 12-15 тысяч вольт. Это достаточно, чтобы между электродами свечи возникла искра для зажигания горючей смеси.

пример искрового разряда

Разновидностью искрового разряда является молния.

дуговая электросварка

Дуговой разряд применяется в качестве мощных источников света (прожекторов), в электроплавильных печах, для электросварки, для ультрафиолетовых излучателей.

газоразрядные трубки

Тлеющий разряд используется в рекламных газоразрядных трубках, в лампах дневного света, цифровых индикаторах.

полярное сияние

В природе свечение разряженных газов наблюдается в виде полярного сияния.

коронный разряд в лэп

Коронный разряд используется в электрофильтрах для очистки газов от примесей твердых частиц, в работе молниеотвода. В ЛЭП приводит к утечке электроэнергии.

огни святого эльма

В ряде случаев концентрация свободных носителей заряда может достигать очень больших значений, – например при воздействии ионизирующих излучений, таких как рентгеновское излучение и т.п. Заряженные ионы и окружающие их нейтральные молекулы газа совершают беспорядочные тепловые движения, и вследствие диффузии происходит выравнивание концентрации ионов в газе. При встрече положительных и отрицательных ионов происходит их рекомбинация, поэтому между процессами генерации и рекомбинации заряженных частиц устанавливается динамическое равновесие (рисунок 4.19).


Рисунок 4.19 – Заряженные частицы в газе в состоянии динамического равновесия

При наложении внешнего электрического поля (рисунок 4.20) положительные и отрицательные ионы, преодолевая сопротивление трения газа, будут двигаться между электродами соответственно со скоростями:


(4.47)


Рисунок 4.20 – Поведение заряженных частиц в газе во внешнем электрическом поле

Связь между числом имеющихся в 1 м 3 газа положительных N+ и отрицательных N- ионов и числом Np ионов, рекомбинирующих в 1 м 3 газа за 1 секунду, можно представить в виде


(4.48)

где α – коэффициент рекомбинации ионов газа.

В состоянии динамического равновесия N+ = N- = N, поэтому


(4.49)

Для воздуха, например α = 1,6*10 -12 м 3 /с.

Если напряженность поля Е очень мала, так что протекающий ток не меняет концентрации ионов в газе, плотность тока:


(4.50)

Принимая во внимание, что J = γ · E, удельная проводимость газа определяется выражением:


(4.51)

Например, удельная проводимость воздуха в слабых полях составляет около 10 -15 См/м.

При малых значениях напряженности внешнего электрического поля, когда Np, α, μ+ и μ- можно считать постоянными, плотность тока в газе прямо пропорциональна напряженности приложенного поля, т.е. в этих условиях соблюдается закон Ома (участок ОА на рисунке 4.21). Однако при дальнейшем возрастании напряженности поля закон Ома уже не выполняется и почти все ионы, образующиеся в газе, будут уходить на электроды, не рекомбинируя. Поскольку число ионов газа в слабых полях ограничено и не зависит от напряжения, дальнейшее повышение напряжения не вызывает увеличения плотности тока. Ее значение сохраняется постоянным и равным Jн – плотности тока насыщения (участок АВ).


Рисунок 4.21 – Зависимость плотности тока в газах от напряженности электрического поля

Насыщение в воздухе достигается при очень малых значениях Е. При расстоянии между электродами 1 см насыщение достигается уже при Е≈0,5В/м. При напряженностях поля, больших поля насыщения, удельное сопротивление газа выше, чем в слабых полях. При этом само значение плотности тока насыщения невелико и обычно не превышает 10 -16 –10 -14 А/м 2 .

При дальнейшем повышении Е до значений, близких к электрической прочности Еи, возникает возможность генерации заряженных частиц в электрическом поле из-за появления ударной ионизации, т.е. происходит переход к самостоятельной электропроводности (т. В на рисунке 4.21). Плотность тока начинает резко возрастать (участок ВС). В предпробивных полях создаются условия для возникновения так называемых лавин (рисунок 4.22), и ток очень резко возрастает, пока при Е = Епр не наступит пробой газа (точка С). Значение Еи составляет для газов примерно 10 5 –10 6 В/м (при расстоянии между электродами 1 см).


Рисунок 4.22 – Возникновение в газе лавины в сильном электрическом поле

Как известно, химически чистая (дистиллированная) вода является плохим проводником. Однако при растворении в воде различных веществ (кислот, щелочей, солей и др.) раствор становится проводником, из-за распада молекул вещества на ионы. Это явление называется электролитической диссоциацией, а сам раствор электролитом, способным проводить ток.

В отличие от металлов и газов прохождение тока через электролит сопровождается химическими реакциями на электродах, что приводит к выделению на них химических элементов, входящих в состав электролита.


Первый закон Фарадея: масса вещества, выделяющегося на каком-либо из электродов, прямо пропорциональна заряду, прошедшему через электролит


Электрохимический эквивалент вещества - табличная величина.

Второй закон Фарадея:


Протекание тока в жидкостях сопровождается выделением теплоты. При этом выполняется закон Джоуля-Ленца.

Электрический ток в металлах

При прохождении тока металлы нагреваются. В результате чего ионы кристаллической решетки начинают колебаться с большей амплитудой вблизи положений равновесия. В результате этого поток электронов чаще соударяется с кристаллической решеткой, а следовательно возрастает сопротивление их движению. При увеличении температуры растет сопротивление проводника.


Каждое вещество характеризуется собственным температурным коэффициентом сопротивления - табличная величина. Существуют специальные сплавы, сопротивление которых практически не изменяется при нагревании, например манганин и константан.

Явление сверхпроводимости. При температурах близких к абсолютному нулю (-273 0 C) удельное сопротивление проводника скачком падает до нуля. Сверхпроводимость - микроскопический квантовый эффект.

Применение электрического тока в металлах

Лампа накаливания производит свет за счет электрического тока, протекающего по нити накала. Материал нити накала имеет высокую температуру плавления (например, вольфрам), так как она разогревается до температуры 2500 – 3250К. Нить помещена в стеклянную колбу с инертным газом.


Электрический ток в газах

Газы в естественном состоянии не проводят электричества (являются диэлектриками), так как состоят из электрически нейтральных атомов и молекул. Проводником может стать ионизированный газ, содержащий электроны, положительные и отрицательные ионы.

Ионизация может возникать под действием высоких температур, различных излучений (ультрафиолетового, рентгеновского, радиоактивного), космических лучей, столкновения частиц между собой.

Ионизированное состояние газа получило название плазмы. В масштабах Вселенной плазма - наиболее распространенное агрегатное состояние вещества. Из нее состоят Солнце, звезды, верхние слои атмосферы.

Прохождение электрического тока через газ называется газовым разрядом.

В "рекламной" неоновой трубке протекает тлеющий разряд. Светящийся газ представляет собой "живую плазму".

Между электродами сварочного аппарата возникает дуговой разряд.

Дуговой разряд горит в ртутных лампах - очень ярких источниках света.

Искровой разряд наблюдаем в молниях. Здесь напряженность электрического поля достигает пробивного значения. Сила тока около 10 МА!

Для коронного разряда характерно свечение газа, образуя "корону", окружающую электрод. Коронный разряд - основной источник потерь энергии высоковольтных линий электропередачи.


Электрический ток в вакууме

А возможно ли распространение электрического тока в вакууме (от лат. vacuum - пустота)? Поскольку в вакууме нет свободных носителей зарядов, то он является идеальным диэлектриком. Появление ионов привело бы к исчезновению вакуума и получению ионизированного газа. Но вот появление свободных электронов обеспечит протекание тока через вакуум. Как получить в вакууме свободные электроны? С помощью явления термоэлектронной эмиссии - испускания веществом электронов при нагревании.

Вакуумный диод, триод, электронно-лучевая трубка (в старых телевизорах) - приборы, работа которых основана на явлении термоэлектронной эмиссии. Основной принцип действия: наличие тугоплавкого материала, через который протекает ток - катод, холодный электрод, собирающий термоэлектроны - анод.

Читайте также: