Курс физики 7 9 класс кратко

Обновлено: 02.07.2024

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

СПРАВОЧНИК по ФИЗИКЕ

(Основные формулы курса физики 7-9 классов)

с. Салба 2016 год

Если вы учитесь в основной школе, то данный справочник адресован вам для успешного решения самостоятельных и домаш-них работ, для подготовки к контрольным работам, к ОГЭ. В нём содержатся основные математические формулы, выражающие физи-ческие законы в курсе физики 7-9 классов, выводы неосновных фор-мул, рекомендации по решению задач, формулы геометрии, табли-цы, алгоритмы и ещё много необходимых подсказок.

При составлении справочника мною были учтены трудности, с которыми учащиеся сталкиваются при выводе неосновных формул. В нём приведены приёмы математических преобразований, помога-ющих вывести неосновную формулу из основной.

Многие затрудняются решать задачи в общем виде, преобра-зовывать формулы, решать их системы. Но, несмотря на огромное количество формул, способов их преобразования не так уж много. Все они основаны на математических правилах нахождения неиз-вестного компонента (слагаемого, вычитаемого, делимого, делителя и т. д.).

Однако бывает, что, произведя верно преобразование формул и правильно сделав вывод расчётной формулы, ученики получают неверный числовой ответ. Причин этому две: плохие вычисли-тельные навыки и неумение работать с числовыми приставками. Следует отметить, что большинство задач имеет сложные вычис-ления с очень большими и очень маленькими значениями физичес-ких величин. Поэтому необходимо в совершенстве освоить вычисле-ния при помощи калькулятора. Это даст огромную экономию време-ни при вычислениях.

С другой стороны, числовые значения величин зачастую запи-сываются при помощи кратных и дольных приставок. Это требует от учащихся умений вводить в числа и убирать из них эти приставки. В этом данный справочник будет вам необходимым помощником.

Кроме того, здесь вы найдёте основные единицы физических величин в международной системе единиц (СИ), сможете выражать одни единицы через другие, что приходится делать очень часто при решении даже простейших задач.

Нажмите, чтобы узнать подробности

Физика — наука о природе. Наблюдение и описание физических явлений. Физический эксперимент. Моделирование явлений объектов природы. Измерение физических величин. Погрешности измерений. Международная система единиц. Физические законы. Роль физики в формировании научной картины мира.

Основное содержание (210 час)

Физика и физические методы изучения природы (4 час)

Физика — наука о природе. Наблюдение и описание физических явлений. Физический эксперимент. Моделирование явлений объектов природы. Измерение физических величин. Погрешности измерений. Международная система единиц. Физические законы. Роль физики в формировании научной картины мира.

Демонстрации

Примеры механических, тепловых, электрических, магнитных и световых явлений.

Лабораторные работы и опыты

Определение цены деления шкалы измерительного прибора. 1

Механические явления (91 час)

Механическое движение. Система отсчета и относительность движения. Путь. Скорость. Ускорение. Движение по окружности. Инерция. Первый закон Ньютона. Взаимодействие тел. Масса тела. Плотность. Сила. Сложение сил. Второй закон Ньютона. Третий закон Ньютона. Импульс. Закон сохранения импульса. Реактивное движение. Сила упругости. Сила трения. Сила тяжести. Свободное падение. Вес тела. Невесомость. Центр тяжести тела. Закон всемирного тяготения. Геоцентрическая и гелиоцентрическая системы мира.

Работа. Мощность. Кинетическая энергия. Потенциальная энергия взаимодействующих тел. Закон сохранения механической энергии. Условия равновесия тел.

Простые механизмы. Коэффициент полезного действия.

Давление. Атмосферное давление. Закон Паскаля. Гидравлические машины. Закон Архимеда. Условие плавания тел.

Механические колебания. Период, частота и амплитуда колебаний. Механические волны. Длина волны. Звук. Громкость звука и высота тона.

Наблюдение и описание различных видов механического движения, взаимодействия тел, передачи давления жидкостями и газами, плавание тел, механических колебаний и волн; объяснение этих явлений на основе законов динамики Ньютона, законов сохранения импульса и энергии, закона всемирного тяготения, законов Паскаля и Архимеда.

Измерение физических величин: времени, расстояния, скорости, массы, плотности вещества, силы, давления, работы, мощности, периода колебаний маятника.

Проведение простых опытов и экспериментальных исследований по выявлению зависимостей: пути от времени при равномерном и равноускоренном движении, силы упругости от удлинения пружины, периода колебаний маятника от длины нити, периода колебаний груза на пружине от массы груза и жесткости пружины, силы трения от силы нормального давления, условий равновесия рычага.

Практическое применение физических знаний для выявления зависимости тормозного пути от его скорости; использования простых механизмов в быту.

Объяснение устройства и принципа действия физических приборов и технических объектов: весов, динамометра, барометра, простых механизмов.

Демонстрации

Равномерное прямолинейное движение. Равноускоренное движение.

Свободное падение тел в трубке Ньютона. Невесомость.

Направление скорости при равномерном движении по окружности.

Явление инерции. Взаимодействие тел.

Зависимость силы упругости от деформации пружины.

Сила трения. Вес тела. Силы тяжести. Сила упругости. Сложение сил.

Второй закон Ньютона. Третий закон Ньютона.

Закон сохранения импульса. Реактивное движение.

Изменение энергии тела при совершении работы.

Превращения механической энергии из одной формы в другую.

Зависимость давления твердого тела на опору от действующей силы и площади опоры.

Обнаружение атмосферного давления.

Измерение атмосферного давления барометром - анероидом.

Закон Паскаля. Гидравлический пресс.

Механические колебания. Механические волны.

Звуковые колебания. Условия распространения звука.

Лабораторные работы и опыты

Измерение плотности твердого тела.

Измерение плотности жидкости.

Изучение зависимости пути от времени при равномерном и равноускоренном движении.

Измерение силы динамометром.

Сложение сил, направленных вдоль одной прямой.

Сложение сил, направленных под углом.

Исследование зависимости силы тяжести от массы тела.

Исследование зависимости силы упругости от удлинения пружины. Измерение жесткости пружины.

Исследование силы трения скольжения. Измерение коэффициента трения скольжения.

Исследование условий равновесия рычага.

Нахождение центра тяжести плоского тела.

Вычисление КПД наклонной плоскости.

Измерение кинетической энергии тела.

Измерение изменения потенциальной энергии тела.

Измерение архимедовой (выталкивающей) силы.

Изучение условий плавания тел.

Изучение зависимости периода колебаний маятника от длины нити.

Измерение ускорения свободного падения с помощью маятника.

Изучение зависимости периода колебаний груза на пружине от массы груза.

Тепловые явления (31 час)

Строение вещества. Тепловое движение атомов и молекул. Броуновское движение. Диффузия. Взаимодействие частиц вещества. Модели строения газов, жидкостей и твердых тел.

Тепловое равновесие. Температура. Связь температуры со средней скоростью теплового хаотического движения частиц. Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии тела. Виды теплопередачи: теплопроводность, конвекция, излучение. Количество теплоты. Удельная теплоемкость. Закон сохранения энергии в тепловых процессах.

Испарение и конденсация. Кипение. Зависимость температуры кипения от давления. Влажность воздуха. Плавление и кристаллизация. Удельная теплота плавления и парообразования. Удельная теплота сгорания.

Преобразования энергии в тепловых машинах. Паровая турбина. Двигатель внутреннего сгорания. Реактивный двигатель. КПД тепловой машины. Экологические проблемы использования тепловых машин.

Наблюдение и описание диффузии, изменений агрегатных состояний вещества, различных видов теплопередачи; объяснение этих явлений на основе представлений об атомно-молекулярном строении вещества, закона сохранения энергии в тепловых процессах.

Измерение физических величин: температуры, количества теплоты, удельной теплоемкости, удельной теплоты плавления льда, влажности воздуха.

Проведение простых физических опытов и экспериментальных исследований по выявлению зависимостей: температуры остывающей воды от времени, температуры вещества от времени при изменении агрегатных состояний вещества.

Практическое применение физических знаний для учета теплопроводности и теплоемкости различных веществ в повседневной жизни.

Объяснение устройства и принципа действия физических приборов и технических объектов: термометра, психрометра, паровой турбины, двигателя внутреннего сгорания, холодильника.

Демонстрации

Диффузия в газах и жидкостях.

Модель хаотического движения молекул. Модель броуновского движения.

Сохранение объема жидкости при изменении формы сосуда.

Сцепление свинцовых цилиндров.

Принцип действия термометра.

Изменение внутренней энергии тела при совершении работы и при теплопередаче.

Теплопроводность различных материалов.

Конвекция в жидкостях и газах. Теплопередача путем излучения.

Сравнение удельных теплоемкостей различных веществ.

Явление испарения. Кипение воды.

Постоянство температуры кипения жидкости.

Явления плавления и кристаллизации.

Измерение влажности воздуха психрометром или гигрометром.

Устройство четырехтактного двигателя внутреннего сгорания.

Устройство паровой турбины

Лабораторные работы и опыты

Исследование изменения со временем температуры остывающей воды.

Изучение явления теплообмена.

Измерение удельной теплоемкости вещества.

Измерение влажности воздуха.

Исследование зависимости объема газа от давления при постоянной температуре.

Электромагнитные явления (60 час)

Электризация тел. Электрический заряд. Два вида электрических зарядов. Взаимодействие зарядов. Закон сохранения электрического заряда. Электрическое поле. Действие электрического поля на электрические заряды. Проводники, диэлектрики и полупроводники. Конденсатор. Энергия электрического поля конденсатора.

Постоянный электрический ток. Источники постоянного тока. Сила тока. Напряжение. Электрическое сопротивление. Носители электрических зарядов в металлах, полупроводниках, электролитах и газах. Полупроводниковые приборы. Закон Ома для участка электрической цепи. Последовательное и параллельное соединения проводников. Работа и мощность электрического тока. Закон Джоуля – Ленца.

Опыт Эрстеда. Магнитное поле тока. Электромагнит. Взаимодействие магнитов. Магнитное поле Земли. Действие магнитного поля на проводник с током. Электродвигатель. электромагнитная индукция. Опыты Фарадея. Электрогенератор. Переменный ток. Трансформатор. Передача электрической энергии на расстояние.

Колебательный контур. Электромагнитные колебания. Электромагнитные волны. Принципа радиосвязи и телевидения.

Элементы геометрической оптики. Закон прямолинейного распространения света. Отражение и преломление света. Закон отражения света. Плоское зеркало. Линза. Фокусное расстояние линзы. Глаз как оптическая система. Оптические приборы. Свет – электромагнитная волна. Дисперсия света. Влияние электромагнитных излучений на живые организмы.

Наблюдение и описание электризации тел, взаимодействия электрических зарядов и магнитов, действия магнитного поля на проводник с током, теплового действия тока, электромагнитной индукции, отражения, преломления и дисперсии света; объяснение этих явлений.

Измерение физических величин: силы тока, напряжения, электрического сопротивления, работы и мощности тока, фокусного расстояния собирающей линзы.

Проведение простых физических опытов и экспериментальных исследований по изучению: электростатического взаимодействия заряженных тел, действия магнитного поля на проводник с током, последовательного и параллельного соединения проводников, зависимость силы тока от напряжения на участке цепи, угла отражения света от угла падения, угла преломления от угла падения.

Практическое применение физических знаний для безопасного обращения с электробытовыми приборами; предупреждения опасного воздействия на организм человека электрического тока и электромагнитных излучений.

Объяснение устройства и принципа действия физических приборов и технических объектов: амперметра, вольтметра, динамика, микрофона, электрогенератора, электродвигателя, очков, фотоаппарата, проекционного аппарата.

Демонстрации

Электризация тел. Два рода электрических зарядов. Устройство и действие электроскопа.

Проводники и изоляторы.

Электризация через влияние. Перенос электрического заряда с одного тела на другое

Закон сохранения электрического заряда.

Устройство конденсатора. Энергия заряженного конденсатора.

Источники постоянного тока.

Составление электрической цепи.

Электрический ток в электролитах. Электролиз.

Электрический ток в полупроводниках. Электрические свойства полупроводников.

Электрический разряд в газах.

Измерение силы тока амперметром.

Наблюдение постоянства силы тока на разных участках неразветвленной электрической цепи.

Измерение силы тока в разветвленной электрической цепи.

Измерение напряжения вольтметром.

Изучение зависимости электрического сопротивления проводника от его длины, площади поперечного сечения и материала. Удельное сопротивление.

Реостат и магазин сопротивлений.

Измерение напряжений в последовательной электрической цепи.

Зависимость силы тока от напряжения на участке электрической цепи.

Опыт Эрстеда. Магнитное поле тока.

Действие магнитного поля на проводник с током.

Устройство электродвигателя. Электромагнитная индукция. Правило Ленца. Самоиндукция.

Получение переменного тока при вращении витка в магнитном поле.

Устройство генератора постоянного тока.

Устройство генератора переменного тока.

Передача электрической энергии на расстояние.

Электромагнитные колебания. Свойства электромагнитных волн.

Принцип действия микрофона и громкоговорителя.

Источники света. Прямолинейное распространение света.

Закон отражения света. Изображение в плоском зеркале.

Преломление света. Ход лучей в собирающей линзе. Ход лучей в рассеивающей линзе.

Получение изображений с помощью линз.

Принцип действия проекционного аппарата и фотоаппарата. Модель глаза.

Дисперсия белого света.

Получение белого света при сложении света разных цветов.

Лабораторные работы и опыты

Наблюдение электрического взаимодействия тел

Сборка электрической цепи и измерение силы тока и напряжения.

Исследование зависимости силы тока в проводнике от напряжения на его концах при постоянном сопротивлении.

Исследование зависимости силы тока в электрической цепи от сопротивления при постоянном напряжении.

Изучение последовательного соединения проводников.

Изучение параллельного соединения проводников.

Измерение сопротивление при помощи амперметра и вольтметра.

Изучение зависимости электрического сопротивления проводника от его длины, площади поперечного сечения и материала. Удельное сопротивление.

Измерение работы и мощности электрического тока.

Изучение электрических свойств жидкостей.

Изготовление гальванического элемента.

Изучение взаимодействия постоянных магнитов.

Исследование магнитного поля прямого проводника и катушки с током.

Исследование явления намагничивания железа.

Изучение принципа действия электромагнитного реле.

Изучение действия магнитного поля на проводник с током.

Изучение принципа действия электродвигателя.

Изучение явления электромагнитной индукции.

Изучение принципа действия трансформатора.

Изучение явления распространения света.

Исследование зависимости угла отражения от угла падения света.

Изучение свойств изображения в плоском зеркале.

Исследование зависимости угла преломления от угла падения света.

Измерение фокусного расстояния собирающей линзы.

Получение изображений с помощью собирающей линзы.

Наблюдение явления дисперсии света.

Квантовые явления (15 час)

Радиоактивность. Альфа -, бета - и гамма-излучения. Период полураспада.

Опыты Резерфорда. Планетарная модель атома. Оптические спектры. Поглощение и испускание света атомами.

Состав атомного ядра. Энергия связи атомных ядер. Ядерные реакции. Источники энергии Солнца и звезд. Ядерная энергетика. Дозиметрия. Влияние радиоактивных излучений на живые организмы. Экологические проблемы работы атомных электростанций.

Наблюдение и описание оптических спектров различных веществ, их объяснение на основе представлений о строении атома.

Практическое применение физических знаний для защиты от опасного воздействия на организм человека радиоактивных излучений; для измерения радиоактивного фона и оценки его безопасности.

Демонстрации

Модель опыта Резерфорда.

Наблюдение треков частиц в камере Вильсона.

Устройство и действие счетчика ионизирующих частиц.

Лабораторные работы и опыты

Наблюдение линейчатых спектров излучения.

Измерение естественного радиоактивного фона дозиметром.

Резерв свободного учебного времени – 8 часов

1  Время проведения лабораторной работы может варьироваться от 10 до 45 минут


Физика 9 класс. Все формулы и определения

Физика 9 Все формулы КРУПНО

Физика 9. Все формулы МЕЛКО. Стр 1

Физика 9. Все формулы МЕЛКО. Стр 2

I. Равномерное прямолинейное движение

1. Скорость
2. Проекция скорости на координатную ось
3. Перемещение
4. Проекция перемещения на координатную ось

II. Равноускоренное прямолинейное движение

5. Средняя скорость при неравномерном прямолинейном движении
6. Ускорение
7. Скорость
8. Перемещение
9. Координата тела
10. Ускорение свободного падения

III. Равномерное движение по окружности

11. Угловая скорость
12. Частота обращения
13. Период обращения
14. Линейная скорость
15. Центростремительное ускорение

IV Законы Ньютона

16. Первый закон Ньютона
17. Второй закон Ньютона
18. Третий закон Ньютона

V Силы в природе

19. Закон Гука
20. Закон всемирного тяготения
21. Гравитационная постоянная
22. Сила тяжести
23. Ускорение свободного падения
24. Вес покоящихся и движущихся тел.

VI. Движение тела под действием силы тяжести

25. Движение тела под углом к горизонту.
26. Горизонтально брошенное тело.
27. Скорость искусственного спутника Земли.

VII. Силы трения

28. Трение покоя.
29. Трение скольжения.
30. Коэффициент трения.
31. Движение тела под действием силы трения.

VIII. Движение тела под действием нескольких сил

32. Условие равновесия тела (как материальной точки)
33. Движение тела по наклонной плоскости.
34. Движение связанных тел через неподвижный блок.

IX. Законы сохранения в механике

36. Импульс тела
37. Импульс силы
38. Закон сохранения импульса
39. Механическая работа силы
40. Теорема о кинетической энергии
41. Потенциальная энергия поднятого тела
42. Работа силы тяжести
43. Потенциальная энергия деформированного тела
44. Закон сохранения полной механической энергии

X. Движение жидкостей и газов по трубам

45. Закон Бернулли

Дополнительные материалы

Девять самых необходимых (самых востребованных) формул по физике в 9 классе.

Физика 9 класс. Все формулы и определения

Таблицы физических величин

основные физические величины

Физика — одна из самых главных наук, которой под силу описать практически все физические процессы, которые мы можем наблюдать в мире. В статье расскажем обо всех основных формулах, с которыми предстоит иметь дело школьникам 7-9-х классов, и дадим пояснения к ним.

Формулы по физике за 7-9 класс

Формулы по физике

Все формулы за 7 класс

Учебники физики за 7 класс знакомят школьников с формулами, при помощи которых вычисляют:

  • скорость равномерного движения;
  • среднюю скорость неравномерного движения;
  • плотность вещества;
  • силу тяжести;
  • равнодействующую сил, направленных в одну сторону;
  • вес тела;
  • давление;
  • давление жидкости;
  • силу Архимеда.

Скорость равномерного движения

Скорость равномерного прямолинейного движения — это постоянная скорость объекта при движении по прямой линии, которая будет одинакова в любой момент движения.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Рассчитывается она так:

где \(V\) — искомая нами скорость объекта, \(S\) — путь, пройденный объектом, \(t\) — время, за которое был пройден путь.

Скорость измеряется в км/ч, когда речь идет о больших расстояниях, и м/с, когда о маленьких.

Средняя скорость неравномерного движения

Средняя скорость — это скорость, которую мог бы иметь объект, если бы преодолел этот же самый путь за это же самое время, но двигаясь равномерно.

Зависит от тех же параметров, что и скорость при равномерном движении: от \(S\) и \(t\) . Чтобы рассчитать среднюю скорость движения нужно полный путь, пройденный объектом, разделить на все время движения:

где \(V\) — средняя скорость, \(S_1, S_2\) — участки пути, из которых состоит полный путь объекта, \(t_1\) — время, потраченное на преодоление первого участка пути, \(t_2\) — время, потраченное на преодоление второго участка пути.

Средняя скорость также измеряется в км/ч.

Плотность вещества

Плотность вещества — это физическая величина, которая показывает зависимость массы вещества от его объема.

Формула для определения плотности вещества:

где \(p\) — плотность, \(m\) — масса вещества, \(V\) — его объем.

Измеряется плотность в \(кг/м^3\) .

Сила тяжести

Сила тяжести — эта та сила, с которой все объекты притягиваются к поверхности нашей планеты.

Определяется по формуле:

где \(F\) — сила тяжести, \(m\) — масса объекта, а \(g\) — коэффициент силы тяжести, равный 9,8 м/с.

Измеряется сила тяжести в ньютонах.

Равнодействующая сил, направленных в одну сторону

Равнодействующая сила — это сила, которая воздействует на тело так же, как несколько других одновременно воздействующих на объект сил.

Если силы, воздействующие на объект, направлены по одной прямой и в одну сторону, равнодействующая этих сил будет направлена в эту же сторону, а ее модуль будет равен сумме модулей этих сил.

Исходя из трактовки этого понятия, следует, что:

где \(R\) — равнодействующая сил \( F_1\) и \(F_2\) , действующих на тело.

Измеряется в ньютонах.

Вес тела

Вес — это сила, с которой объект воздействует на опору или подвес под ним вследствие притяжения к планете Земля.

Вес тела численно равен силе тяжести и вычисляется по той же самой формуле:

Так же, как и сила тяжести, измеряется в ньютонах.

Давление

Давление — это физическая величина, характеризующая степень воздействия силы, действующей перпендикулярно поверхности на площадь этой поверхности.

где \(P\) — давление, \(F\) — сила, направленная перпендикулярно площади поверхности, \(S\) — площадь поверхности, на которую действует сила.

Давление измеряется в паскалях.

Давление жидкости

Давление в жидкости или газе зависит:

  1. От уровня жидкости или газа в емкости. Это происходит из-за того, что верхние слои "давят" на нижние слои жидкости.
  2. От плотности жидкости / газа. Чем больше плотность, тем больше давление.

В виде формулы эту зависимость записывают так:

\(P=p\times g\times h\)

где \(P\) — давление в жидкости, \(p\) — плотность жидкости, \(g\) — коэффициент силы тяжести, равный 9,8 м/с, \(h\) — высота (уровень) жидкости в емкости.

Давление в жидкости измеряется в паскалях.

Согласно закону Паскаля, давление в жидкости и газах передается одинаково по всем направлениям.

Сила Архимеда

Архимедова сила — сила выталкивания, действующая на тело, которое погружено в жидкость или газ.

Эта сила всегда направлена вверх и равна по модулю весу жидкости, вытесненной телом. В уравнении зависимость выглядит так:

\(F_a=p\times g\times V\)

где \(F_a\) — сила Архимеда, \(p\) — плотность жидкости или газа, \(g\) — коэффициент силы тяжести, \(V\) — объем погруженного в жидкость объекта.

Сила Архимеда измеряется в ньютонах.

Все формулы за 8 класс

В 8 классе школьники изучают следующие физические разделы, понятия и формулы, к ним относящиеся:

  • количество теплоты при нагревании (охлаждении);
  • количество теплоты при сгорании топлива;
  • количество теплоты плавления (кристаллизации);
  • КПД теплового двигателя;
  • сила тока;
  • электрическое напряжение;
  • закон Ома для участка цепи;
  • последовательное соединение проводников;
  • параллельное соединение проводников;
  • мощность электрического тока;
  • закон преломления света.

Количество теплоты при нагревании (охлаждении)

Количество теплоты — это физическая величина, характеризующая количественное значение энергии, которое тело получает (при нагревании) или отдает (при охлаждении).

Количество теплоты определяют по формуле:

\(Q=c\times m\times\Delta t\)

где \(Q\) — количество теплоты, \(m\) — масса тела объекта, \(c\) — удельная теплоемкость того вещества, из которого состоит объект, \(\Delta t\) — изменение температуры тела объекта.

Если \(Q>0\) , то объект нагревается, если \(Q — остывает.

Количество теплоты измеряется в джоулях.

Количество теплоты при сгорании топлива

Количество теплоты при сгорании топлива — это физическая величина, которая равна количеству теплоты (энергии), которая выделяется при полном сгорании топлива.

где \(Q\) — количество теплоты при сгорании топлива, \(q\) — удельная теплота сгорания топлива (количество теплоты, выделяемое при сгорании 1 килограмма топлива), \(m\) — масса топлива.

Как и любая энергия измеряется в джоулях.

Количество теплоты плавления (кристаллизации)

Количество теплоты плавления или кристаллизации — количество теплоты, необходимое для плавления тела, которое находится в условиях температуры плавления и нормальном атмосферном давлении.

Формула для определения количества теплоты плавления выглядит так:

Формула для определения количества теплоты кристаллизации — так:

где \(Q\) — количество теплоты плавления или кристаллизации, \(m\) — масса тела, \(\lambda\) — удельная теплота плавления (количеств теплоты, нужное для того, чтобы расплавить 1 килограмм вещества).

Джоуль — единица измерения количества теплоты плавления (кристаллизации).

КПД теплового двигателя

КПД (коэффициент полезного действия) теплового двигателя — это количественный показатель, зависящий от работы, которую двигатель совершает за один цикл, и количества теплоты, полученной телом от нагревателя.

Формула для вычисления КПД выглядит так:

где \(\eta\) — КПД, \(A\) — полезная работа, \(Q_1\) — количество теплоты, полученное телом от нагревателя.

Можно встретить и другой вариант формулы:

где \(Q_1\) — количество теплоты, полученное телом от нагревателя, \(Q_2\) — количество теплоты, отданное холодильнику.

Коэффициент полезного действия измеряется в процентах.

Сила тока

Сила тока — физическая величина, которая характеризует заряд, проходящий через проводник за единицу времени.

Сила тока в проводнике определяется уравнением:

где \(I\) — сила тока в проводнике, \(q\) — электрический заряд, прошедший через поперечное сечение проводника, \(\Delta t\) — время прохождения заряда.

Сила тока измеряется в амперах.

Электрическое напряжение

Электрическое напряжение — это физическая величина, характеризующая действие электрического поля на заряженные частицы.

Электрическое напряжение определяют по формуле:

где \(U\) — напряжение на участке цепи, \(A\) — работа электрического поля, \(q\) — величина заряда на участке цепи.

Напряжение измеряют в вольтах.

Закон Ома для участка цепи

Закон, экспериментально доказанный Георгом Омом, формулируется таким образом: сила тока на определенном участке электроцепи прямо пропорциональна напряжению на этом же участке и обратно пропорциональна сопротивлению этого участка электроцепи.

где \(I\) — сила тока на данном участке цепи, \(U\) — напряжение на этом же участке электроцепи, \(R\) — сопротивление данного участка цепи.

Ампер — единица измерения силы тока.

Последовательное соединение проводников

Последовательное соединение в электроцепи — это такое соединение элементов, при котором конец одного элемента соединяется с началом другого.

Для последовательного соединения характерны такие закономерности для вычисления основных параметров электрической цепи: силы тока ( \(I\) ), напряжения ( \(U\) ) и сопротивления ( \(R\) ):

где \(I_1, U_1, R_1\) — электрические характеристики первого участка цепи, а \(I_2, U_2, R_2\) — электрические характеристики второго участка цепи.

Сила тока измеряется в амперах, напряжение — в вольтах, сопротивление — в омах.

Параллельное соединение проводников

Параллельным соединением называется такое соединение проводников, при котором начала всех проводников присоединяются к одной точке цепи, а их концы — к другой.

При параллельном соединении основные характеристики электроцепи вычисляются по следующим формулам:

где \(I_1, U_1, R_1\) — электрические характеристики первого участка цепи, а \(I_2, U_2, R_2\) — электрические характеристики второго участка цепи.

Единицы измерения те же: амперы, вольты, омы.

Мощность электрического тока

Мощность электротока — это физическая величина, определяющая, какую работу совершает ток за определенный временной промежуток.

Для вычисления мощности тока верно следующее уравнение:

где \(P\) — мощность тока, \(A\) — работа электротока на участке цепи, \(t\) — время, в течение которого электроток совершал работу.

Другим вариантом вычисления мощности является такая формула:

где \(I\) — сила тока, \(U\) — электрическое напряжение на участке цепи.

Мощность электротока измеряется в ваттах.

Закон преломления света

Закон преломления

Все формулы за 9 класс

В 9 классе сложность учебного материала возрастает. Школьникам необходимо освоить следующие физические понятия и уравнения:

  • проекция вектора перемещения;
  • скорость равномерного движения;
  • уравнение движения (зависимость координаты от времени) при равномерном движении;
  • движение тела по окружности;
  • закон всемирного тяготения;
  • импульс тела;
  • связь между периодом и частотой колебаний;
  • скорость волны;
  • электрическая ёмкость конденсатора;
  • энергия связи (формула Эйнштейна).

Проекция вектора перемещения

Проекция вектора перемещения на ось равна разности между конечной и начальной координатами тела по заданной оси.

Проекция вектора перемещения

Скорость равномерного движения

Скоростью равномерного прямолинейного движения называют постоянную векторную величину, которая равна отношению перемещения тела ко времени, за которое это перемещение произошло.

Рассчитывается она так:

где \(\vec V\) — искомая нами скорость объекта, \(\vec S\) — путь, пройденный объектом, \(t\) — время, за которое был пройден путь.

Вектор скорости всегда направлен в сторону движения.

Единицы измерения — м/с или км/ч.

Уравнение движения (зависимость координаты от времени) при равномерном движении

Уравнение движения при равномерном движении

Движение тела по окружности

Движение по окружности — это такое движение, траектория которого представляет собой окружность. Такой вид движения осуществляется под воздействием центростремительного ускорения ( \(a\) ). Также оно характеризуется угловой скоростью.

Период обращения — это время, за которое точка делает полный оборот по окружности.

Частота — это количество обращений точки по окружности за определенный период времени.

Движение тела по окружности

Закон всемирного тяготения

Закон всемирного тяготения, открытый Исааком Ньютоном, гласит, что два любых тела притягиваются друг к другу с силой, которая прямо пропорциональна массе каждого из них и обратно пропорциональна квадрату расстояния между ними.

Формула, иллюстрирующая эту закономерность, выглядит так:

где \(F\) — сила тяготения, \(m_1, m_2\) — массы тел, \(r\) — расстояние между ними, \(G\) — гравитационная постоянная, которая равна \(6,67\times10^ Нм^2/кг^2\)

Сила, с которой два тела притягиваются друг к другу, измеряется в ньютонах.

Импульс тела

Импульсом тела называют векторную физическую величину, которая равна произведению массы тела на скорость тела.

В виде формулы эта закономерность выражается так:

\(\vec p=m\times\vec V\)

где \(\vec p\) — это импульс тела, \(m\) — масса тела, \(\vec V\) — скорость движения.

Единицей измерения импульса тела является \(\fracс.\)

Связь между периодом и частотой колебаний

Для начала разберемся с главными определениями, которыми оперируют, когда говорят о колебаниях

Период — это время одного полного колебания.

Частота — это число полных колебаний за единицу времени (1 секунду).

Частота и период свободных колебаний нитяного маятника зависит от длины его нити.

Между периодом и частотой колебаний существует обратно-пропорциональная зависимость: чем больше период колебаний, тем меньше частота, и чем меньше период, тем больше частота колебаний.

где \(T\) — период колебаний, \(v\) — частота колебаний.

Частота колебаний измеряется в герцах, период — в секундах.

Скорость волны

Скорость волны — это скорость распространения колебаний в упругой среде.

Рассчитывается по формуле:

где \(V\) — скорость волны, \(\lambda\) —длина волны (расстояние, на которое распространяется волна за время равное одному периоду), \(v\) — частота волны.

Скорость волны измеряется в м/с.

Электрическая емкость конденсатора

Начнем с определений:

Конденсатор — это совокупность двух проводников, находящихся на небольшом расстоянии друг от друга и разделенных слоем диэлектрика. Электроемкость — это физическая величина, характеризующая способность проводника накапливать электрический заряд.

Электроемкость конденсатора зависит от:

  • размеров проводников;
  • формы проводников;
  • расстояния между ними;
  • электрических свойств диэлектрика.

Электрическая емкость конденсатора не зависит от:

  • величины заряда;
  • напряжения;
  • материала проводников.

Электрическая емкость системы двух проводников определяется как отношение заряда одного из проводников к напряжению между ними. Уравнение выглядит так:

где \(С\) — электроемкость конденсатора, \(q\) — заряд проводника, \(U\) - напряжение.

Емкость электрического конденсатора измеряется в фарадах.

Энергия связи (формула Эйнштейна)

Немецкий физик Альберт Эйнштейн вывел зависимость между энергией тела и его массой — закон, который называется законом взаимосвязи массы и энергии.

Согласно этому закону:

  • вещество имеет массу и обладает энергией;
  • поле имеет энергию и обладает массой.

Формула, выражающая эту взаимосвязь, — самая известная формула в мире:

где \(E\) — это энергия, \(m\) — масса, \(c\) — скорость света в вакууме, равная \(3\times10^8\) м/с.

Энергия связи — это энергия, равная работе, которую необходимо совершить для расщепления ядра на составляющие его отдельные нуклоны.

Энергия связи вычисляется по формуле:

\(E=\Delta m\times c^2\)

где \(\Delta m\) — это дефект массы ядра (равен разности между общей массой свободных нуклонов и массой ядра); \(c\) — скорость света в вакууме.

Физика является естественной наукой, которая изучает общие и фундаментальные закономерности строения и эволюции материального мира.

Важность физики в современном мире огромна. Ее новые идеи и достижения приводят к развитию других наук и новых научных открытий, которые, в свою очередь, используются в технологиях и промышленности. Например, открытия в области термодинамики делают возможным строительство автомобиля, а также развитие радиоэлектроники привело к появлению компьютеров.

Несмотря на невероятное количество накопленных знаний о мире, человеческое понимание процессов и явлений, постоянно меняется и развивается, новые исследования приводят к возникновению новых и нерешенных вопросов, которые требуют новых объяснений и теорий. В этом смысле, физика находится в непрерывном процессе развития и до сих пор далека от возможности объяснить все природные явления и процессы.

Читайте также: