Механистическая картина мира и кризис классического естествознания кратко

Обновлено: 04.07.2024

Наука, как своеобразная форма познания – специфический тип духовного производства и социальный институт, возникла в Европе, в Новое время, в XVI–XVII вв., в эпоху становления капиталистического способа производства и дифференциации (разделения) единого ранее знания на философию и науку. Она (сначала в форме естествознания) начинает развиваться относительно самостоятельно.

Наука не стоит на месте, познаются новые и новые объекты, уточняются старые знания, корректируются законы и теории. Благодаря этому происходят количественные изменения знаний, то есть постепенное накопление новых фактов, результатов наблюдений, экспериментальных данных в рамках существующих концепций. На этапах количественных изменений знаний наблюдается их преемственность. При этом каждая последующая ступень развития науки формируется на основе сведений, полученных на предшествующих ступенях, сохраняя все наиболее ценное из накопленного наследия. Объективной основой преемственности является то, что в самой изучаемой действительности имеет место поступательное развитие предметов и явлений. Этих ступеней насчитывается три. Рассмотрение их и является целью данной работы. Для выполнения работы были поставлены следующие задачи:

  • рассмотреть развитие классической науки (XVII–XIX вв.);
  • рассмотреть развитие неклассической науки (первая половина XX в.);
  • рассмотреть развитие постнеклассической науки (вторая половина XX – начало XXI в.);

Развитие классической науки

Под классической наукой обычно понимают определенный этап в ее функционировании и развитии, для которого характерно господство объектного и жестко детерминистического стиля исследования, господствовавшего в науке, начиная с ХVII вплоть до конца ХIХ – начала ХХ столетия. Истоки классической новоевропейской науки, как правило, связывают с именами Галилея, Ньютона, Лейбница, Декарта и других выдающихся ученых и мыслителей. Их усилиями была разработана механическая картина мира, в основе которой лежала системно обоснованная Ньютоном классическая механика как исторически первая научная теория.

К концу XVIII – началу XIX столетия наука начинает активно использоваться в производстве, определяя его бурный прогресс от форм мануфактурной организации к машинной индустрии. Начинают формироваться технические науки, которые впоследствии стали выступать связующим элементом между естественнонаучным знанием и производственными технологиями. Возникает дисциплинарная организация науки, которая является важной вехой в ее развитии на этапе классики. В этот исторический период господства индустриальных форм организации производства и общественной жизни создаются предпосылки и для возникновения социально-гуманитарных наук. С их появлением завершается процесс формирования дисциплинарно организованной науки, и она обретает статус подлинной системы научного знания об основных сферах реальности, включая природу, общество и человеческий дух.

Несмотря на активную и многовекторную дифференциацию знания в течение нескольких веков существования классической науки, она, тем не менее, сохраняла приверженность неким общим методологическим ориентациям и формам рациональности, которые, собственно, и определяли ее мировоззренческий и операциональный статус.

К таким важнейшим особенностям классической науки в целом можно отнести следующие ее методологические интенции.

  1. Финалистская интерпретация истины в ее абсолютном завершенном и не зависящем от условий познания виде. Эта интерпретация была обоснована в классической механике как методологическое требование при описании и объяснении идеализированных теоретических конструктов (материальная точка, сила и др.), призванных заменить в теории реальные природные объекты и их взаимодействие.
  2. Установка на однозначное причинно-следственное описание событий и явлений, исключающее учёт случайных и вероятных факторов, которые оценивались как результат неполноты знания и субъективных привнесений в его содержание.
  3. Элиминация из контекста науки всех субъективно-личностных компонентов познания, а также характерных для него условий и средств осуществления познавательных действий.

Интерпретация любых предметов научного познания как простых механических систем, подчиняющихся принципам аддитивности, требованиям статичности и неизменности основных своих характеристик.

К концу XIX – началу XX века эти методологические интенции получают широкое признание и формируют классический тип научной рациональности. Считалось, что научная картина мира полностью построена и обоснована, а в перспективе необходимо будет лишь уточнять и конкретизировать отдельные детали этой картины. [1]

Однако история науки распорядилась по-иному. В этот период последовал целый ряд научных открытий, которые никак не вписывались в существующую картину физической реальности.

Неклассическая наука

Подрыву классических представлений в естествознании способствовали некоторые идеи, которые зародились еще в середине XIX века, когда классическая наука находилась в зените славы. Среди этих первых неклассических идей, в первую очередь, следует отметить эволюционную теорию Ч. Дарвина. Как известно, в соответствии с этой теорией биологические процессы в природе протекают сложным, необратимым, зигзагообразным путем, который на индивидуальном уровне совершенно непредсказуем. Явно не вписывались в рамки классического детерминизма и первые попытки Дж. Максвелла и Л. Больцмана применить вероятностно-статистические методы к исследованию тепловых явлений. Г. Лоренц, А. Пуанкаре и Г. Минковский еще в конце XIX века начали развивать идеи релятивизма, подвергая критике устоявшиеся представления об абсолютном характере пространства и времени. Эти и другие революционные с точки зрения классической науки идеи привели в самом начале XX века к кризису естествознания, коренной переоценке ценностей, доставшихся от классического наследия.

Научная революция, ознаменовавшая переход к неклассическому этапу в истории естествознания, в первую очередь, связана с именами двух великих ученых XX века – М. Планком и А. Эйнштейном. Первый ввел в науку представление о квантах электромагнитного поля, но по истине революционный переворот в физической картине мира совершил великий физик-теоретик А. Эйнштейн (1879–1955), создавший специальную (1905) и общую (1916) теорию относительности.

Как мы помним из предыдущего раздела, в механике Ньютона существуют две абсолютные величины – пространство и время. Пространство неизменно и не связано с материей. Время – абсолютно и никак не связано ни с пространством, ни с материей. Эйнштейн отвергает эти положения, считая, что пространство и время органически связаны с материей и между собой. Тем самым задачей теории относительности становится определение законов четырехмерного пространства, где четвертая координата – время. Эйнштейн, приступая к разработке своей теории, принял в качестве исходных два положения: скорость света в вакууме неизменна и одинакова во всех системах, движущихся прямолинейно и равномерно друг относительно друга, и для всех инерциальных систем все законы природы одинаковы, а понятие абсолютной скорости теряет значение, так как нет возможности ее обнаружить.

Кроме того, он построил математическую теорию броуновского движения, разработал квантовую концепцию света, а за открытие фотоэффекта в 1921 г. ему была присуждена Нобелевская премия, дал физическое истолкование геометрии Н. Н. Лобачевского (1792–1856).

Буквально в течение первой четверти века был полностью перестроен весь фундамент естествознания, который в целом остается достаточно прочным и в настоящее время.

Далеко за рамки естествознания вышла сформулированная Н. Бором и ставшая основой в неклассической физике идея дополнительности. В соответствии с этим принципом, получение экспериментальной информации об одних физических величинах, описывающих микрообъект, неизбежно связано с потерей информации о некоторых других величинах, дополнительных к первым. Такими взаимно дополнительными величинами являются, например, координаты и импульсы, кинетическая и потенциальная энергия, напряженность электромагнитного поля и число фотонов и т.п.

Для неклассического естествознания характерно объединение противоположных классических понятий и категорий. Например, в современной науке идеи непрерывности и дискретности уже не являются взаимоисключающими, а могут быть применены к одному и тому же объекту, в частности, к физическому полю или к микрочастице (корпускулярно-волновой дуализм). Другим примером может служить относительность одновременности: события, одновременные в одной системе отсчета, оказываются неодновременными в другой системе отсчета, движущейся относительно первой.

Начиная с Вебера намечается тенденция на сближение естественных и гуманитарных наук, что является характерной чертой постнеклассического развития науки. [3]

Обобщая вышеизложенное стоит сказать, что неклассическая наука (первая половина XX в.), исходный пункт которой связан с разработкой релятивистской и квантовой теории, отвергает объективизм классической науки, отбрасывает представление реальности как чего-то не зависящего от средств ее познания, субъективного фактора. Она осмысливает связи между знаниями объекта и характером средств и операций деятельности субъекта. Экспликация этих связей рассматривается в качестве условий объективно-истинного описания и объяснения мира.

Постнеклассическая наука

Наконец, начиная с 60-х годов ХХ века, наука переходит в третью стадию своей исторической эволюции, всё более отчётливо приобретая черты новой постнеклассической (современной) науки. В этот период происходит революция в самом характере научной деятельности, связанная с радикальными изменениями в средствах и методах получения, хранения, трансляции и оценки научных знаний.

С точки зрения смены типа научной рациональности постнеклассическая наука кардинально расширяет сферу философско-методологической рефлексии над основными параметрами и структурными компонентами научно-исследовательской деятельности. [5] В отличие от неклассической науки она требует анализа взаимосвязей и опосредований получаемого знания не только с особенностями средств и операций познавательной деятельности субъекта, но и с её ценностно-целевыми структурами, т.е. с социокультурным фоном эпохи как реальной средой существования науки. Неклассическая парадигма познания предполагает использование таких методологических регулятивов, как относительность к средствам наблюдения, вероятностный и статистический характер получаемых научных знаний, дополнительность различных языков описания исследуемых объектов. В отличие от неё постнеклассическая парадигма ориентирует исследователя на анализ феноменов становления, развития и самоорганизации явлений познаваемой реальности. Она предполагает рассмотрение объектов в их исторической перспективе, учитывая синергетические, кооперативные эффекты их сосуществования и взаимодействия. Важнейшей задачей исследователя становится теоретическая реконструкция изучаемого явления в максимально широком контексте его связей и опосредований с целью воссоздать в языке науки его целостный и системный образ.

Даже в первом приближении описать основные параметры предметного поля современной постнеклассической науки не представляется возможным, поскольку она простирает свои познавательные усилия практически на все сферы реальности, включая природу, социокультурные системы и сферу духовно-психических феноменов. Это явления космической эволюции; проблемы взаимодействия человека и биосферы; развитие современных высоких технологий от наноэлектроники до нейрокомпьютеров; новые модели физической реальности на основе принципов квантовой хромодинамики и суперсимметричных взаимодействий; идеи коэволюции и глобального эволюционизма, апплицируемые на все сферы бытия Универсума и многое другое.

Заключение

Главнейшей функцией науки является выработка и систематизация объективных знаний о действительности. Цель науки всегда была связана с описанием, объяснением и предсказанием процессов и явлений действительности, на основе открываемых ею законов. В развитии науки чередуются нормальные и революционные периоды, так называемые научные революции, которые приводят к изменению ее структуры, принципов познания, категорий, методов и форм организации. На каждом из этапов развития науки разрабатываются соответствующие идеалы, нормы и методы научного исследования, формулируется определенный стиль мышления, своеобразный понятийный аппарат и т.п.:

Основное содержание механистической картины мира можно выразить в следующих положениях.

1) Весь мир, вся вселенная (от атомов до человека) представляет собой совокупность огромного числа неделимых и неизменных частиц, которые перемещаются в абсолютном пространстве и времени; они взаимодействуют между собой силами тяготения, мгновенно распространяющимися от тела к телу через пустоту, – это так называемый принцип дальнодействия.

3) Подчеркнем, что движения атомов и тел происходят в абсолютном пространстве с течением абсолютного времени. Эта концепция пространства и времени (как арены для движущихся тел), свойства которых неизменны и независимы от самих тел, составила основу механистической картины мира. Причём время понимается здесь как обратимая величина (поскольку законы механики остаются верными при обращении времени вспять).

4) Природа понимается как простая машина, части которой подчиняются жесткой детерминации.

Иными словами, в мире, который представляют себе сторонники механистической концепции, нет ни свободы, ни случайности, ни творчества.

Этап механистического естествознания можно условно подразделить на две ступени — доньютоновскую и ньютоновскую, — связанные соответственно с двумя глобальными научными революциями, происходившими в XVI—XVII вв. и создавшими принципиально новое (по сравнению с античностью и средневековьем) понимание мира.

Доньютоновская ступень — и соответственно первая научная революция происходила в период Возрождения, и ее содержание определило гелиоцентрическое учение Н. Коперника.

Вторую глобальную научную революцию XVII в. чаще всего связывают с именами Галилея, Кеплера и Ньютона, который ее и завершил, открыв тем самым новую — посленьютоновскую ступень развития механистического естествознания.

Исходным пунктом познания, по Галилею, является чувственный опыт, который, однако, сам по себе не дает достоверного знания. Галилей первым показал, что опытные данные в своей первозданности вовсе не являются исходным элементом познания, что они всегда нуждаются в определенных теоретических предпосылках.

Кроме того, Ньютон — независимо от Лейбница — создал дифференциальное и интегральное исчисление как адекватный язык математического описания физической реальности.

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Несмотря на ограниченность, механическая картина мира оказала мощное влияние на развитие всех других наук на долгое время. Экспансия механической картины мира на новые области исследования осуществлялась в первую очередь в самой физике, но потом — в других областях знаний.

Однако по мере экспансии механической картины мира на новые предметные области наука все чаще сталкивалась с необходимостью учитывать особенности этих областей, требующих новых, немеханических представлений. Накапливались факты, которые все труднее было согласовывать с принципами механической картины мира. Она теряла свой универсальный характер, расщепляясь на ряд частнонаучных картин, начался процесс расшатывания механической картины мира. В середине XIX в. она окончательно утратила статус общенаучной.

Так сложился метафизический способ мышления, одним из выражений которого и был механицизм как своеобразная методологическая доктрина.

Механицизм есть крайняя форма редукционизма. Редукционизм (лат. reductio — отодвигание назад, возвращение к прежнему состоянию) — методологический принцип, согласно которому высшие формы могут быть полностью объяснены на основе закономерностей, свойственных низшим формам, т. е. сведены к последним (например, биологические явления — с помощью физических и динамических законов).

Само по себе сведение сложного к более простому в ряде случаев оказывается плодотворным — например, применение методов физики и химии в биологии. Однако абсолютизация принципа редукции, игнорирование специфики уровней (т. е. того нового, что вносит переход на более высокий уровень организации) неизбежно ведут к заблуждениям в познании.

Таким образом, небывалые успехи механики породили представление о принципиальной сводимости всех процессов в мире к механическим. Поэтому в XIX в. механика прямо отождествлялась с точным естествознанием. Ее задачи и сфера ее применяемости казались безграничными. Первую брешь в мире подобных представлений пробила максвелловская теория электромагнитных явлений, дававшая математическое описание процессов, не сводя их к механике.

Поможем написать любую работу на аналогичную тему

Зарождение, формирование и кризис механистической картины мира (17-18 вв.)

Зарождение, формирование и кризис механистической картины мира (17-18 вв.)

Зарождение, формирование и кризис механистической картины мира (17-18 вв.)

В это время начинает развиваться биология, химия и др. области знаний, что приводит к выделению науки из натурфилософии, формированию дисциплинарно организованной науки. Натурфилософские системы природы, созданные до XIX в. И. Кантом, Ф. Шеллингом, Г.В.Ф. Гегелем, в XIX в. не могли уже выполнять функции теоретического анализа и обобщения новых научных данных Это было обусловлено, с одной стороны, тем, что натурфилософия давала умозрительную картину мироздания, в формировании которой участвовали этические, эстетические и религиозные взгляды, она часто опиралась на антропоморфные аналогии, эмоциональные аргументы и фантазии. И, с другой стороны, - тем, что натурфилософия XVII - XIX вв. опиралась на механистическую картину мира. При этом механика прямо отождествлялась с точным естествознанием и ее задачи, сфера её применяемости казались безграничными170.

Переход к дисциплинарному естествознанию ограничил сферу идеалов механики и сформировал новую систему разнообразных, специфических для каждой дисциплины идеалов и норм, отражающих особенности различных предметов исследования. В биологии, химии и других областях знания формируются специфические картины реальности, нередуцируемые к механической картине мира. Накапливаются факты, которые всё труднее было согласовывать с ее принципами171. Начался процесс расшатывания механической картины мира, она теряет свой универсальный характер, расщепляясь на ряд частнонаучных картин. В середине ХІХ в. она окончательно утратила статус общенаучной. Стало очевидным, что законы ньютоновской механики уже не могут играть роли универсальных законов природы.

начинает формироваться система прикладных и инженерно-технических наук как посредника между фундаментальными знаниями и производством. Различные сферы научной деятельности специализируются и формируются соответствующие этой специализации научные сообщества.

К средине XIX века наука из преимущественно собирающей становится упорядочивающей; происходит расширение сферы экспериментальных исследований, усиливается значение мыслительного эксперимента, оперирующего идеального объектами; усиливается процесс математизации естествознания; в науку проникают идеи развития.

Ведущее место в науке XIX в. по-прежнему занимает физика. Ее лидирующее положение связано с новыми открытиями и развитием новых разделов физики - термодинамики, электрофизики, теории электричества и теплоты.

Открытия закрепляются развитием крупного машинного производства, техническим переворотом, связанным с изобретением и применением рабочей машины. Вместе с тем формируется химия, в рамках которой разрабатывается теория химического строения (Д. Менделеев, А. Бутлеров).

В конце ХІХ - начале ХХ вв.: •

опыты А. Майкельсона поставили под сомнения существование эфира и абсолютного пространства, в котором скорость света должна быть больше в направлении движения светильника, а она оказалась неизменной, постоянной по величине, независимой от скорости движения источника света; •

Г. Герц (80-е гг.) доказал реальность электромагнитных волн и подтвердил теорию Дж.К. Максвелла, которая была несовместима с механистическими представлениями о мире (с помощью механистических моделей эфира); •

• в 1924-1930 гг. была экспериментально подтверждена гипотеза Луи де Бройля о корпускулярно-волновой природе материальных образований и, как следствие этого сформулировано соотношение неопределенности (В. Гейзенберг) - о невозможности для микрообъектов одновременно точно определить координаты и импульс.

Новые открытия в науке не укладывались в господствующую механистическую картину мира, свидетельствовали об ее ограниченности. Встал вопрос об абсолютной истинности классической механики как теоретической базы естествознания и основанной на ней картины мира и об адекватности эпистемологических идей и представлений, лежащих в основаниях научного познания.Фундаментальные естественнонаучные представления о материи, пространстве, времени, причинности потребовали серьезного философского анализа. Это привело к осознанию кризиса в естествознании (прежде всего в физике). Он проявлялся и на уровне понятий и принципов, и на уровне философско-методоло- гических оснований, и на мировоззренческом уровне (материализм, идеализм).

Картина мира, получившая в классической науке название механистической (механической), сформировалась в XVII в. и господствовала в течение примерно двух столетий, вплоть до конца XIX в. На ее развитие и конкретное оформление особое влияние оказала типичная производственная практика той эпохи с присущими именно ей особыми орудиями труда, технологи­ческими процессами, функциями работников и создаваемыми

Научные, философские и художественные тексты в это вре­мя изобилуют упоминаниями о часах, мельницах, деталях ис­кусственных устройств (пружинах, трубках и т.п.), о машине вообще. Часы, например, до такой степени стали символом культуры того времени, что французский философ и социо­лог Ж.-Ж. Руссо (1712-1778) отказался носить их в знак про­теста против столь несовершенной цивилизации. Образ ма­шины, механизма с типичными функциями прочно стал ба­зовым для понимания всех природных проявлений. Некоторые ученые той эпохи рассматривали животных и даже человека как живую биомашину (Р. Декарт (1596-1650), Ж. Ламетри (1709-1751). Вообще, человек в такой общей картине мира предстает скорее как результат, но не как исходное начало. Он включен в картину мира как некий абстрактный, усред­ненный, стереотипизированный субъект, наблюдающий за объективным ходом событий и процессов и никак не влияю­щий на них. И хотя некоторые авторы той поры, например, Декарт, оговаривают возможность и необходимость иного, более углубленного подхода к человеку, доминирует все-таки сформулированный выше абстрактный подход.

Не менее важную роль в формировании практических об­разов играли господствующие технологические процессы и общие принципы проектирования техники: сборка изделий из простых частей (трубок, колес, пружин и т.п.), механичес­кая обработка деталей, использование естественных материа­лов или простых сплавов.

Итак, все это, вместе взятое, и создавало предпосылки понимания мира как механического целого, а всей Вселен­ной — как собранного из простых отдельных совместимых де­талей механизма. Конкретный наглядный образ такого миро­устройства — часы типа ходиков, однажды запущенные не­кой силой в движение и затем функционирующие по заведенному порядку. Самой сложной при этом оставалось проблема источника толчка — кто же (или что же) запустил в ход эти огромные Вселенские часы? Ответ был вполне логи­чен для той эпохи, когда большинство ученых верили в Бога, — запустил Вселенский механизм в ход, вдохнул в них жизнь Господь Бог, Творец, устранившийся далее от дел и как бы наблюдающий со стороны за происходящим (теория деизма).

Как видим, в своей основе механистическая картина мира была логичным следствием практики той эпохи, периода ме­ханизации физического труда, становления машинного фабрично-заводского производства. И как в производстве про­стые динамические системы с простыми технологическими связями функционировали по ясным, хорошо прогнозируе­мым законам, так и природа представлялась людям совокуп­ностью обособленных четко разделенных и очерченных тел, вступающих в элементарные связи и подчиненных однозначным и простым закономерностям. Поскольку в практику того времени были вовлечены преимущественно внешние слои природного мира, наука еще не могла глубоко проникнуть в сокровенную, невидимую невооруженным глазом сущность вещей и процессов и радикально изменить типичное видение природы. Поэтому первоначально картина мира формирова­лась преимущественно за счет образов, заимствованных из производственно-технической деятельности, и лишь позднее она начинает усложняться посредством привнесения экспе­риментально-измерительных процедур и более сложных абст­ракций.

Механистическая картина мира, в результате, явно несет печать определенного стиля научного мышления, тяготевше­го к формальной логике, метафизическому методу, натурализму. Из всех наук у такой картины мира наиболее тесные связи были с механикой в ее новой ньютоновской форме, интегрировавшей прикладное техническое знание и некоторые опорные естественнонаучные представления. В целом же, не будет преувеличением отметить, что механическая кар­тина мира есть рационализированный образ буржуазных про­изводственных отношений на начальном этапе механизации труда, приведших к появлению ущербного, одномерного чело­века — работника, функционирующего в качестве рядового тех­нологического звена производственного процесса. Стихия ме­ханических стереотипных операций —простая структура дей­ствий человека по отношению к природе — предопределила само видение природы и человека как части природы.

Такая общая картина мира и отпочковавшиеся от нее час­тные картины его позволяли сделать вывод о том, что с на­коплением конкретных материалов, относящихся к разным естественнонаучным дисциплинам, в относительно обозри­мое время вполне возможно приближение к некой завершен­ной, исчерпывающей характеристике мира в целом и царя­щих в нем законов. Однако, как показала дальнейшая исто­рия науки, этот вывод оказался несостоятельным.


Галилео Галилей выступил также противником механики и астрономии Аристотеля. Он опровергал учение Аристотеля о том, что тяжелые тела падают быстрее, чем легкие. Изучая кинематику движения тел, он впервые использовал понятие инерции. Согласно господствовавшей тогда аристотелевской концепции понятие инерции не существовало и считалось, что всякое движение, кроме естественного, требует непрекращающегося воздействия, и прекращение воздействия приводит к немедленному прекращению движения. Галилей выступил против такой концепции.

Используя понятие инерции, Галилей объяснил, почему Земля при обращении вокруг Солнца и вращении вокруг своей оси сохраняет как атмосферу, так и все, что находится в атмосфере и на земной поверхности. Здесь проявился открытый Галилеем принцип относительности для механических явлений, известный как принцип относительности Галилея и утверждающий, что если законы механики справедливы в одной системе координат, то они справедливы и в любой другой системе координат, движущейся прямолинейно и равномерно относительно первой, т.е. в инерциальных системах отсчета. В другой формулировке закон звучит так: никакими опытами, проведенными в инерциальной системе отсчета, нельзя доказать, покоится система отсчета или движется! равномерно и прямолинейно. Все законы механики во всех инерциальных системах отсчета проявляются одинаково, в них пространство и время носят абсолютный характер, т.е. интервал времени и размеры тел не зависят от состояния движения системы отсчета[2].

Одновременно с законом инерции Галилей использовал и другое основное положение классической механики - закон независимости действия сил. Он применил его к движению тел в поле силы тяжести Земли.

В своих философских воззрениях, опирающихся на естественнонаучные выводы, Галилей стоит на позициях новой основанной им механической натурфилософии, механистического естествознания.

Источником познания, по Галилею, является опыт. Он осуждал схоластику, оторванную от действительности и опирающуюся исключительно на авторитеты. Метод научного исследования Галилея сводился к тому, что из наблюдений и опытов устанавливается предположение - гипотеза, проверка которой на практике дает физический закон. В основных чертах этот метод стал методом естествознания.

До Галилея физика и математика существовали порознь. Он связал физику, объясняющую характер и причины движения, и математику, позволяющую описать это движение, т.е. сформулировать его закон. Как один из основателей классической механики, Галилей сделал два принципиально важных шага: обратился к физическому опыту и связал физику с математикой.

При разработке своей системы мира Коперник исходил из предположения, что Земля и планеты обращаются вокруг Солнца по круговым орбитам. Чтобы объяснить сложное движение планет по эклиптике, ему пришлось ввести в свою систему 48 эпициклов. И лишь благодаря усилиям немецкого астронома Иоганна Кеплера система мира Коперника приобрела простой и стройный вид. Кеплер совершил следующий шаг - открыл эллиптическую форму орбит и три закона, движения планет вокруг Солнца. Первые два закона Кеплера были опубликованы в 1609 г., третий - в I 1619 г. Наиболее важным для понимания общего устройства Солнечной системы был первый закон, утверждавший, что планеты обращаются вокруг Солнца по эллиптическим орбитам, а Солнце находится в фокусе одного из этих эллипсов. В свое время греки предполагали, что все небесные тела должны двигаться по кругу, потому что круг - самая совершенная из всех кривых. Хотя греки знали многое об эллипсах и их математических свойствах, они не дошли до понимания того, что, небесные тела могут двигаться как-то иначе, нежели по кругам или сложным сочетаниям кругов. Кеплер первым отважился высказать такую идею. Его законы имели решающее значение в истории науки прежде всего потому, что они способствовали доказательству закона тяготения Ньютона.

Кеплер настаивал на физическом объяснении явлений природы, не признавал теологических представлений (например, он доказывал, что кометы являются материальными телами), а также антропоморфного понимания природы, наделения ее духоподобными силами, выступал против алхимиков и астрологов.

Учение Кеплера о законах движения планет имело огромное значение для формирования естественнонаучной картины мира, i открывало путь к поиску более общих законов механического движения материальных тел и систем.

Учение Декарта явилось единой наукой. Как и философы древности, Декарт включил в свое учение натурфилософию. Однако в основу своей натурфилософии Декарт положил механику, и она носила механический односторонний характер, что было характерно для естествознания того времени. Декарта можно считать основоположником принципа близкодействия в физике. Вол новая теория света, теория электромагнитного поля, молекулярная физика являются развитием идей Декарта. Действительно, в трудах многих крупнейших физиков XIX в. можно найти идеи, которые являются развитием идей Декарта, высказанных им еще в XVII в.

Период формирования и становления естественных наук приходится примерно на XVII в.: начинается он с работ Галилея и заканчивается исследованиями Ньютона.

Галилей и Кеплер, исходя из динамических и кинематических законов Аристотеля, переосмысливали его механику и в итоге перехода от геоцентризма к гелиоцентризму пришли к своим кинематическим законам. Эти законы предопределили принципиально единую для земных и небесных тел механику Ньютона со всеми сформированными им классическими законами механики, включая закон всемирного тяготения. Галилей, изучая свободное падение тел, первым ввел понятие инерции и сформулировал принцип относительности для механических движений, известный как принцип относительности Галилея. Решающий вклад в становление механики внес английский физик Исаак Ньютон (1643-1727 гг.)

Динамические законы Ньютона не только следуют из соответствующих кинематических законов Галилея и Кеплера, но и сами могут быть положены в основу всех трех кинематических законов Кеплера и обоих кинематических законов Галилея, а также всевозможных теоретически ожидаемых отклонений от них из-за сложного строения и взаимных гравитационных возмущений взаимодействующих тел.

И. Ньютон полагал, что мир состоит из корпускул, образующих тела и заполняющих пустоты между ними. Установив закон всемирного тяготения, Ньютон не дал объяснения причин тяготе и механизма передачи взаимодействия. Молодой Ньютон считал, что взаимодействие через пустоту осуществляет Бог. Позднее он приходит к гипотезе эфира как переносчика взаимодействия.

Период становления механики со временем превратился в период ее торжества. Механика стала основой мировоззрения. Все, что создал сам человек, все, что есть в природе, имеет, считалось, единую механическую сущность. Этому способствовали и дальнейшие открытия в естествознании, особенно в астрономии более позднего периода.

формирование механистической картины мира потребовало несколько столетий и завершилось лишь к середине XIX в. Ее следует рассматривать как важный этап в становлении естественнонаучной картины мира.

В этой системе мира вещества состоят из атомов и молекул, находящихся в непрерывном движении. Взаимодействия между телами происходят при непосредственном контакте (при действии сил упругости и трения) и на расстоянии (при действии сил тяготения). Пространство заполнено всепроникающим эфиром. Взаимодействие атомов рассматривается как механическое. Нет понимания сущности эфира. Согласно механистической картине мира гравитационные силы связывают все без исключения тела природы, они являются не специфическим, а общим взаимодействием. Законы тяготения определяют отношение материи к пространству и всех материальных тел друг к другу. Тяготение создает в этом смысле реальное единство Вселенной. Объяснение характера движения небесных тел и даже открытие новых планет Солнечной системы было триумфом ньютоновской теории тяготения. ч Механистическая картина мира была основана на следующих четырех принципах.

1. Мир строился на едином фундаменте - на законах механики Ньютона. Все наблюдаемые в природе превращения, а также тепловые явления на уровне микроявлений сводились к механике атомов и молекул, их перемещениям, столкновениям, сцеплениям, разъединениям. Считалось, что открытие в середине XIX в. Закона сохранения и превращения энергии также доказывало механическое единство мира.

2. В механистической картине мира все причинно-следственные связи однозначные, здесь господствует лапласовый детерминизм. В мире существует точность и возможность предопределения будущего.

3. В механистической картине мира отсутствует развитие - в целом таков, каким он был всегда. Механистическая картина мира фактически отвергала качественные изменения, сводя все к чисто количественным изменениям.

4. Механистическая картина исходила из представления, что микромир аналогичен макромиру. Считалось, что механика микромира может объяснить закономерности поведения атомов и молекул.

По своей сути эта картина мира являлась метафизической, все многообразие мира сводилось к механике, качественное развитие, как и все происходящее в мире, представлялось строго предопределенным и однозначным.

Метафизические взгляды на картину мира приводили и самого Ньютона к постоянному отступлению от естественнонаучного мировоззрения и к объяснению явлений сверхъестественными силами, т.е. вмешательством бога. Ньютон полагал, что Солнечная система от века существует такой, какой мы ее знаем сейчас. Но в таком случае начальное положение планеты на орбите и ее начальная скорость не находят физического объяснения. По Ньютону, планеты получили начальную скорость в виде толчка от бога. Устойчивость Солнечной системы также не находит своего объяснения с помощью одних только сил тяготения, и Ньютон оставляет здесь место действию божественных сил.

Таким образом, Ньютонова концепция сил отводила определенную роль в природе богу, в отличие от картезианской физики, которая каждое явление объясняла специальной моделью вихря и согласно которой бог, однажды создав природу, уже больше в нее не вмешивается. В философских моделях мировоззрения это нашло глубокое отражение во всей противоречивости и сложности, присущей духовному миру человека в эпоху освобождения от путсхоластики.

Естественнонаучная картина мира в собственном смысле слова, как мы уже отметили, начинает формироваться только в эпоху возникновения научного естествознания в XVI-XVII вв. Анализируя процесс перестройки сознания в эпоху XVI-XVII вв., западный исследователь экстерналистского направления Э. Цильзель считает, что становление новых буржуазных экономических отношений, пронизанных духом рационализма, привело к постепенному ослаблению религиозного, магического восприятия мира и укреплению рациональных представлений о мироздании. А поскольку развитие производства потребовало развития механики, то картина мира данной эпохи приобрела механистический характер.

В истории научного знания классическая механика была новой теоретически развитой областью естествознания, ставшей основой л механистической картины мира. Механистическая картина мира была и остается тем началом, на котором основываются последующие картины мира, опирающиеся на успехи синергетики или идеи глобального эволюционизма.

Одной из характерных черт общенаучной картины мира является то, что ее основой выступает картина мира той области познания, которая занимает лидирующее положение в данный исторический период. В XVII-XVIII вв. лидирующее положение среди наук занимала механика, поэтому естественнонаучная картина мира получила название механистической. Законы механики распространялись также на общество и на человека.

Читайте также: