Культивирование грибов микробиология кратко

Обновлено: 04.07.2024

Грибы представляют собой обширную гетерогенную группу мак­ро- и микроорганизмов растительного происхождения, лишенных хлорофилла. Грибы являются эукариотами и выделены в особое царство Mycota, так как имеют черты как растительных, так и животных клеток.

Общими с растительными клетками в характеристике грибов можно выделить следующие признаки:

  • • наличие клеточной стенки;
  • • неподвижность;
  • • неограниченный апикальный (верхушечный) рост;
  • • способность к активному синтезу витаминов.

Сходство с животными клетками грибам придает:

  • • наличие хитина в клеточной стенке,
  • • структура цитохромов,
  • • гетеротрофный тип питания,
  • • способность запасать в клетке гликоген и синтезировать моче­вину.

По типу дыхания в окружающей среде грибы — аэробы, их тканевые формы (при попадании в макроорганизм) — факуль­тативные анаэробы.

Как уже было указано, грибы представлены как одноклеточ­ными, так и многоклеточными микроорганизмами. К однокле­точным грибам относят дрожжи и дрожжеподобные клетки не­правильной формы, значительно крупнее по размерам бактерий. Многоклеточные грибы-микроорганизмы — это плесневые, или мицелярные, грибы.

Тело многоклеточного гриба называют талом, или мицелием. Основу мицелия составляет гифа — многоядерная нитевидная клетка. Мицелий может быть септированный (гифы разделены перегородками и имеют общую оболочку) и несептированный (представлен разветвлениями одной гифы без перегородок). Тканевые формы дрожжей могут быть представлены псевдоми­целием, его образование — результат почкования одноклеточ­ных грибов без отхождения дочерних клеток. Общую оболочку псевдомицелий, в отличие от истинного, не имеет.

2. Грибы — эукариоты, их клетки содержат оформленное ядро, имеющее ядерную мембрану и ядрышки. Для грибов характер­на большая вариабельность в строении ядерного аппарата, его гетерогенность. У многоклеточных грибов может быть дика-риотический и даже гетерокариотический ядерный аппарат. В последнем случае ядра одной клетки отличаются хромосом­ным составом, набор хромосом у грибов может быть как дип­лоидным, так и гаплоидным.

3. У грибов различают бесполое и половое размножение, последнее присуще только высшим грибам. При бесполом размножении возможны процессы почкования (характерны для дрожжепо-добных грибов) и спорообразования. Дочерние клетки, образую­щиеся при почковании дрожжей, называют бластоспорами. Сре­ди спор бесполого размножения различают экзо- и эндоспоры.

Экзоспоры (конидии) образуются на терминальных нитевидных отростках специализированных гиф — конидиеносцев, например у плесневых грибов. По размерам различают микро- и макро­конидии. Среди конидий особо выделяют алейрии, при их формировании мицелий становится нежизнеспособным, так как вся протоплазма клеток уходит на формирование спор.

Эндоспоры бесполого размножения образуются внутри клетки гриба. Их разновидности достаточно многочисленны. Так, к эндоспорам относят:

  • • артроспоры;
  • • хламидоспоры;
  • • спорангиоспоры;
  • • ондии и др.

Артроспоры образуются при фрагментации концов гиф много­клеточного гриба, хламидоспоры могут образовывать и дрожи, и многоклеточные грибы. Эти споры характеризуются образо­ванием утолщенных оболочек.

Спорангиоспоры созревают в особых образованиях — споранги­ях. Спорангии представляют собой колбовидные или шаровид­ные вздутия специализированных гиф многоклеточного гриба, называемых спорангионосцами.

Ондии очень мелкие зерна-споры, образующиеся при фраг­ментации любой гифы многоклеточного гриба.

У высших многоклеточных грибов различают мужские и жен­ские гифы, обозначаемые как F + и F. Наряду с бесполым раз­множением для них характерно половое размножение. В этом случае процесс спорообразования идет после слияния мужской и женской гифы. Среди спор полового размножения грибов раз­личают:

Зигоспоры образуются в результате мейоза внешне одинаковых гиф, а ооспоры — после слияния внешне различных гиф.

Аскоспоры присущи только одному классу высших грибов — аскомицетам. Для них характерно образование спор после слия­ния половых гиф и процесса мейоза в особых вместилищах — сумках (асках).

Базидиоспоры присущи высшим грибам из класса базидиоми-цетов, особенность их образования заключается в том, что процессы слияния половых гиф, мейоз и последующее созре­вание идут только в основании мицелия.

4. В лабораторных условиях чистые грибные культуры получают при выделении из исследуемого материала методами механиче­ского разобщения и культивирования на искусственных пита­тельных средах. Грибы растут медленнее бактерий, видимый рост их колоний на твердых питательных средах обычно на­блюдается на 3—5-й день. Образование колоний грибов на твердых питательных средах – результат апикального роста главной гифы и ее ответвлений.

Грибы обладают выраженной сахаролитической активностью, поэтому их выращивают на специальных средах, содержащих углеводы:

морковный агар и др., при этом рН среды должно составлять 6,0-6,5.

Для роста грибам необходимы соли фосфора и серы, накопить большую биомассу грибов для промышленных целей позволя­ют добавки ионов меди, магния и натрия, витаминов: биотина, рибофлавина, тиамина.

Грибы растут в широком диапазоне температур (20-45 °С), грибы, вызывающие заболевания человека, обычно культиви­руются при температуре 37 °С. При росте многоклеточных грибов на питательных средах различают субстратный, или погружной, мицелий (врастающие колонии, большая часть в среде) и воз­душный мицелий (ббльшая часть его находится над питательной средой). С воздушным мицелием связано образование конидий, с субстратным — бласто-, хламидо- и артроспор.

Особенности метаболизма грибов

1. Биохимические свойства грибов

2. Антигены грибов

1.Грибы биохимически очень активны, в природе они участвуют в круговороте азота и углерода, в процессах минерализации.

Грибы образуют целлюлозы, выделяемые из мицелия и пита­тельной среды, и активно разрушают целлюлозу растительных остатков в аэробных условиях, в том числе древесины. Они эффективнее бактерий, особенно в кислых почвах. Большинство грибов продуцируют ксиланазы, расщепляя уси-лан, второй по распространенности вслед за целлюлозой в природе углевод, входящий в состав соломы и луба, древесины хвойных и лиственных пород, сахарного тростника. Грибы синтезируют альфа-амилазы, осуществляя гидролиз крахмала; при росте на углеводных средах (с глюкозой, сахаро­зой) многие дрожжи синтезируют бета-1-6-глюкан, входящий в состав их клеточной стенки в качестве нерастворимой опорной структуры. Некоторые дрожжеподобные грибы выделяют глю-кан-пуллулан и маннаны, а плесневые грибы рода пеницилли­на активно накапливают в мицелиях полисахарид нигеран. Ас-пергиллы активно расщепляют фруктаны, хитин. Многим грибам присуща способность расщеплять пектины, что используется при аэробной росяной мочке льна и конопли. Базидиомицеты активно разрушают лигнин живых растений. При этом выделяют возбудителей бурой гнили, разрушающих целлюлозные и гемицеллюлозные компоненты древесины и возбудителей белой гнили, разрушающих собственно лигнин. Дрожжи рода Candida способны разрушать метанол и алканы с длинной цепью.

Многие грибы разрушают ароматические углеводороды за счет ферментативного разрыва ароматического кольца. Все указан­ные процессы идут с участием экзоферментов грибов. В анаэробных условиях дрожжи активно осуществляют броже­ние, но рост их резко замедляется, в аэробных условиях идут процессы дыхания с активным размножением грибов. Дрож­жевые грибы широко используют в технологических процессах хлебопекарного и пивоваренного производства, виноделия. Главные продуценты этанола — грибы рода Saccharomyces, кото­рые без доступа кислорода сбраживают глюкозу с его образо­ванием. Помимо глюкозы дрожжи способны сбраживать пиру-ват. Брожение дрожжами в присутствии бисульфата использу­ют для промышленного производства глицерина.

Многочисленные грибы, наряду с бактериями, осуществляют распад белков в почве, минерализацию азота. Многие плесне­вые грибы являются продуцентами антибиотиков (пеницилли­на, эритромицина и др.) и используются в антибиотической промышленности. Многие грибы способны разлагать кератин, что обусловливает многочисленные поражения кожи и ее де­риватов, в том числе у человека.

Изучение биохимических свойств грибов имеет важное значе­ние для развития не только промышленной микробиологии, но и медицинской микологии. По биохимическим свойствам идентифицируют вид чистой культуры гриба, выделенной в ходе микологического исследования из материла от больного, что позволяет поставить точный диагноз. Набор ферментов строго специфичен для вида.

2. Антигенное строение грибов достаточно сложное и требует дальнейшего изучения. Условно антигены грибов можно разде­лить на 2 группы по биохимической природе: белковые и полиса-харидные.

Белковые сильные иммуногены и ответственны за развитие гуморального иммунного ответа в макроорганизме с образова­нием иммуноглобулинов классов G и М. Белковые антигены грибов и антитела к ним можно выявить в реакции агглютина­ции, РСК и использовать эти реакции в иммунодиагностике микозов — заболеваний, вызываемых грибами.

Вторая группа антигенов (полисахаридной природы) обусловли­вает клеточный иммунный ответ и развитие гиперчувствитель­ности замедленного типа. Сенсибилизация организма грибами и проявление микозов всегда сопровождаются состоянием ин­фекционной аллергии, что позволяет использовать в диагностике этих заболеваний внутрикожные аллергические пробы с соответ­ствующими аллергенами из грибов-возбудителей.

Основы систематики грибов

1. Отделы царства грибов

2. Классы грибов

3. Дальнейшее подразделение грибов

1. Царство грибов Mycota разделено на 2 отдела:

К последнему относятся грибы-микроорганизмы, изучаемые ме­дицинской микологией.

2. Многоклеточные грибы подразделяются на классы по способу размножения, морфологии гифов и характеру мииелия.

Грибы, у которых нет мицелия и полового размножения (архимицеты), отнесены к 2 классам: Chytridiomycetes и Hypho-chridiomycetes.

Грибы, для которых характерен несептированный мицелий и образование спорангиоспор при бесполом размножении (фикомицеты), в зависимости от типа спор, образуемых при поло­вом размножении, делятся на 2 класса: Oomycetes и Zygomycetes (соответственно для них характерны ооспоры или зигоспоры). Высшие многоклеточные грибы с септицированным мицелием, для которых наряду с бесполым характерно половое размноже­ние, отнесены к классам Ascomycetes (характерны половые аскоспоры) и Basidiomycetes (характерно образование базидио-спор при половом размножении).

Отдельную группу составляет класс Deuteromycetes, или несо­вершенных грибов, сюда отнесены дрожжевые, плесневые и некоторые другие грибы, не имеющие полового размножения. Большинство возбудителей микозов человека относится к классу дейтеромицетов, хотя некоторые зигомицеты, аскомицеты и базидиомицеты также могут вызвать заболевания у че­ловека.

3. Классы грибов делятся на семейства, семейства на роды, рода на виды. При этом учитывается:

Грибы по типу питания – гетеротрофы, по отношению к кислороду – аэробы и факультативные анаэробы.

Культивирование грибов производится в аэробных условиях при температуре 22-37 0 С на питательных среда, содержащих азотистые и углеродсодержащие вещества…

По характеру роста на агаровых питательных средах патогенные грибы растут в виде: 1) кожистых, гладких, с плотной консистенцией; 2) пушистых, рыхлых, ватообразной консистенции; 3) бархатисто-ворсистых колоний, покрытых очень густым мицелием; 4) хрупких пленчатых, напоминающих ломкий картон; 5) гипсовидно-мучнистых колоний порошковидной консистенции; 6) мелкозернистых или бугристых кожистой консистенции; 7) крупнобугристых строчковидных колоний; 8) блестящих сальных или матовых колоний сливкообразной консистенции.

На жидких средах многие виды грибов растут в виде войлокообразного осадка на дне и пристеночно. Грибы вырабатывают различного цвета пигменты: белые, желтые, коричневые, черные, синие, зеленые, красные и др.

Некоторые виды патогенных грибов обладают способностью продуцировать экзотоксины: афлатоксины, липотоксол. Большая часть грибов содержит эндотоксины.

Простейшие имеют органы движения (жгутики, реснички, псевдоподии) и выделения (сократительные вакуоли). По типу питания они могут быть гетеротрофами или аутотрофами.

Многие простейшие могут расти на питательных средах, содержащих нативные белки и аминокислоты. Также для культивирования простейших используются культуры клеток (тканей), куриные эмбрионы и лабораторные животные.

Для культивирования вирусов используют культуры клеток, куриные эмбрионы и лабораторных животных.

Наиболее широкое применение нашли однослойные культуры трипсинизированных клеток, а также перевиваемые клеточные линии, которые получают из различных органов и тканей животных и человека. Для поддержания их жизнедеятельности использхуют питательные среды (среда 199, Игла и др.), содержащие полный набор веществ, необходимых для роста клеток вне организма (аминокислоты, углеводы, витамины и др.), а также определенный солевой состав и рН.

Первично-трипсинизированные культуры клеток готовят из эмбриональных тканей человека, кур, мышей, овец, свиней, кроликов, морских свинок и других животных, а также почечных клеток взрослых обезьян. Эмбриональные ткани обладают большей потенцией к росту, чем ткани взрослых животных.

Перевиваемые культуры представляют собой штаммы клеток нормальных тканей человека (АО, Л1, FL, ППЧ,Rh), животных (СОЦ – сердце обезьян циномольгус,RК – почки кролика и др.) и ткани злокачественных опухолей (HeLa,Hep-1,Hep- 2,KB, Детройт-6 и др.). Их рост поддерживается в лабораториях путем последовательных пассажей. Так, например, культура клетокHeLa, полученная в 1950 г., к настоящему времени прошла тысячи генераций и используется во всех вирусологических лабораториях мира.

Для культивирования вирусов в курином эмбрионе (5-12 дневные) вируссодержащий материал вводят в амниотическую, аллантоисную полость, желточный мешок, в мозг, тело эмбриона. Специфические поражения в куриных эмбрионах развиваются в виде очагового поражения, диффузного помутнения оболочек, отека с обильными язвами, участками некроза, кровоизлияний, пустул, пузырьков. Репродукцию вируса в курином эмбрионе обнаруживают реакцией гемагглютинации. Недостатком данного метода является то, что многие вирусы не размножаются в эмбрионах птиц.

Культивирование вирусов проводят также в организме чувствительных лабораторных животных, особенно тех вирусов, которые не репродуцируются в культурах тканей и куриных эмбрионах. Взрослых или новорожденных белых мышей, хомяков, кроликов, обезьян заражают исследуемым вируссодержащим материалом различными способами (подкожно, внутримышечно, интрацеребрально и др.) в зависимости от тропизма вирусов. Использование лабораторных животных для культивирования вирусов также ограничено из-за видовой невосприимчивости животных ко многим вирусам человека.

Читайте также: