Магнитные силы это кратко

Обновлено: 07.07.2024

В ту зиму 1819-1820 гг. электричеством называли силы, действующие между неподвижными зарядами (закон Кулона). К гальванизму же относились те явления, которые наблюдались при движении зарядов, т. е. при наличии тока, а к магнетизму — явления, связанные с такими загадочными предметами, как магниты и стрелки компасов, находящиеся в магнитном поле Земли. Все три вида явлений - считались самостоятельными; хотя многие чувствовали, что между ними должна существовать некая связь, обнаружить ее никому не удавалось. В ту зиму Эрстед занимался тем, что пропускал гальванический ток по проводу, расположенному параллельно небольшой магнитной стрелке, в результате чего он обнаружил (фиг. 299), что:

Мы видели, что силы, действующие между заряженными частицами, являются чисто ньютоновскими. Кулоновская сила не только подчиняется третьему закону, но и совпадает по форме с гравитационной.

Если бы на кулоновской силе наука кончалась, то в процессе изучения гравитационных сил можно было бы ограничиться небольшой ссылкой на то, что в некоторых случаях сходные силы действуют и между так называемыми заряженными частицами. Величины этих сил различаются: помимо притяжения возможно отталкивание частиц, но в остальном эти силы неразличимы. Однако наука не кончается на силах Кулона. При дальнейшем изучении электрических сил обнаруживается столько разнообразных и тонких эффектов, что мы вынуждены не только расширять пределы применимости ньютоновской системы, но в конце концов выйти за ее рамки.

Открытие Эрстеда возвестило о начале активных исследований в этой области; в течение последующих десяти лет Ампер и Фарадей разработали теорию магнитных взаимодействий токов. Эрстеду удалось не только установить эффект воздействия движущегосязаряда, или тока, на магнитную стрелку, но и обнаружить удивительное свойство этого эффекта: магнитная стрелка устанавливалась перпендикулярно направлению движения тока (фиг. 300).

Более того, оказалось, что в плоскости, перпендикулярной проводу, направления стрелки образуют замкнутые окружности. Это можно проиллюстрировать с помощью простенького опыта, которым любят забавляться дети в дождливые дни. Если насыпать на бумагу мелкие металлические стружки (каждая из которых ведет себя, как маленькая магнитная стрелка), они наглядно передадут конфигурацию поля для различных систем токов (фото 34).

Наиболее удивительная особенность этого открытия, которая отчасти объясняет, почему оно не было сделано ранее, связана с тем, что неподвижный заряд не оказывает никакого воздействия на магнитную стрелку. Чтобы вызвать эффект, который обнаружил Эрстед, необходимо, чтобы заряд пришел в движение. Таким образом, мы впервые встречаемся с силой, которая оказывается зависящей от движения тел, порождающих ее.

обнаружил, что два провода, по которым текут токи в одном направлении, притягиваются, а два провода, по которым токи текут в противоположные стороны, отталкиваются. Казалось, что эти новые силы существенно отличались от электрических, так как они не зависели от величины нескомпенсированного заряда в проводах.

Фиг. 301. Длинный провод, по которому течет ток притягивает провод длины по которому течет ток

Если имеется очень длинный токонесущий провод и параллельно ему расположен второй провод, как показано на фиг. 301, то первый провод будет притягивать второй, если ток в последнем течет в том же направлении, что и в первом, и, будет отталкивать, если направление тока противоположное. Величина силы зависит от расстояния между проводами, от токов в проводах и от длины второго провода; в системе СГС выражение для силы имеет вид

Здесь — ток в первом проводе, — ток во втором проводе, — длина второго провода и — расстояние между проводами. Буква с, стоящая в знаменателе (20.9), обозначает постоянную:

Она имеет размерность скорости, и сейчас мы знаем, что ее величина совпадает со скоростью света.

Чтобы дать представление о величине силы, которая действует между проводами, положим, что длина второго провода 1 см, отстоит он от первого на расстоянии тоже 1 см, а токи в проводах равны 10 А.

(Для перевода амперов в единицы СГС обратимся к табл. 10: — с единиц СГС, т. е. с статампер.) Подставляя эти величины в (20.9), получаем

Сила 2 дин не очень велика (порядка двух тысячных грамма), однако измерить ее легко. Для сравнения укажем, например, что если в проводе диаметром 0,1 см нескомпенсирован всего лишь один электрон на каждые атомов, то возникает сила 108 дин (порядка на каждый сантиметр провода.

Мы могли бы ожидать, что ток окажет силовое воздействие на движущийся заряд. Именно так и происходит. Сила, действующая на провод, фактически приложена к движущимся зарядам, создающим ток. Она проявляется как сила, приложенная к проводу. С помощью электронной пушки можно наглядно продемонстрировать силу, с которой провод с током действует на пучок заряженных частиц (электронов) (фиг. 302).

Невооруженным глазом видно, что пучок электронов отклоняется под действием силы, вызванной током, текущим по проводу.

Качественные свойства этой силы оказываются сложными и весьма

необычными. Рассмотрим провод, по которому течет ток (фиг. 303). Если электрон движется в направлении тока сила отклоняет его от провода; если же он движется против тока сила приближает его в проводу. Если направление движения электрона произвольно относительно провода, действующая сила все равно изменяет это направление; однако в любом случае действующая сила будет перпендикулярна скорости электрона (фиг. 304), а ее величина будет прямо пропорциональна этой скорости и обратно пропорциональна расстоянию между проводом и электроном.

Таким образом, мы обнаружили силу, которая зависит не только от положения электрона, но и от его скорости и направления движения. Свойства этой силы гораздо сложнее, чем свойства сил, рассмотренных ранее. Для дальнейшего ее изучения удобно ввести понятие магнитного поля.

Магнетизм для чайников: основные формулы, определение, примеры

Часто бывает, что задачу не удается решить из-за того, что под рукой нет нужной формулы. Выводить формулу с самого начала – дело не самое быстрое, а у нас на счету каждая минута.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Магнетизм: определение

Магнетизм – это взаимодействие движущихся электрических зарядов, происходящее посредством магнитного поля.

Поле – особая форма материи. В рамках стандартной модели существует электрическое, магнитное, электромагнитные поля, поле ядерных сил, гравитационное поле и поле Хиггса. Возможно, есть и другие гипотетические поля, о которых мы пока что можем только догадываться или не догадываться вовсе. Сегодня нас интересует магнитное поле.

Магнитная индукция

Так же, как заряженные тела создают вокруг себя электрическое поле, движущиеся заряженные тела порождают магнитное поле. Магнитное поле не только создается движущимися зарядами (электрическим током), но еще и действует на них. По сути магнитное поле можно обнаружить только по действию на движущиеся заряды. А действует оно на них с силой, называемой силой Ампера, о которой речь пойдет позже.


Изображение магнитного поля при помощи силовых линий

Прежде чем мы начнем приводить конкретные формулы, нужно рассказать про магнитную индукцию.

Магнитная индукция – это силовая векторная характеристика магнитного поля.

Она обозначается буквой B и измеряется в Тесла (Тл). По аналогии с напряженностью для электрического поля Е магнитная индукция показывает, с какой силой магнитное поле действует на заряд.

Кстати, вы найдете много интересных фактов на эту тему в нашей статье про теорию магнитного поля и интересные факты о магнитном поле Земли.

Как определять направление вектора магнитной индукции? Здесь нас интересует практическая сторона вопроса. Самый частый случай в задачах – это магнитное поле, создаваемое проводником с током, который может быть либо прямым, либо в форме окружности или витка.

Для определения направления вектора магнитной индукции существует правило правой руки. Приготовьтесь задействовать абстрактное и пространственное мышление!

Если взять проводник в правую руку так, что большой палец будет указывать на направление тока, то загнутые вокруг проводника пальцы покажут направление силовых линий магнитного поля вокруг проводника. Вектор магнитной индукции в каждой точке будет направлен по касательной к силовым линиям.

Сила Ампера

Представим, что есть магнитное поле с индукцией B. Если мы поместим в него проводник длиной l, по которому течет ток силой I, то поле будет действовать на проводник с силой:


Это и есть сила Ампера. Угол альфа – угол между направлением вектора магнитной индукции и направлением тока в проводнике.

Направление силы Ампера определяется по правилу левой руки: если расположить левую руку так, чтобы в ладонь входили линии магнитной индукции, а вытянутые пальцы указывали бы направление тока, отставленный большой палец укажет направление силы Ампера.


Сила Лоренца

Итак, частица с зарядом q движется в магнитном поле с индукцией В со скоростью v, а альфа – это угол между вектором скорости частицы и вектором магнитной индукции. Тогда сила, которая действует на частицу:


Как определить направление силы Лоренца? По правилу левой руки. Если вектор индукции входит в ладонь, а пальцы указывают на направление скорости, то отогнутый большой палец покажет направление силы Лоренца. Отметим, что так направление определяется для положительно заряженных частиц. Для отрицательных зарядов полученное направление нужно поменять на противоположное.


Если частица массы m влетает в поле перпендикулярно линиям индукции, то она будет двигаться по окружности, а сила Лоренца будет играть роль центростремительной силы. Радиус окружности и период обращения частицы в однородном магнитном поле можно найти по формулам:


Взаимодействие токов

Рассмотрим два случая. Первый – ток течет по прямому проводу. Второй – по круговому витку. Как мы знаем, ток создает магнитное поле.

В первом случае магнитная индукция провода с током I на расстоянии R от него считается по формуле:


Мю – магнитная проницаемость вещества, мю с индексом ноль – магнитная постоянная.

Во втором случае магнитная индукция в центре кругового витка с током равна:


Также при решении задач может пригодиться формула для магнитного поля внутри соленоида. Соленоид – это катушка, то есть множество круговых витков с током.


Пусть их количество – N, а длина самого соленоилда – l. Тогда поле внутри соленоида вычисляется по формуле:


Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Магнитный поток и ЭДС

Если магнитная индукция – векторная характеристика магнитного поля, то магнитный поток – скалярная величина, которая также является одной из самых важных характеристик поля. Представим, что у нас есть какая-то рамка или контур, имеющий определенную площадь. Магнитный поток показывает, какое количество силовых линий проходит через единицу площади, то есть характеризует интенсивность поля. Измеряется в Веберах (Вб) и обозначается Ф.


S – площадь контура, альфа – угол между нормалью (перпендикуляром) к плоскости контура и вектором В.


При изменении магнитного потока через контур в контуре индуцируется ЭДС, равная скорости изменения магнитного потока через контур. Кстати, подробнее о том, что такое электродвижущая сила, вы можете почитать в еще одной нашей статье.


По сути формула выше – это формула для закона электромагнитной индукции Фарадея. Напоминаем, что скорость изменения какой-либо величины есть не что иное, как ее производная по времени.

Для магнитного потока и ЭДС индукции также справедливо обратное. Изменение тока в контуре приводит к изменению магнитного поля и, соответственно, к изменению магнитного потока. При этом возникает ЭДС самоиндукции, которая препятствует изменению тока в контуре. Магнитный поток, который пронизывает контур с током, называется собственным магнитным потоком, пропорционален силе тока в контуре и вычисляется по формуле:


L – коэффициент пропорциональности, называемый индуктивностью, который измеряется в Генри (Гн). На индуктивность влияют форма контура и свойства среды. Для катушки с длиной l и с числом витков N индуктивность рассчитывается по формуле:


Формула для ЭДС самоиндукции:


Энергия магнитного поля

Электроэнергия, ядерная энергия, кинетическая энергия. Магнитная энергия – одна из форм энергии. В физических задачах чаще всего нужно рассчитывать энергию магнитного поля катушки. Магнитная энергия катушки с током I и индуктивностью L равна:


Объемная плотность энергии поля:


Опытно установлено, что сила, действующая на точечный электрический заряд q, помещенный в электрическое и магнитное поля, зависит в общем случае от положения этого заряда и от его скорости движения. Обычно эту силу разделяют на две составляю- щие — электрическую \(~\vec F_e = q \vec E\), которая не зависит от движения заряда, а определяется его положением в электрическом поле с напряженностью \(~\vec E\), и магнитную \(~\vec F_m\), зависящую от скорости заряда \(~\vec \upsilon\) . Именно о магнитной силе и пойдет речь в дальнейшем.

В любой точке пространства магнитная сила перпендикулярна вектору скорости заряда. Перпендикулярна она также и определенному выбранному в пространстве направлению. Величина же магнитной силы (ее модуль) пропорциональна той составляющей скорости заряда, которая перпендикулярна этому выделенному направлению. Эти свойства магнитной силы можно описать, пользуясь понятием магнитного поля. Магнитное поле характеризуется вектором магнитной индукции \(~\vec B\), который и определяет выбранное направление в пространстве.

Для определения магнитной силы можно записать следующее выражение:

\(~\vec F_m = q \upsilon B \sin \alpha \vec \zeta\) ,

где υ и B - модули векторов скорости заряда и индукции магнитного поля, α - угол между этими векторами, а единичный вектор \(~\vec \zeta\) - правый винт (или буравчик) - указывает только направление магнитной силы. Это направление соответствует направлению движения правого винта, головка которого лежит в плоскости векторов \(~\vec \upsilon\) и \(~\vec B\) и который мы закручиваем, поворачивая его на наименьший угол от вектора \(~\vec \upsilon\) к вектору \(~\vec B\) (рис.1). Магнитная сила \(~\vec F_m\) перпендикулярна и вектору \(~\vec \upsilon\) , и вектору \(~\vec B\) .


Полную электромагнитную силу \(~\vec F = \vec F_e + \vec F_m\), действующую на электрический заряд q, называют силой Лоренца (заметим, что иногда силой Лоренца называют лишь магнитную силу). По действию силы Лоренца на электрический заряд известного знака можно, в принципе, определить модули и направления векторов \(~\vec E\) и \(~\vec B\).

Следует особо отметить, что на покоящийся электрический заряд магнитное поле не действует. Важной особенностью магнитной силы является также то, что она всегда перпендикулярна вектору скорости заряда, поэтому работы над зарядом не совершает. Это означает, что в постоянном магнитном поле кинетическая энергия заряженной частицы всегда остается неизменной, как бы частица ни двигалась.


Рассмотрим, например, как будут двигаться две разноименно заряженные частицы с зарядами +q и —q, имеющие разные массы M1 = 2m и M2 = m, если в начальный момент скорости этих частиц равны \(~\vec \upsilon_0\) и направлены перпендикулярно границе области существования однородного магнитного поля с индукцией \(~\vec B\) (рис.2; вектор \(~\vec B\)-перпендикулярен плоскости листа и направлен от нас). На оказавшуюся в области однородного магнитного поля положительную частицу действует магнитная сила, равная \(~F_m = q \upsilon_0 B\) и направленная вначале вверх. На отрицательную частицу действует такая же по величине сила, но направленная вначале вниз. Каждая из частиц опишет полуокружность, после чего покинет область магнитного поля. Радиус окружности можно найти из второго закона Ньютона:

Угловая скорость движения частицы по окружности и период ее полного обращения будут равны

Видно, что положительная частица (M1 = 2m) опишет полуокружность в два раза большего радиуса, чем отрицательная (M2 = m), которая будет двигаться в противоположную сторону. Возвратится же обратно тяжелая частица (зеркально отразившись) через промежуток времени, в два раза больший, чем отрицательная. Таким образом, однородное магнитное поле как бы разделяет в пространстве и во времени влетевшие вместе, но разные по заряду и по массе частицы.

Если магнитное поле воздействует только на движущиеся заряды, то, как показывает опыт, движущиеся заряды (электрические токи), в свою очередь, всегда возбуждают в пространстве магнитное поле. В результате обобщения экспериментальных данных был получен элементарный закон, определяющий индукцию \(~\vec B\) магнитного поля точечного заряда q, движущегося с постоянной скоростью \(~\vec \upsilon\) , много меньшей по величине скорости света с. Этот закон можно записать в виде


Заметим, что если умножить обе части приведенной формулы на число электронов \(~\Delta N = n \Delta l S\), находящихся в элементе провода длиной Δl, по которому течет ток \(~I = qn \upsilon S\), то получим известный закон Био - Савара для индукции \(~\Delta \vec B\) магнитного поля, созданного элементом тока \(~I \Delta \vec l\):


Линии магнитной индукции в данном случае представляют собой концентрические окружности, окружающие линию движения заряда (рис.4), а величина магнитной индукции убывает с расстоянием пропорционально \(~\frac\) , как и величина напряженности электрического поля точечного заряда. Но магнитное поле не имеет источников и стоков, магнитные линии всегда замкнуты. Это физическое векторное поле уже иного свойства, его называют соленоидальным или вихревым.

Рассмотрим теперь такой пример.


Пусть две достаточно массивные точечные частицы 1 и 2, заряженные одним и тем же зарядом q, движутся параллельно друг другу с одинаковыми нерелятивистскими скоростями \(~\vec \upsilon\) (рис.5). На каждую частицу действуют электрическая сила отталкивания, равкал \(~F_e = qE\), и магнитная сила притяжения, равная \(~F_m = q \upsilon B\) (скорость одной частицы перпендикулярна магнитному полю, создаваемому другой частицей). Сравним количественно эти две составляющие общей электромагнитной силы Лоренца, действующей, к примеру, на частицу 2:

где B21 и E21 - индукция магнитного поля и напряженность электрического поля, создаваемых зарядом / в месте нахождения заряда 2. Подставив соответствующие значения индукции и напряженности, получим

Это означает, что при нерелятивистских скоростях движения зарядов магнитная сила существенно меньше электрической и является очень малой поправкой к их общей силе электромагнитного взаимодействия - силе Лоренца.

А что если выбрать другую инерциальную систему отсчета, движущуюся равномерно и прямолинейно со скоростью \(~\vec \upsilon\) наших заряженных частиц? В этой системе заряды будут покоиться, пропадут их магнитные поля, пропадет и магнитная сила их взаимодействия. Иными словами, поскольку магнитная составляющая силы Лоренца зависит от скорости частицы, она изменяется при переходе от одной инерциальной системы отсчета к другой. Вместе с тем, сама сила Лоренца в нерелятивистском случае, как любая другая сила, не зависит от выбора инерциальной системы отсчета. Это означает, что в системе отсчета, в которой пропадает магнитная составляющая силы, должна изменяться и электрическая ее составляющая. Получается, что разделение полной силы Лоренца на электрическую и магнитную составляющие без указания конкретной системы отсчета не имеет смысла.

После рассмотренного нами примера движения двух заряженных частиц может возникнуть естественный вопрос — стоит ли вообще изучать и учитывать такие относительно малые магнитные силы? Оказывается, стоит, и вот почему.

Во-первых, полученное соотношение сил справедливо и при релятивистских скоростях υ ~ с, а тогда магнитные силы оказываются уже сравнимыми с электрическими. Так происходит, например, когда мы имеем дело с пучками быстрых заряженных частиц.

Во-вторых, бывают ситуации, когда ничтожная по величине магнитная сила является единственной действующей силой. Например — при движении электронов вдоль проводов (электрические токи), ибо в этом случае электрические силы отсутствуют в результате почти идеального баланса отрицательных и положительных зарядов в проводниках. Кроме того, участие в создании электрического тока громадного числа носителей зарядов (их примерно 10 23 в одном кубическом сантиметре проводника) делает магнитную силу весьма значительной.

В-третьих, приходится встречаться с движением заряженных частиц в самых разных по величине внешних электрических и магнитных полях, создаваемых различным образом. В этих случаях соотношения между электрическими и магнитными силами могут быть самыми разнообразными.

(ново-лат. magnetismus , от лат. magnes - магнит). 1) способность магнита или намагниченных железных тел притягивать кусочки железа. 2) животным магнетизмом называется влияние, оказываемое, при известных условиях, одним человеком на другого.

Словарь иностранных слов, вошедших в состав русского языка.- Чудинов А.Н. , 1910 .

Смотреть что такое "МАГНИТНАЯ СИЛА" в других словарях:

магнитная сила — сила (действия) магнитного поля — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы сила (действия) магнитного… … Справочник технического переводчика

магнитная сила — электромагнитная сила; сила Ампера; пондеромоторная сила; отрасл. магнитная сила Сила, обусловленная взаимодействием магнитного поля и электрического тока и действующая на единицу объёма проводящей среды … Политехнический терминологический толковый словарь

магнитная сила — magnetinė jėga statusas T sritis Standartizacija ir metrologija apibrėžtis Jėga, kuria magnetinis laukas veikia jame esančius magnetinius (di)polius, judančias elektringąsias daleles. atitikmenys: angl. magnetic force vok. magnetische Kraft, f… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

магнитная сила — magnetinė jėga statusas T sritis Standartizacija ir metrologija apibrėžtis Magnetinių dipolių sąveikos jėga. atitikmenys: angl. magnetic force vok. magnetische Kraft, f rus. магнитная сила, f; сила магнитного поля, f pranc. force magnétique, f … Penkiakalbis aiškinamasis metrologijos terminų žodynas

магнитная сила — magnetinė jėga statusas T sritis fizika atitikmenys: angl. magnetic force vok. magnetische Kraft, f rus. магнитная сила, f pranc. force magnétique, f … Fizikos terminų žodynas

поверхностная магнитная сила — Сила, обусловленная магнитным полем и действующая на единицу поверхности материального объёма … Политехнический терминологический толковый словарь

сила Ампера — электромагнитная сила; сила Ампера; пондеромоторная сила; отрасл. магнитная сила Сила, обусловленная взаимодействием магнитного поля и электрического тока и действующая на единицу объёма проводящей среды … Политехнический терминологический толковый словарь

сила магнитного поля — magnetinė jėga statusas T sritis Standartizacija ir metrologija apibrėžtis Jėga, kuria magnetinis laukas veikia jame esančius magnetinius (di)polius, judančias elektringąsias daleles. atitikmenys: angl. magnetic force vok. magnetische Kraft, f… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

сила магнитного поля — magnetinė jėga statusas T sritis Standartizacija ir metrologija apibrėžtis Magnetinių dipolių sąveikos jėga. atitikmenys: angl. magnetic force vok. magnetische Kraft, f rus. магнитная сила, f; сила магнитного поля, f pranc. force magnétique, f … Penkiakalbis aiškinamasis metrologijos terminų žodynas

Магнитная жёсткость — Размерность L2MT 3I 1 Единицы измерения СИ вольт СГСЭ … Википедия

Подобно тому, как покоящийся электрический заряд действует на другой заряд посредством электрического поля, электрический ток действует на другой ток посредством магнитного поля. Действие магнитного поля на постоянные магниты сводится к действию его на заряды, движущиеся в атомах вещества и создающие микроскопические круговые токи.

Учение об электромагнетизме основано на двух положениях:

  • магнитное поле действует на движущиеся заряды и токи;
  • магнитное поле возникает вокруг токов и движущихся зарядов.

Взаимодействие магнитов

Постоянный магнит (или магнитная стрелка) ориентируется вдоль магнитного меридиана Земли. Тот его конец, который указывает на север, называется северным полюсом (N), а противоположный конец — южным полюсом (S). Приближая два магнита друг к другу, заметим, что одноименные их полюсы отталкиваются, а разноименные — притягиваются ( рис. 1 ).

Если разделить полюса, разрезав постоянный магнит на две части, то мы обнаружим, что каждая из них тоже будет иметь два полюса, т. е. будет постоянным магнитом ( рис. 2 ). Оба полюса — северный и южный, — неотделимые друг от друга, равноправны.

Магнитное поле, создаваемое Землей или постоянными магнитами, изображается, подобно электрическому полю, магнитными силовыми линиями. Картину силовых линий магнитного поля какого-либо магнита можно получить, помещая над ним лист бумаги, на котором насыпаны равномерным слоем железные опилки. Попадая в магнитное поле, опилки намагничиваются — у каждой из них появляется северный и южный полюсы. Противоположные полюсы стремятся сблизиться друг с другом, но этому мешает трение опилок о бумагу. Если постучать по бумаге пальцем, трение уменьшится и опилки притянутся друг к другу, образуя цепочки, изображающие линии магнитного поля.

На рис. 3 показано расположение в поле прямого магнита опилок и маленьких магнитных стрелок, указывающих направление линий магнитного поля. За это направление принято направление северного полюса магнитной стрелки.

В начале XIX в. датский ученый Эрстэд сделал важное открытие, обнаружив действие электрического тока на постоянные магниты. Он поместил длинный провод вблизи магнитной стрелки. При пропускании по проводу тока стрелка поворачивалась, стремясь расположиться перпендикулярно ему ( рис. 4 ). Это можно было объяснить возникновением вокруг проводника магнитного поля.

Магнитные силовые линии поля, созданного прямым проводником с током, представляют собой концентрические окружности, расположенные в перпендикулярной к нему плоскости, с центрами в точке, через которую проходит ток ( рис. 5 ). Направление линий определяется правилом правого винта:

Магнитное поле тока принципиально ничем не отличается от поля, созданного постоянным магнитом. В этом смысле аналогом плоского магнита является длинный соленоид — катушка из провода, длина которой значительно больше ее диаметра. Схема линий созданного им магнитного поля, изображенная на рис. 6 , аналогична таковой для плоского магнита ( рис. 3 ). Кружочками обозначены сечения провода, образующего обмотку соленоида. Токи, текущие по проводу от наблюдателя, обозначены крестиками, а токи противоположного направления — к наблюдателю — обозначены точками. Такие же обозначения приняты и для линий магнитного поля, когда они перпендикулярны плоскости чертежа ( рис. 7 а, б).

Направление тока в обмотке соленоида и направление линий магнитного поля внутри него также связаны правилом правого винта, которое в этом случае формулируется так:

Если смотреть вдоль оси соленоида, то текущий по направлению часовой стрелки ток создает в нем магнитное поле, направление которого совпадает с направлением движения правого винта ( рис. 8 )

Исходя из этого правила, легко сообразить, что у соленоида, изображенного на рис. 6 , северным полюсом служит правый его конец, а южным — левый.

Магнитное поле внутри соленоида является однородным — вектор магнитной индукции имеет там постоянное значение (B = const). В этом отношении соленоид подобен плоскому конденсатору, внутри которого создается однородное электрическое поле.

Сила, действующая в магнитном поле на проводник с током

Опытным путем было установлено, что на проводник с током в магнитном поле действует сила. В однородном поле прямолинейный проводник длиной l, по которому течет ток I, расположенный перпендикулярно вектору поля B, испытывает действие силы: F = I l B.

Направление силы определяется правилом левой руки:

Если четыре вытянутых пальца левой руки расположить по направлению тока в проводнике, а ладонь — перпендикулярно вектору B, то отставленный большой палец укажет направление силы, действующей на проводник ( рис. 9 ).

Уравнение F = IlB позволяет дать количественную характеристику индукции магнитного поля.

Модуль вектора магнитной индукции B численно равен силе, действующей на расположенный перпендикулярно к нему проводник единичной длины, по которому течет ток силой один ампер.

Читайте также: