Масса это кратко и понятно

Обновлено: 02.07.2024

м а сса, массы, жен. (лат. massa).

1. Множество, большое количество. Масса народу. Устал от массы впечатлений. Масса хлопот.

3. Груда, громада. К берегу приближалась темная масса броненосца.

| Сконцентрированная часть чего-нибудь, подавляющее количество. Основная масса артиллерии расположена на фланге.

4. Смесь, тестообразное вещество, являющееся полуфабрикатом в различных производствах (тех.). Древесная масса. Фарфоровая масса. Бумажная масса (из которой выделываются листы бумаги).

5. Весомость и инерция, свойственные материи и энергии (физ.).


Изображение международного прототипа килограмма, который сделан из сплава 90% платины и 10% иридия в виде цилиндра 39,17 мм. Прототип хранится в штаб-квартире Международного бюро мер и весов в Севре.



  • Пассивная гравитационная масса показывает, с какой силой тело взаимодействует с внешними гравитационными полями — фактически эта масса положена в основу измерения массы взвешиванием в современной метрологии.
  • Активная гравитационная масса показывает, какое гравитационное поле создаёт само это тело — гравитационные массы фигурируют в законе всемирного тяготения.
  • Инертная масса характеризует инертность тел и фигурирует в одной из формулировок второго закона Ньютона. Если произвольная сила в инерциальной системе отсчёта одинаково ускоряет разные исходно неподвижные тела, этим телам приписывают одинаковую инертную массу.

В классической механике масса системы тел равна сумме масс составляющих её тел. В релятивистской механике масса не является аддитивной физической величиной, то есть масса системы в общем случае не равна сумме масс компонентов, а включает в себя энергию связи, а также энергию движения частиц друг относительно друга [3] .

Содержание

Принцип эквивалентности

Все явления в гравитационном поле происходят точно так же, как в соответствующем поле сил инерции, если совпадают напряжённости этих полей и одинаковы начальные условия для тел системы.

Гравитационная масса — характеристика материальной точки при анализе в классической механике, которая полагается причиной гравитационного взаимодействия тел, в отличие от инертной массы, которая определяет динамические свойства тел.

Как установлено экспериментально, эти две массы пропорциональны друг другу. Не было обнаружено никаких отклонений от этого закона, поэтому новых единиц измерения для инерционной массы не вводят (используют единицы измерения гравитационной массы) и коэффициент пропорциональности считают равным единице, что позволяет говорить и о равенстве инертной и гравитационной масс.

Можно сказать, что первая проверка пропорциональности двух видов массы была выполнена Галилео Галилеем, который открыл универсальность свободного падения. Согласно опытам Галилея по наблюдению свободного падения тел, все тела, независимо от их массы и материала, падают с одинаковым ускорением свободного падения. Сейчас эти опыты можно трактовать так: увеличение силы, действующей на более массивное тело со стороны гравитационного поля Земли, полностью компенсируется увеличением его инертных свойств.

На равенство инертной и гравитационной масс обратил внимание ещё Ньютон, он же впервые доказал, что они отличаются не более чем на 0,1 % (иначе говоря, равны с точностью до 10 −3 ) [4] . На сегодняшний день это равенство экспериментально проверено с очень высокой степенью точности (чувствительность к относительной разности инертной и гравитационной масс в лучшем эксперименте на 2009 год равна (0,3±1,8)·10 −13 ) [1] [2] .

Определение массы


Возможные 4-импульсы тел с нулевой и положительной массой покоя. Векторы 4-импульса, построенные от точки пересечения осей до любой точки на зелёной гиперболе, имеют одну и ту же (положительную) длину, то есть массу частицы, несущей этот четырёхимпульс, и различаются энергией и 4-скоростью частицы. Ускорение частицы сводится к движению конца 4-импульса по гиперболе. Векторы четырёхимпульса, построенные от точки пересечения осей до любой точки на синих полупрямых, имеют нулевую длину и могут относиться только к частицам нулевой массы (например, фотонам). Энергия этих частиц (с точностью до коэффициента c) равна модулю их 3-импульса.

В специальной теории относительности под массой понимают модуль 4-вектора импульса [5] :

m^2 = \frac<E^2></p>
<p> - \frac<\mathbf<p>^2>
,

где E — полная энергия свободного тела, p — его импульс, c — скорость света.

В случае произвольной метрики пространства-времени (как в общей теории относительности) это определение требует некоторого обобщения:

m^2 = <1 \over c^2></p>
<p> g_p^i p^k

Здесь " width="" height="" />
— метрический тензор, — 4-импульс.

m = \tfrac<E_0></p>
<p>Определённая выше масса является релятивистским инвариантом, то есть она одна и та же во всех системах отсчёта. Если перейти в систему отсчёта, где тело покоится, то
— масса определяется энергией покоя.

Особенно просто выглядят эти определения в системе единиц, в которой скорость света принята за 1 (например, в планковской или же в принятой в физике элементарных частиц системе единиц, в которой масса, импульс и энергия измеряются в электронвольтах):

В СТО: = \sqrt^2>" width="" height="" />
В ОТО: p^i p^k>" width="" height="" />

Следует, однако, отметить, что частицы с нулевой массой (фотон и гипотетический гравитон) двигаются в вакууме со скоростью света (c ≈ 300000 км/сек), и поэтому не существует системы отсчёта, в которой бы они покоились. Напротив, частицы с ненулевой массой всегда движутся медленнее скорости света.

В нерелятивистской классической механике — масса есть величина аддитивная (масса системы равна сумме масс составляющих её тел) и инвариантная относительно смены системы отсчёта. В релятивистской механике масса неаддитивная, но тоже инвариантная величина, определяемая, как абсолютная величина 4-вектора энергии-импульса.

В современной терминологии термин масса применяется вместо терминов инвариантная масса или масса покоя, являясь полностью эквивалентным им по смыслу. В некоторых ситуациях (особенно в популярной литературе) это, однако, уточняется явно, чтобы избежать путаницы из-за понимания термина масса в другом — устаревшем — смысле, описанном в этом параграфе.

\mathbf<p> = m \mathbf

Полным аналогом классического определения импульса через массу и скорость в СТО следует считать ковариантное равенство:

, где m — инвариантная масса, а uμ — 4-скорость (производная от 4-координаты по собственному времени частицы /d\tau" width="" height="" />
; единичный вектор, направленный вдоль мировой линии частицы).

Также можно записать ковариантный эквивалент второго закона Ньютона:

, где /d\tau" width="" height="" />
— 4-ускорение (кривизна мировой линии частицы).

Масса составных и нестабильных систем

Масса элементарной частицы постоянна, и одинакова у всех частиц данного типа и их античастиц. Однако масса массивных тел, составленных из нескольких элементарных частиц (например, ядра или атома) может зависеть от их внутреннего состояния. В частности, для устойчивых систем масса системы всегда меньше суммы масс её элементов на величину, называемую дефектом массы, и равную энергии связи, делённой на квадрат скорости света.

\Delta m \approx \frac<\hbar></p>
<p>Для системы, подверженной распаду (например, радиоактивному), величина энергии покоя определена лишь с точностью до постоянной Планка, делённой на время жизни:
. При описании такой системы при помощи квантовой механики удобно считать массу комплексной, с мнимой частью равной означенному Δm.

Классификация частиц по значению массы

Масса известных на сей день частиц является, в общем, неотрицательной величиной, и должна быть равна нулю для тела, движущегося со скоростью света (фотон). Понятие массы особенно важно для физики элементарных частиц, так как позволяет отделять безмассовые частицы (всегда двигающиеся со скоростью света) от массивных (скорость которых всегда ниже скорости света). Кроме того, масса практически однозначно позволяет идентифицировать частицу (с точностью до зарядового сопряжения).

Положительная масса

К частицам с положительной массой (тардионам) относятся почти все частицы Стандартной модели: лептоны, кварки, W- и Z-бозоны. Эти частицы могут двигаться с любой скоростью, меньшей скорости света, в том числе покоиться. К тардионам относятся также все известные составные частицы: протон, нейтрон, гипероны и мезоны.

Нулевая масса

К известным на сегодняшний день частицам нулевой массы (безмассовым, люксонам) относятся фотоны и глюоны, а также гипотетические гравитоны. Такие частицы в свободном состоянии могут двигаться только со скоростью света. Но поскольку из квантовой хромодинамики следует, что глюоны в свободном состоянии не существуют, то непосредственно наблюдать движущимися со скоростью света можно только фотоны (собственно, именно поэтому её называют скоростью света). Долгое время считалось, что нейтрино также имеют нулевую массу, однако обнаружение вакуумных нейтринных осцилляций свидетельствует о том, что масса нейтрино хоть и очень мала, но не равна нулю.

Следует отметить, что комбинация нескольких частиц нулевой массы может (а в случае, например, сцепленных частиц — должна) иметь ненулевую массу.

Отрицательная масса

Частицы с отрицательной массой двигались бы с любой скоростью, меньшей скорости света, аналогично тардионам, и имели бы отрицательную энергию и импульс, направленный в сторону, противоположную направлению движения. Допущение существования отрицательных масс ведёт к определённым сложностям в интерпретации принципа эквивалентности и закона сохранения импульса. В то же время в общей теории относительности допускается существование локальных пространственных областей с отрицательной плотностью энергии-импульса. В частности, подобную область можно создать с помощью эффекта Казимира [9] .

Мнимая масса

В рамках специальной теории относительности математически возможно существование частиц с мнимой массой, так называемых тахионов. Такие частицы будут иметь реальные значения энергии и импульса, а их скорость должна всегда быть выше скорости света. Однако допущение возможности наблюдения одиночных тахионов вызывает ряд методологических трудностей (например, нарушение принципа причинности), поэтому в большинстве современных теорий одиночные тахионы не вводятся. Впрочем, в квантовой теории поля мнимая масса может быть введена для рассмотрения тахионной конденсации, не нарушающей принцип причинности.

Единицы измерения массы




Килограмм является одной из семи основных единиц СИ; среди них, это одна из трёх единиц (наряду с секундой и Кельвином), которая определена ad hoc, без ссылок на другие базовые единицы и составляющий значение международного прототипа килограмма.

Масса иногда может быть выражена в терминах длины. Масса очень мелких частиц могут быть определены с помощью величины, обратной к комптоновской длине волны: 1 см -1 ≈ 3.52×10 -41 кг . Масса очень большой звезды или чёрной дыры может быть отождествлена с её гравитационным радиусом: 1 см ≈ 6.73×10 24 кг .

Измерение массы

Этимология и история понятия

Слово масса (лат. massa , от др.-греч. μαζα ) первоначально в античные времена обозначало кусок теста. Позднее смысл слова расширился, и оно стало обозначать цельный, необработанный кусок произвольного вещества; в этом смысле слово используется, например, у Овидия и Плиния [10] .

Долгое время одним из главных законов природы считался закон сохранения массы. Однако в XX веке выяснилось, что этот закон является ограниченным вариантом закона сохранения энергии, и во многих ситуациях не соблюдается.

См. также

Примечания

Масса — физическая величина, неотделимо присущая материи и определяющая её инерционные, энергетические и гравитационные свойства. В классической физике строго подчинена закону сохранения, на основе которого строится классическая механика. В квантовой механике — особая форма энергии и, в таком виде, также предмет закона сохранения (массы-энергии).

Масса обозначается латинской буквой m

Единицей измерения массы в системе СИ является килограмм . В гауссовой системе масса измеряется в граммах . В атомной физике принято приравнивать массу к атомной единице массы , в физике твердого тела — к массе электрона , в физике высоких энергий массу измеряют в электронвольтах . Кроме этих единиц существует огромное количество исторических единиц массы, сохранившихся в отдельных сферах использования: фунт, унция, карат, тонна и тому подобное. В астрономии единицей для сравнения масс небесных тел служит масса Солнца .

Массой тела называется физическая величина, характеризующая его инерционные и гравитационные свойства.

В классической физике масса является мерой количества вещества., содержащегося в теле. Здесь справедлив закон сохранения массы: масса изолированной системы тел не меняется со временем и равна сумме составляющих ее масс тел.

В механике Ньютона массой тела называют скалярную физическую величину, которая является мерой инерционных его свойств и источником гравитационного взаимодействия. В классической физике масса всегда является положительной величиной.

Масса – аддитивная величина, что означает: масса каждой совокупности материальных точек ( \( m \) ) равна сумме масс всех отдельных частей системы ( \( m_i \) )

В классической механике считают:

  • масса тела не является зависимой от движения тела, от воздействия других тел, расположения тела;
  • выполняется закон сохранения массы: масса замкнутой механической системы тел неизменна во времени.

Как мера инертности тела, масса входит во второй закон Ньютона, записанный в упрощенном (для случая постоянной массы) виде:

где \( a \) - ускорение, а \( F \) - сила, что действует на тело

Виды массы

  • Инертная масса характеризует способность тела сопротивляться изменению состояния его движения под действием силы. При условии, что сила одинакова, объект с меньшей массой легче изменяет состояние движения, чем объект с большей массой. Инертная масса фигурирует в упрощенной форме второго закона Ньютона, а также в формуле для определения импульса тела в классической механике.
  • Гравитационная масса характеризует интенсивность взаимодействия тела с гравитационным полем. Она фигурирует в ньютоновском законе всемирного тяготения.

Хотя инертная масса и гравитационная масса является концептуально разными понятиями, все известные на сегодняшний день эксперименты свидетельствуют, что эти две массы пропорциональны между собой. Это позволяет построить систему единиц так, чтобы единица измерения всех трех масс была одна и та же, и все они были равны между собой. Практически все системы единиц построены по этому принципу.

В общей теории относительности инертная и гравитационная массы считаются полностью эквивалентными.

Инертность - свойство различных материальных объектов приобретать разные ускорения при одинаковых внешних воздействиях со стороны других тел. Присуща разным телам в разной степени. Свойство инертности показывает, что для изменения скорости тела необходимо время (расстояние). Чем труднее изменить скорость тела, тем оно инертнее.

Масса – скалярная величина, являющаяся мерой инертности тела при поступательном движении. (При вращательном движении - момент инерции). Чем инертнее тело, тем больше его масса. Определенная таким образом масса называется инертной (в отличие от гравитационной массы, определяющейся из закона Всемирного тяготения).

Масса элементарных частиц

Масса, вернее масса покоя, является важной характеристикой элементарных частиц. Вопрос о том, какими причинами обусловлены те значения массы частиц, наблюдаемых на опыте, является важной проблемой физики элементарных частиц. Так, например, масса нейтрона несколько больше массы протона, что обусловлено, разницей во взаимодействии кварков, из которых состоят эти частицы. Примерное равенство масс некоторых частиц позволяет объединять их в группы, трактуя как различные состояния одной общей частицы с различными значениями изотопического спина.


Одной из важнейших характеристик любого тела является его масса. Во многих физических законах и уравнениях масса тела играет одну из важнейших ролей, иногда совершенно меняя результат физического явления. Например, при равном объёме всплывание тела в одной и той же жидкости определяется исключительно массой. Поговорим о том, что это за величина, какие у неё свойства и особенности, на что влияет масса тела.

Масса тела

Для знакомства с физической природой массы проще всего провести опыт с телами одинаковой формы и размеров, но различной массы. Например, можно взять небольшой воздушный шарик, футбольный мяч и чугунное ядро тех же размеров (20—25 см диаметром).

Несмотря на одинаковые размеры, эти три тела при броске поведут себя совершенно по-разному. Воздушный шарик после удара по нему сразу приобретёт скорость, практически равную скорости руки. Но далее его скорость будет очень быстро уменьшаться из-за воздушного сопротивления. Футбольный мяч после удара пролетит гораздо дальше — на десятки метров. Но сообщить ему ту же начальную скорость, как воздушному шарику, будет труднее. Если же взять чугунное ядро, то силы мускулов хватит лишь на то, чтобы бросить его на пару метров.

Почему же в приведённых трёх примерах получается совершенно разный результат? Ответ заключается в разнице масс используемых предметов.

Масса тела

Рис. 1. Масса тела

Свойства массы

Масса — это свойство любого материального объекта. Из-за наличия массы телам невозможно сообщить скорость мгновенно. Потребуется некоторое время, за которое тело наберёт скорость — тем большее, чем больше инертность тела, то есть чем большей массой оно обладает.

Масса также участвует в гравитационных взаимодействиях, она входит в формулу закона всемирного тяготения, учитывается в расчётах движения небесных тел. Неоднократные опыты доказывают эквивалентность инертной и гравитационной массы. Однако причина этого равенства — вопрос, открытый в современной физике.

Гравитация в физике

Рис. 2. Гравитация в физике.

Единица измерения массы в СИ — килограмм (кг). Это базовая единица, то есть она не выводится из других, а сравнивается с некоторым эталоном. Изначально эталоном килограмма был вес воды объёмом 1 литр. Позже за эталон был принят специально изготовленный цилиндр диаметром и высотой 39,17 мм, сделанным из платино-иридиевого сплава. Сейчас килограмм определяется из фундаментальных физических констант (таких, как постоянная Планка, постоянная Больцмана).

Эталон килограмма

Рис. 3. Эталон килограмма

Что мы узнали?

Любой материальный объект обладает инертностью, то есть для того чтобы изменить его скорость, требуется некоторое время и силы. Мера инертности — это масса. Масса также участвует в гравитационном взаимодействии. Измеряется масса в килограммах.

Читайте также: