Кратко охарактеризуйте традиционные источники энергии

Обновлено: 30.06.2024

В исследовании рассчитаны показатели EROEI для каждого из них в отдельности.

Помимо EROEI конкретного источника энергии, следует учитывать окупаемость всего комплекса электростанции.

Угольные электростанции, согласно исследованию , энергетически окупаются за 2 месяца. То есть, это сумма тепловой и электрической энергии, которая вырабатывает электростанция, эта энергия не всегда может быть полезна использована человеком.

EROEI составляет 30 единиц.

По сути это значит, что за жизненный цикл тепловой угольной электростанции, единожды построенной с затратами на её работу, ремонт, модернизацию в течение 50 лет, включая добычу и поставку угля, и вывод её из эксплуатации, выработает столько полезной энергии, сколько хватит на строительство еще 30 Угольных ТЭЦ.

Газовая ТЭЦ, согласно исследованию , энергетически окупается за 9 дней!

Такой маленький срок энергетической окупаемости связан с общим производством тепловой и электрической энергии.

EROEI составляет 28 единиц.

В тепловых электростанциях нефть в чистом виде не применяется. Применяется продукт переработки нефти - мазут, но это топливо является резервным и слабо-распространенным. Мазут выводится из генерации энергии, и идет на дальнейшую переработку. Потому ТЭЦ на мазуте рассматривать не будем, также как горючие сланцы и торф.

Гидроэнергетические станции – традиционные возобновляемые источники энергии. Это уникальные, мощные сооружения, со сроком эксплуатации 100 лет.

Срок энергетической окупаемости составляет 2 года, и EROEI – 50 единиц.

Это тип электростанций экологически чистый и мощный источник возобновляемой энергии.

Современные атомные электростанции, исправно работая, не выбрасывают загрязняющих веществ в атмосферу.

Согласно исследованию , типовая атомная станция энергетически окупается за 2 месяца.

Имея срок эксплуатации в 60 лет, её EROEI = 75 !

Атомная станция замкнутого топливного цикла – дальнейшая эволюция в использовании атомной энергии. Ранее отработанное топливо, которое хранили в ядерных могильниках, теперь возможно переработать, и снова использовать в атомных реакторах. Таким образом, при замкнутом топливном цикле, EROEI Атомной станции будет 105. А в Атомных реакторах, на быстрых нейтронах в замкнутом топливном цикле EROEI достигнет 150 и более единиц. Однако, в данном примере будем рассматривать реальные 75 единиц EROEI, для атомной энергетики.

Вывод: Традиционная энергетика имеет высокий EROEI.

Согласно данным British Petroleum, которые я приводил в статье про альтернативную энергетику , можно высчитать средний коэффициент EROEI, и сходя из процентного соотношения использования энергии угля, воды, газа и атома.

В исследованиях , проводимых Европейскими специалистами, много критических замечаний по другим исследованиям, проводившимся ранее. Одно из таких замечаний – неучёт буферизации энергии, то есть её хранение и обслуживание.

Буферизация энергии уменьшает EROEI источника энергии, и более объективно показывает настоящий EROEI, который отображает реальные цифры выработки энергии.


Все существующие направления энергетики можно условно разделить на зрелые, развивающиеся и находящиеся в стадии теоретической проработки. Одни технологии доступны для реализации даже в условиях частного хозяйства, а другие могут использоваться только в рамках промышленного обеспечения. Рассматривать и оценивать современные виды энергетики можно с разных позиций, однако принципиальное значение имеют универсальные критерии экономической целесообразности и производственной эффективности. Во многом по этим параметрам сегодня расходятся концепции применения традиционных и альтернативных технологий генерации энергии.

Традиционная энергетика

Это широкий пласт сформировавшихся отраслей тепло- и электроэнергетики, обеспечивающей порядка 95% мировых потребителей энергии. Генерация ресурса происходит на специальных станциях – это объекты ТЭС, ГЭС, АЭС и т. д. Они работают с готовой сырьевой базой, в процессе переработки которой происходит выработка целевой энергии. Выделяют следующие стадии производства энергии:

  • Изготовление, подготовка и доставка исходного сырья на объект выработки того или иного вида энергии. Это могут быть процессы добычи и обогащения топлива, сжигание нефтепродуктов и т. д.
  • Передача сырья к узлам и агрегатам, непосредственно преобразующим энергию.
  • Процессы преобразования энергии из первичной во вторичную. Эти циклы присутствуют не на всех станциях, но, к примеру, для удобства доставки и последующего распределения энергии могут использоваться разные ее формы – в основном тепло и электричество.
  • Обслуживание готовой преобразованной энергии, ее передача и распределение.

На завершающем этапе ресурс отправляется конечным потребителям, в качестве которых могут выступать и отрасли народного хозяйства, и рядовые домовладельцы.

Атомная энергетика

Тепловая электроэнергетика

Самая распространенная отрасль энергетики в России. Тепловые электростанции в стране производят более 1000 МВт, используя в качестве перерабатываемого сырья уголь, газ, нефтепродукты, сланцевые залежи и торф. Вырабатываемая первичная энергия в дальнейшем преобразуется в электричество. Технологически у таких станций масса преимуществ, которые и обуславливают их популярность. К ним можно отнести нетребовательность к условиям эксплуатации и легкость технической организации рабочего процесса.

Объекты тепловой энергетики в виде конденсационных сооружений и теплоэлектроцентралей могут возводиться прямо в районах добычи расходного ресурса или местах нахождения потребителя. Сезонные колебания никак не влияют на стабильность функционирования станций, что делает такие источники энергии надежными. Но есть и недостатки у ТЭС, к которым можно отнести применение исчерпаемых топливных ресурсов, загрязнение окружающей среды, необходимость подключения больших объемов трудовых ресурсов и др.

Гидроэнергетика

Гидротехнические электростанции

Гидротехнические сооружения в виде энергетических подстанций предназначены для выработки электричества в результате преобразования энергии потока воды. То есть, технологический процесс генерации обеспечивается сочетанием искусственных и природных явлений. В ходе работы станция создает достаточный напор воды, которая в дальнейшем направляется к турбинным лопастям и активизирует электрогенераторы. Гидрологические виды энергетики различаются по типу используемых агрегатов, конфигурации взаимодействия оборудования с естественными потоками воды и т. д. По рабочим показателям можно выделить следующие разновидности гидростанций:

  • Малые – вырабатывают до 5 МВт.
  • Средние – до 25 МВт.
  • Мощные – более 25 МВт.

Также применяется классификация в зависимости от силы напора воды:

  • Низконапорные станции – до 25 м.
  • Средненапорные – от 25 м.
  • Высоконапорные – выше 60 м.

К достоинствам гидроэлектростанций относят экологическую чистоту, экономическую доступность (бесплатная энергия), неисчерпаемость рабочего ресурса. В то же время гидротехнические сооружения требуют больших начальных затрат на техническую организацию аккумулирующей инфраструктуры, а также имеют ограничения по географическому размещению станций – только там, где реки обеспечивают достаточный напор воды.

Атомная энергетика

Ключевую роль в исполнении процессов генерации ядерной энергии играет реактор. Это агрегат, предназначенный для поддержания реакций деления атомов, которые, в свою очередь, сопровождаются выделением тепловой энергии. Существуют разные типы реакторов, отличающиеся применяемым видом топлива и теплоносителем. Чаще используется конфигурация с легководным реактором, использующим в качестве теплоносителя обычную воду. Основным ресурсом переработки в ядерной атомной энергетике выступает урановая руда. По этой причине АЭС обычно проектируются с расчетом на размещение реакторов вблизи от месторождений урана. На сегодняшний день в России действует 37 реакторов, совокупная мощность выработки которых составляет около 190 млрд кВт*ч/год.

Характеристика альтернативной энергетики

Биомассовая энергия

Практически все источники альтернативной энергии выгодно отличаются финансовой доступностью и экологической чистотой. По сути, в данном случае происходит замена перерабатываемого ресурса (нефти, газа, угля и т. д.) на природную энергию. Это может быть солнечный свет, потоки ветра, тепло земли и другие естественные источники энергии за исключением гидрологических ресурсов, которые сегодня рассматриваются как традиционные. Концепции альтернативной энергетики существуют давно, однако по сей день они занимают небольшую долю в общем мировом энергообеспечении. Задержки в развитии данных отраслей связаны с проблемами технологической организации процессов выработки электричества.

Но чем обусловлено активное развитие альтернативной энергетики в наши дни? В немалой степени необходимостью снижения темпов загрязнения окружающей среды и в целом проблемами экологии. Также в скором будущем человечество может столкнуться с истощением традиционных ресурсов, используемых в производстве энергии. Поэтому, даже несмотря на организационные и экономические препятствия, все больше внимания уделяется проектам развития альтернативных форм энергетики.

Геотермальная энергетика

Один из самых распространенных способов получения энергии в бытовых условиях. Геотермальная энергия вырабатывается в процессе аккумуляции, передачи и преобразования внутреннего тепла Земли. В промышленных масштабах обслуживаются подземные породы на глубинах до 2-3 км, где температура может превышать 100°С. Что касается индивидуального применения геотермальных систем, то чаще задействуются поверхностные аккумуляторы, располагаемые не в скважинах на глубине, а горизонтально. В отличие от других подходов к выработке альтернативной энергии, практически все геотермальные виды энергетики в производственном цикле обходятся без этапа преобразования. То есть первичная тепловая энергия в этой же форме и поставляется конечному потребителю. Поэтому используется такое понятие, как геотермальные системы отопления.

Геотермальные источники энергии

Солнечная энергетика

Одна из старейших концепций альтернативной энергетики, задействующая в качестве аккумулятивного оборудования фотоэлектрические и термодинамические системы. Для реализации фотоэлектрического метода генерации используют преобразователи энергии световых фотонов (квантов) в электричество. Термодинамические установки более функциональны и за счет солнечных потоков могут вырабатывать как тепло с электричеством, так и механическую энергию для создания приводного усилия.

Схемы достаточно простые, но есть немало проблем при эксплуатации такого оборудования. Связано это с тем, что солнечная энергетика в принципе характеризуется целым рядом особенностей: нестабильностью из-за суточных и сезонных колебаний, зависимостью от погоды, низкой плотностью потоков света. Поэтому на этапе проектирования солнечных батарей и аккумуляторов много внимания уделяется исследованию метеорологических факторов.

Волновая энергетика

Волновая энергетика

Процесс выработки электричества из волн происходит в результате преобразования энергии прилива. В основе большинства электростанций такого типа находится бассейн, который организуется или в ходе отделения устья реки, или за счет перекрытия залива плотиной. В образованном барьере устраиваются водопропускные отверстия с гидротурбинами. По мере изменения уровня воды во время приливов происходит вращения турбинных лопастей, что и способствует выработке электричества. Отчасти этот вид энергетики схож с принципами работы гидроэлектростанциями, но сама механика взаимодействия с водным ресурсом имеет существенные отличия. Волновые станции могут использоваться на побережьях морей и океанов, где уровень воды поднимается до 4 м, позволяя вырабатывать мощность до 80 кВт/м. Недостаток таких сооружений связан с тем, что водопропускные сооружения нарушают обмен пресной и морской воды, а это негативно сказывается на жизни морских организмов.

Ветровая энергетика

Еще один доступный для применения в частном хозяйстве способ получения электричества, отличающийся технологической простотой и экономической доступностью. В качестве обрабатываемого ресурса выступает кинетическая энергия воздушных масс, а роль аккумулятора выполняет двигатель с вращающимися лопастями. Обычно в ветровой энергетике применяют генераторы электрического тока, которые активизируются в результате вращения вертикальных или горизонтальных роторов с пропеллерами. Средняя бытовая станция такого типа способна генерировать 2-3 кВт.

Ветровая энергетика

Энергетические технологии будущего

Перспективы российской энергетики

Будущее отечественной энергетики преимущественно связывается с развитием традиционных способов преобразования природных ресурсов. Ключевое место в отрасли должна будет занять ядерная энергетика, но в комбинированном варианте. Инфраструктуру атомных станций должны будут дополнять элементы гидротехники и средства переработки экологически чистого биотоплива. Не последнее место в возможных перспективах развития отводится и солнечным батареям. В России и сегодня этот сегмент предлагает немало привлекательных идей – в частности, панели, которые могут работать даже в зимнее время. Аккумуляторы преобразуют энергию света как такового даже без тепловой нагрузки.

Солнечная энергия

Заключение

Современные проблемы энергетического обеспечения ставят крупнейшие государства перед выбором между мощностью и экологической чистотой выработки тепла и электричества. Большинство освоенных альтернативных источников энергии при всех своих плюсах не способны в полной мере заменить традиционные ресурсы, которые, в свою очередь, могут использоваться еще несколько десятилетий. Поэтому энергию будущего многие специалисты представляют как некий симбиоз различных концепций генерации энергоресурсов. Причем новые технологии ожидаются не только на промышленном уровне, но и в бытовом хозяйстве. В этой связи можно отметить градиент-температурные и биомассовые принципы энергетической выработки.

К таковым относятся невозобновляемые источники энергии, которые использовались преимущественно в прошлом. Эти источники энергии включают уголь, природный газ и нефть, а в последнее время уран. Ядерное деление урана мы обсуждали в гл. 1. В гл. 18 мы подробно обсудим использование нефти и природного газа. Поэтому в данном разделе мы ограничимся рассмотрением применения угля.

Рис. 5.19. Различные источники энергии.

Уголь является древнейшим источником энергии, с которым знакомо человечество. Он представляет собой минерал (рис. 5.20), который образовался из растительного вещества в процессе метаморфизма. Метаморфическими называются горные породы, состав которых подвергся изменениям в условиях высоких давлений, а также высоких температур (см. разд. 13.3). Продуктом первой стадии в процессе образования угля является торф, который представляет собой разложившееся органическое вещество. Уголь образуется из торфа после того, как он покрывается осадочными породами. Эти осадочные породы называются перегруженными. Перегруженные осадки уменьшают содержание влаги в торфе.



Рис. 5.20. Вариант молекулярной модели низкосортного угля. Уголь представляет собой сложную смесь химических веществ, в состав которых входят углерод, водород и кислород, а также небольшие количества азота, серы и примеси других элементов. Кроме того, в состав угля в зависимости от его сорта входит различное количество влаги и различных минералов.

В классификации углей используются три критерия: чистота (определяется относительным содержанием углерода в процентах); тип (определяется составом исходного растительного вещества); сортность (зависит от степени метаморфизма).



Типичный шахтерский поселок в районе угольных шахт в штате Бихар (Индия). Уголь является одним из важнейших источников энергии для человечества.

Таблица 5.16. Содержание углерода в некоторых видах топлива и их теплотворная способность

К традиционным видам энергии относят невозобновляемые источники энергии, которые использовались преимущественно в прошлом. Эти источники энергии со временем были заменены более выгодными и возобновляемыми и на данный момент, используются как второстепенные. Традиционные виды энергии сыграли важную роль в истории становления энергоресурсов и топливо, но отживают свое.

Сено, как традиционный вид топлива

1. Сено, как традиционный вид топлива

1. Дрова

Дрова – это древесина в необработанном виде, используемая в качестве топлива.

Учет древесины как топлива ведут с учетом данных о производстве включая ту часть древесины, которая идет на производство древесного угля, причем для пересчета используют коэффициент 6 при переходе от весовой основы к объемному эквиваленту (от метрических тонн к кубическим метрам) древесного угля.

Фото необработанной древесины

Рис. 2. Фото необработанной древесины

Объем тепла, выделяемый при сгорании дров, зависит от породы дерева и влажности древесины. Влажность снижает теплотворность дров, так как испаряемая вода уносит часть тепловой энергии. Потери от влажности незначительно зависят от начальной температуры дров (точнее, воды в них) и принимаются равными 0,63 кВт*ч на килограмм воды.

Горящая древесина

Рис. 3. Горящая древесина

Абсолютно сухие дрова лиственных пород выдают около 5 кВт·ч тепла на килограмм дров. Абсолютно сухие дрова хвойных пород дают около 5,2 кВт·ч тепла на килограмм дров, в связи с химическим отличием их древесины. В реальных условиях добиться идеальной сухости невозможно.

Одной из примечательных особенностей древесины является удивительная стабильность ее элементарного состава горючей массы. Поэтому удельная теплота сгорания различных пород древесины практически не отличается. Элементарный состав горючей массы стволовой древесины практически одинаков для всех пород. Как правило, варьирование содержания отдельных компонентов горючей массы стволовой древесины находится в пределах погрешности технических измерений.

Теплотой сгорания биомассы называется количество тепла, выделяемое при сгорании 1 кг вещества. Различают высшую и низшую теплоту сгорания.

Высшая теплота сгорания – это количество тепла, выделившееся при сгорании 1 кг биомассы при полной конденсации всех паров воды, образовавшихся при горении, с отдачей ими тепла, израсходованного на их испарение (так называемой скрытой теплоты парообразования).

Низшая теплота сгорания (НТС) – количество тепла, выделившееся при сгорании 1 кг биомассы, без учета тепла, израсходованного на испарение влаги, образовавшейся при сгорании этого топлива.

Как известно одним из основных показателей топлив является их сернистость. Дрова отличаются тем, что имеют очень малые концентрации серы и фосфора, и можно говорить о том, что ими пренебрегают. Как известно, основные потери тепла в любом котлоагрегате является потери тепла с уходящими газами q2. Величина этих потерь определяется температурой отходящих газов. Для избегания серно-кислотной коррозии хвостовых поверхностей нагрева эту температуру при сжигании топлив, содержащих серу, поддерживают не ниже 200-250 °С. При сжигании же древесных отходов, не содержащих серу, эта температура может быть понижена до 100-120 °С, что существенно повышает КПД котлоагрегатов.

2. Древесный уголь

Древесный уголь

Рис. 4. Древесный уголь

В России древесный уголь производили издревле. Родиной промышленного производства древесного угля следует считать Урал. Демидовское чугунно-литейное производство поднялось именно на древесном угле. Все знаменитые решетки и другие виды чугунного литья, украшавшие Петербург, были сделаны на Урале. Возврат к кучному углежжению имел место в первые годы Советской власти на фоне развала промышленности. Затем были построены крупные углевыжигательные заводы (Аша, Сява, Амзя, Молома, Верхняя Синячиха), которые обеспечивали относительно экологически чистое производство угля.

Одновременно, особенно на Северном Урале, продолжали работать разные модификации простейших кирпичных печей.

Древесный уголь (частично тлеющий)

Рис. 5. Древесный уголь (частично тлеющий)

В первом десятилетии XXI века наступил новый этап. Были построены несколько крупных предприятий по производству кристаллического кремния. Каждому из них нужно на несколько порядков больше угля, чем производят кустарные установки. Их требования к качеству угля высоки и определяются регламентами их производства. Потребности таких производств могут быть удовлетворены только за счет грамотно организованного, достаточно крупного и экологически чистого производства. Такие углевыжигательные производства уже работают в ряде регионов России, и строятся новые.

Сегодня в роли главного производителя серого чугуна, выплавляемого на древесном угле выступает Бразилия, экспортирующая большое количество такого чугуна по всему миру. В СССР промышленность с древесного угля перешла на более дешевый и доступный каменноугольный кокс.

3. Жом сахарного тростника

Жом сахарного тростника – это целлюлозный остаток, остающийся после извлечения сахара из сахарного тростника. Он часто используется в качестве топлива в сахарной промышленности.

Резервуары с жомом сахарного тростника

Рис. 6. Резервуары с жомом сахарного тростника

4. Отходы растительного происхождения

Отходы растительного происхождения – это в основном пожнивные остатки (солома зерновых культур, таких как кукуруза, рис, пшеница–сырец и т.д.) и отходы переработки сельскохозяйственной продукции (скорлупа кокосовых орехов, рисовая шелуха, арахисовая шелуха и т.д.), используемые в качестве топлива. Жом сахарного тростника не входит в эту категорию.

Солома зерновых культур

Рис. 7. Солома зерновых культур

Скорлупа кокосовых орехов

Рис. 8. Скорлупа кокосовых орехов

Рисовая шелуха

Рис. 9. Рисовая шелуха

5. Отходы животного происхождения

К отходам животного происхождения относятся навоз и другие несушеные выделения крупного рогатого скота, лошадей, свиней, домашней птицы и т. д. Они могут быть высушены и использованы непосредственно в качестве топлива илипереработаны в метан с использованием методов ферментации и разложения.

Читайте также: