Механизм долговременной памяти кратко

Обновлено: 06.07.2024

Память – это совокупность процессов фиксации, хранения и последующего воспроизведения информации получаемой организмом в течении всей его жизни, она является необходимым элементом процессов мышления.

Различают три вида составных элемента памяти: процесс запечатления или фиксации информации, процесс ее хранения и процесс ее воспроизведения. Процесс фиксации информации нарушается при алкоголизме и характеризуется тем, что больные не в состоянии запомнить события, протекающие во время болезни, но хорошо помнят, что было несколько лет назад.

Меньше всего уязвимы процессы хранения информации. В нашей памяти хранится информация полученная не только с помощью органов чувств, но и множество программ поведения, программ управления органами и физиологическими системами, то память безгранична. В состоянии гипноза любой человек может воспроизвести самые мелкие детали его прошлого.

Индивидуальные особенности памяти в основном связаны с процессами фиксации и воспроизведения информации, а процессы хранения информации почти у каждого человека протекают длительно и надежно.

Процессы воспроизведения информации изменяются с возрастом и нарушаются при повреждениях мозга.

Различают три вида памяти: непосредственный отпечаток, кратковременную и долговременную память. Все виды памяти взаимосвязаны.

Непосредственный отпечаток – обеспечивает удержание полного и детального образа картины внешнего мира, воспринимаемого органами чувств в течение 50-500 милисекунд. Этот вид памяти индивидуальный у разных людей, меняется в течении жизни и зависит от функционального состояния организма. Более длительно сохраняются зрительные образы. Непосредственный отпечаток – это начальный этап переработки поступившей информации.

Кратковременная память обеспечивает удержание ограниченной части поступивших сигналов из внешней среды. Не вся информация из кратковременной переходит в долговременную.

Долговременная память – обеспечивает сохранение информации неограниченное время.

Процесс, закрепления информации называется консолидацией, этот процесс может нарушаться если организм находится под действием высоких температур, наркотических веществ, механических травм, посторонних шумов, при снижении содержания кислорода в помещении где находится человек. Например, человек попавший в автомобильную катастрофу, не помнит событий, которые произошли за 30-50 минут до травмы, но хорошо помнит все, что предшествовало ей.

Физиологические основы памяти.

В 1933 году Р.Лоренте де Но показал, что при кратковременной памяти, возбуждение может циркулировать в замкнутых нейронных кругах, которые называются ловушками возбуждения. Это явление было названо реверберацией возбуждения. Под действием раздражителей из клеток передающих возбуждение друг другу образуется замкнутый круг. Если информация, которая сформировала эту цепочку будет поступать повторно к тому же нейрону, то возникает закрепление этих процессов в памяти. Все, что нарушает движение импульсов по нейронным структурам мозга, будет разрушать краткосрочную память.

Физиологические механизмы долговременной памяти.

Этот вид памяти не может основываться только на циркуляции импульсов, так как различные воздействия на организм (гипоксия, наркоз) разрушают кольцевые реверберационные связи, но в долговременной памяти большое количество информации сохраняется неизменным.

В настоящее время существует несколько теорий, которые объясняют механизм памяти на основании сложных морфологических и биохимических изменений.

Нейронная теория памяти – процессы запоминания и хранения информации связаны с циркуляцией нервных импульсов по нейронным цепям. Кодирование информации в которых может осуществляться изменением частоты нервных импульсов, их амплитуды и пространственного расположения.

Долговременную память могут обеспечивать изменения, которые проходят в синаптических контактах между нейронами и облегчают проведение нервных импульсов по только определенным нервным путям. Большое значение в длительном хранении информации имеет рост синаптических связей и самих синапсов. В синаптических контактах корковых нейронов при изменении их функционального состояния возникают синаптические выросты на дендритах – шипики. С накоплением и хранением информации в процессе обучения – увеличивается число шипиков.

Биохимическая теория памяти, основывается на изменении белков и нуклеиновых кислот РНК и ДНК в нейронах в процессе фиксации информации.

Молекулы РНК существуют десятки минут, поэтому они передают информацию в ДНК, которая является местом длительного хранения информации. Было доказано, что если блокировать синтез белка ДНК, можно вызвать полную потерю памяти.

Анализируя данные, касающиеся изучения нейронных и биохимических теорий памяти, можно сделать вывод, что в основе памяти лежит функциональная деятельность нейронов.

Формирование физиологических механизмов памяти человека определяется наследственными факторами и факторами среды в которой воспитывается ребенок. Память нужно тренировать.

Историки утверждают, что Юлий Цезарь и Александр Македонский помнили имена и лица всех своих солдат 30-тысячных армий. Самой феноминальной памятью обладал К.Маркс, ему было достаточно один раз прочитать страницу книги, чтобы точно слово в слово повторить ее. Такая память досталась ему не только по наследству, он тренировал ее в течении всей своей жизни, ежедневно заучивая стихи.

Расстройства кратковременной памяти – затрудненное запоминание чисел, слов, фраз, имен, телефонных номеров.

Если расстроена долговременная память, отражает запас ранее приобретенных знаний (исторические события, даты).

image

Поводом написания данной статьи послужила публикация материала американских неврологов на тему измерения емкости памяти головного мозга человека, и представленная на GeekTimes днем ранее.

В подготовленном материале постараюсь объяснить механизмы, особенности, функциональность, структурные взаимодействия и особенности в работе памяти. Так же, почему нельзя проводить аналогии с компьютерами в работе мозга и вести исчисления в единицах измерения машинного языка. В статье используются материалы взятые из трудов людей, посвятившим жизнь не легкому труду в изучении цитоархитектоники и морфогенетике, подтвержденный на практике и имеющие результаты в доказательной медицине. В частности используются данные Савельева С.В. учёного, эволюциониста, палеоневролога, доктора биологических наук, профессора, заведующего лабораторией развития нервной системы Института морфологии человека РАН.

Прежде, чем преступить к рассмотрению вопроса и проблемы в целом, мы сформулируем базовые представления о мозге и сделаем ряд пояснений, позволяющих в полной мере оценить представленную точку зрения.

Первое что вы должны знать: мозг человека — самый изменчивый орган, он различается у мужчин и женщин, расовому признаку и этническим группам, изменчивость носит как количественный (масса мозга) так и качественный (организация борозд и извилин) характер, в различных вариациях эта разница оказывается более чем двукратной.

Второе: мозг самый энергозатратный орган в человеческом организме. При весе 1/50 от массы тела он потребляет 9% энергии всего организма в спокойном состоянии, например, когда вы лежите на диване и 25% энергии всего организма, когда вы активно начинаете думать, огромные затраты.

Третье: в силу большой энергозатраты мозг хитер и избирателен, любой энергозависимый процесс невыгоден организму, это значит, что без крайней биологической необходимости такой процесс поддерживаться не будет и мозг любыми способами старается экономить ресурсы организма.

Вот, пожалуй, три основных момента из далеко не полного списка особенностей мозга, которые понадобится при анализе механизмов и процессов памяти человека.

Что же такое память? Память – это функция нервных клеток. У памяти нет отдельной, пассивной эноргонезатратной локализации, что является излюбленной темой физиологов и психологов, сторонников идеи нематериальных форм памяти, что опровергается печальным опытом клинической смерти, когда мозг перестает получать необходимое кровоснабжение и примерно через 6 минут после клинической смерти начинаются необратимые процессы и безвозвратно исчезают воспоминания. Если бы у памяти был энергонезависимый источник она могла бы восстановиться, но этого не происходит, что означает динамичность памяти и постоянные энергозатраты на ее поддержание.

Важно знать, что нейроны, определяющие память человека, находятся преимущественно в неокортоксе. Неокортекс содержит порядка 11млрд. нейронов и в разы больше глии. (Глия – тип клеток нервной системы. Глия является средой для нейронов глиальные клетки служат опорным и защитным аппаратом для нейронов. Метаболизм глиальных клеток тесно связан с метаболизмом нейронов, которые они окружают.

image

Глии, связи нейронов:

image

Хорошо известно, что в памяти информация хранится разное время, существуют такие понятия как долговременная и кратковременная память. События и явления быстро забываются, если не обновляются и не повторяются, что очередное подтверждение динамичности памяти. Информация определенным образом удерживается, но в отсутствии востребованности исчезает.

Как говорилось ранее, память – энергозависимый процесс. Нет энергии – нет памяти. Следствием энергозависимости памяти является нестабильность ее содержательной части. Воспоминания о прошедших событиях фальсифицируются во времени вплоть до полной неадекватности. Счета времени у памяти нет, но его заменяет скорость забывания. Память о любом событии уменьшается обратно пропорционально времени. Через час забывается ½ от всего попавшего в память, через сутки – 2/3, через месяц – 4/5.

Память мозга – вынужденная компенсаторная реакция нервной системы. Любая информация переходит во временное хранение. Поддержка стабильности кратковременной памяти и восприятия сигналов от внешнего энергетически крайне затратна, к тем же клеткам приходят новые возбуждающие сигналы и, накапливаются ошибки передачи и происходит перерасход энергетических ресурсов. Однако ситуация не так плоха, как выглядит. Нервная система обладает долговременной памятью. Зачастую она так трансформирует реальность, что делает исходные объекты неузнаваемыми. Степень модификации хранимого в памяти объекта зависит от времени хранения. Память сохраняет воспоминания, но изменяет их так, как хочется обладателю. В основе долговременной памяти лежат простые и случайные процессы. Дело в том, что нейроны всю жизнь формируют и разрушают свои связи. Синапсы постоянно образуются и исчезают. Довольно приблизительные данные говорят о том, что этот процесс спонтанного образования одного нейронного синапса может происходить у млекопитающих примерно 3-4 раза в 2-5 дней. Несколько реже происходит ветвление коллатералей, содержащих сотни различных синапсов. Новая полисинаптическая коллатераль формируется за 40-45 дней. Поскольку эти процессы происходят в каждом нейроне, вполне можно оценить ежедневную емкость долговременной памяти для любого из животных. Можно ожидать, что в коре мозга человека ежедневно будет образовываться около 800 млн. новых связей между клетками и примерно столько же будет разрушено. Долговременным запоминанием является включение в новообразованную сеть участков с совершенно не использованными, новообразованными контактами между клетками. Чем больше новых синаптических контактов участвует в сети первичной (кратковременной) памяти, тем больше у этой сети шансов сохраниться надолго.

image

Из выше сказанного ясно, что мозг динамическая структура, постоянно перестраивается и имеет определенные физиологические пределы, так же мозг чрезмерно энергозатратный орган. Мозг не физиологичен, а морфогенетичен, потому его активности некорректно и неправильно измерять в системах, используемых и применимых в информационных технологиях. Из за индивидуальной изменчивости мозга не представляется возможным делать какие либо выводы обобщающие различные функциональные показатели мозга человека. Математические методы так же не применимы в расчете структурного взаимодействия в работе мозга человека, из за постоянного изменения, взаимодействия и перестраивания нервных клеток и связей между ними, что в свою очередь доводит до абсурда работу американских ученых в исследовании емкости памяти головного мозга человека.

Память - сохранение информации о раздражителе после прекращения его действия.

Кратковременная память – это процесс хранения информации (возбуждения нейронов); Долговременная– это уже преобразования нейронов, изменение их свойств. В многочисленных экспериментах удалось установить, что существует и промежуточная память, которую рассматривают как процесс перехода кратковременной памяти в долговременную. Этот процесс называется консолидация. Исследования механизмов памяти проводятся долго и интенсивно, однако до сих пор нет единой теории памяти, существуют лишь гипотезы, каждая из которых подтверждена и

экспериментами, и клиническими наблюдениями.

1. Кратковременная память:

До 10 мин, объем невелик; Если пеpеданная от pецептоpов инфоpмация пpивлекла внимание пеpеpабатывающих стpуктуp мозга, то в течение пpиблизительно 20-30 секунд мозг будет обpабатывать и интеpпpетиpовать ее, pешая вопpос о том, насколько важна эта инфоpмация и стоит ли пеpедавать ее на долговременное хранение.

2. Долговременная память:

Энграмма памяти. Длительность неограниченна, может сохраняться в течение всей жизни, объем неограничен. Информация, при необходимости, может легко воспроизводиться. Воспроизведение заключается в извлечении информации из памяти. Воспроизведение, как и запоминание, может быть произвольным и непроизвольным. Произвольное воспроизведение, заключающееся в воспроизведении из долговременной памяти ранее приобретенной информации, имеет избирательный характер и представляет собой активный процесс, требующий включения внимания, а иногда и значительных умственных усилий. Под забыванием понимают невозможность воспроизведения приобретенной информации, которая, тем не менее, при определенных обстоятельствах может воспроизводиться.

Механизмы памяти обеспечивают:

· фиксациютекущей информации

· еехраненияв виде следов (энграмм)

· воспроизведение(вспоминание) по мере надобности.

Предполагается, что в основе различных видов памяти лежат различные, хотя и взаимосвязанные, механизмы (физиологические, биохимические, структурные и др.). Судя по морфологическим и электрофизиологическим данным, механизмы кратковременной памяти состоит, возможно, в реверберации возбуждения в замкнутых цепях нейронов, нейрональных комплексах. Высказывается также мнение о значении посттетанического потенциации, которая сопровождается повышением эффективности синаптической проведения возбуждения. Аргументом в пользу такой точки зрения служат данные о продолжительности посттетанического потенциации, которая в некоторых возбуждающих синапсах может длиться несколько часов.

· берут участие в кодировке большого объема информации (примерно 3-Ю8 бит);

· лабильные (их молекулы способны изменять свойства под влиянием информации, подлежащей запоминанию);

· стабильные (молекулы могут хранить информацию или ее воспроизводить в течение всей жизни). Доказано, что РНК-зависимый синтез белков является условием консолидации и формирования долговременной памяти. Были выделены специфические белки и полипептиды, содержание которых в нейронах и глиальных клетках при выработке новых поведенческих навыков ощутимо увеличивается. К ним относятся полипептид скотофобин и др. Влияние ингибиторов на синтез специфического белка ведет к нарушению памяти. Все это указывает на важную роль системы РНК - белок в обеспечении памяти человека и животных. Длительная память предполагает также устойчивые структурные изменения на клеточном уровне - в соответствующих синапсах.

Таким образом, в основе этих двух видов памяти лежат различные, хотя и взаимосвязанные механизмы. Кратковременная память обеспечивается нейродинамическими, биоэлектрическими процессами, долгосрочная - допускает устойчивые изменения на клеточном (в области синапсов и т.д.), субклеточном и молекулярном (в молекулах РНК, глюкопротеидах др.) уровнях.

Элементы обучения:

Обучение -процесс, заключающийся в появлении адаптивных изменений индивидуального поведения в результате приобретенного опыта. Это возможно благодаря свойствам памяти.

Внимание - направленность и сосредоточенность сознания на определенных объектах или определенной деятельности при отвлечении от всего остального. Свойство: избирательность - внимание к одному есть одновременно невнимание к другому. Внимание имеет внешнее выражение, проявляющееся в ряде активных приспособительных движений для лучшего восприятия объекта.

физиологическая основа внимания — наличие в коре области оптимального возбуждения и торможения других участков (по закону индукции нервных процессов). Этим создаются такие условия, при которых устраняется или ослабляется влияние посторонних раздражителей, так как их сигналы попадают на заторможенные участки коры головного мозга.

Нейрон

В этой работе соединились две большие области исследований: механизмы памяти и амилоиды. Предыстория открытия интересна и содержит немало важных деталей.

Амилоиды (см. amyloid) известны в первую очередь как патологические белковые структуры, вызывающие обширную группу амилоидных заболеваний, в частности болезни Альцгеймера и Паркинсона, а также прионные болезни. Они представляют собой фибриллярные полимеры некоторых в норме растворимых клеточных белков. Амилоиды катализируют структурную перестройку и присоединение к себе мономеров того же белка, и за счет этого растут. Они намного прочнее штатных клеточных полимеров, составляющих цитоскелет, поскольку фактически представляют собой единый мультимолекулярный бета-слой, в котором отдельные молекулы соединены множеством водородных связей. Поэтому амилоиды обладают высокой устойчивостью к протеазам и накапливаются, вызывая болезнь.

Амилоиды могут быть инфекционными, и тогда они называются прионами. У человека и животных прионы связаны лишь с одним белком, PrP, и вызывают коровье бешенство, скрейпи овец и болезнь Крейцфельдта–Якоба у людей. Инфекционность прионов связана с общим свойством амилоидов катализировать структурную перестройку. Различие же с прочими амилоидами по инфекционности определяется частными деталями: расположением прионного белка PrP на внешней клеточной мембране и, вероятно, какими-то механизмами, дробящими полимеры PrP на множество мелких, более подвижных частиц.

Явление, аналогичное прионам, было обнаружено у дрожжей Saccharomyces cerevisiae. У дрожжей, однако, прионы проявляются не как болезнь, а как фенотипы с нестандартным, неменделевским способом наследования. Прионы дрожжей (см. fungal prions) возникают спонтанно, но достаточно редко. Затем они могут стабильно сохраняться в ряду поколений, а при скрещивании и мейотической сегрегации передаваться всем потомкам. Таким образом, прионогенный белок может стабильно находиться в двух состояниях: прионном (полимеризующемся) или нормальном. А значит, клетку с прионогенным белком можно представить, как однобитную ячейку памяти.

А теперь перейдем к устройству памяти. Большая доля знания о работе нейронов была получена при изучении нейронов моллюска Aplysia californica. Этот крупный моллюск имеет большие и удобные для изучения нейроны. Ключевым механизмом памяти считается способность нейронов изменять силу своих синапсов, или синаптическая пластичность. Существует два вида памяти — кратковременная и долговременная. Кратковременная память опосредуется фосфорилированием некоторых уже существующих белков и укреплением имеющихся синаптических связей. Долговременная требует синтеза новых мРНК и белков и часто сопровождается установлением новых синаптических связей. Поскольку синтез мРНК происходит в ядре и затрагивает весь нейрон, возник вопрос: происходит ли событие запоминания одновременно во всех синапсах нейрона или же оно специфично для каждого синапса? На модели изолированного нейрона было показано, что единичный импульс нейромедиатора серотонина вызывает кратковременное синапс-специфическое запоминание, а два и более — долговременное. При этом, если первый импульс прикладывали к одному синапсу, а второй — к другому, то долговременное запоминание происходило во втором синапсе и только в нём.

И действительно, оказалось, что CPEB необходим для долговременной, но не кратковременной памяти, и его синтез намного увеличивается при стимуляции нейрона нейромедиатором серотонином. Далее обнаружилась удивительная вещь: по своей структуре CPEB оказался похож на дрожжевые прионные белки. Эти белки довольно несхожи между собой, но каждый из них имеет две части: функциональный домен и прионный домен, способный полимеризоваться. Функциональные домены совершенно различны, а прионные обладают общим свойством: они не структурированы и сильно обогащены аминокислотными остатками глутамином и аспарагином. Это свойство позволяет прионным доменам полимеризоваться в амилоидные фибриллы, и именно такой домен был обнаружен в белке CPEB. Свойства CPEB проверили в дрожжевой модели, и оказалось, что он ведет себя, как полноценный дрожжевой прион, то есть может переходить в стабильно наследуемое полимерное состояние. Правда, в отличие от дрожжевых белков, у которых прионное состояние функционально неактивно, у CPEB прионное состояние отличалось повышенной активностью. Всё это позволило предположить, что переход CPEB в полимерное состояние является ключевым событием в формировании долговременной памяти.

Однако доказательство этого тезиса оказалось нелегким, и, несмотря на интенсивные усилия, следующее продвижение в этой теме произошло лишь через семь лет. Видимо, это говорит о том, насколько сложнее манипулировать нервными клетками аплизии в сравнении с клетками дрожжей: трудно набрать достаточное количество клеток для биохимического анализа, сложнее манипуляции с генами. На этом этапе в тело нейрона аплизии инъецировали гены, кодирующие различные гибриды белка CPEB, сшитые с зеленым флуоресцентным белком. Такие гибриды — классический инструмент в изучении прионов: если белок растворим, клетка светится равномерно, а если он перешел в амилоидное состояние — свечение концентрируется в яркие точки. Гибридные белки, синтезированные нейроном, образовали характерные зеленые точки, а контрольный белок без глутамин-богатого домена давал диффузное свечение. Амилоидное состояние СРЕВ-GFP в точках было подтверждено окрашиванием амилоид-специфичным флуоресцентным красителем тиофлавином S. Также было показано, что переход СРЕВ-GFP в амилоидное состояние усиливался при стимуляции нервных клеток нейромедиатором серотонином. Прогресс небольшой, да и получен он был при искусственно завышенном уровне синтеза СРЕВ.

Структура кодирующей Orb2 мРНК и двух белков Orb

Рис. 2. Структура кодирующей Orb2 мРНК и двух белков Orb. Изображение из обсуждаемой статьи Amitabha Majumdar et al. в Cell, с изменениями

Но недавняя работа, сделанная уже на дрозофиле, расставила все точки над i. В отличие от аплизии, у дрозофилы есть два варианта белка СРЕВ: Orb2A и Orb2B, которые получаются из одной мРНК в результате альтернативного сплайсинга. Orb2B синтезируется постоянно (конститутивно), а Orb2A — лишь в ответ на стимуляцию нейрона. Они одинаковы в карбокси-концевой части, содержащей глутамин-богатый прионо-подобный домен и РНК-связывающий домен, но отличаются в амино-концевой части, имеющей 8 аминокислот в Orb2A и 162 аминокислоты в Orb2B (рис. 2). Было показано, что оба белка способны полимеризоваться, однако Orb2B может стабильно пребывать в растворимом состоянии, а Orb2A, напротив, с высокой вероятностью начинает полимеризацию. В частности, это наблюдали при флуоресцентной микроскопии гибридных белков Orb2-GFP (рис. 3). Оказалось, что способность Orb2A начинать полимеризацию связана с его уникальным N‑концевым фрагментом из 8 аминокислот.

Orb2A-GFP самопроизвольно полимеризуется, а Orb2B-GFP - нет

Рис. 3. При экспрессии в нейроне Orb2A-GFP образует амилоидные полимеры, видные как яркие точки, а Orb2B-GFP не полимеризуется, давая диффузное свечение. Длина масштабной линейки 10 мкм. Изображение из обсуждаемой статьи Amitabha Majumdar et al. в Cell, с изменениями

Эти наблюдения позволили предложить простую схему: при стимуляции синапса синтезируется Orb2A, он переходит в полимерное состояние и увлекает за собой Orb2B. Далее процесс полимеризации поддерживается молекулами Orb2B и может продолжаться сколь угодно долго, что соответствует фиксации события в долговременной памяти.

Для подтверждения этой модели провели мутагенез Orb2A и получили мутации, нарушающие его способность инициировать полимеризацию. Половина мутаций попала в уникальный N‑концевой фрагмент Orb2A, содержащий лишь 8 аминокислот. Наиболее эффективная из этих мутаций была изучена подробнее. Это оказалась замена в пятой позиции фенилаланина на тирозин.

Важным достижением данной работы является и то, что она впервые показала, как клетка может управлять переходом в амилоидное состояние. Однако существование механизма, способного вывести синапс из этого состояния, представляется маловероятным. Скорее всего, в компьютерной терминологии, мозг является устройством с однократной записью, подобным CD, а не винчестеру.

Несомненно, эта работа устанавливает один из принципов устройства живых организмов. Однако она заслуживает не только похвал. На всякого мудреца довольно простоты, и в этой работе есть существенный прокол. Он не отменяет главного вывода, хотя и ослабляет его и бросает плотную тень на научно-издательский процесс. Мы привыкли думать, что наиболее авторитетные научные журналы, к которым относится Cell, не могут публиковать откровенных ошибок. Ан нет. Среди представленных доказательств существенную роль имеет подтверждение существования полимеров СРЕВ методом электрофореза, выполненным совершенно некорректно. Авторы тщательно кипятят образцы в присутствии детергента, а в этих условиях любой амилоид должен раствориться. Удивительным образом растворяется не совсем всё, но всё равно такое безграмотное и неколичественное использование столь сильных средств недопустимо. В частной переписке авторы признали этот просчет. А ведь двумя годами раньше у них была еще одна статья в Cell с той же ошибкой. И это один из лучших и самых строгих журналов!

Как бы то ни было, но теперь мы понимаем основу устройства памяти. Интересно, для чего еще могут быть использованы амилоиды? Есть мнение, что это может быть процесс клеточной дифференциации.

Читайте также: