Константа химического равновесия кратко

Обновлено: 13.05.2024

Химическое равновесие присуще обратимым реакциям и не характерно для необратимых химических реакций.

Часто, при осуществлении химического процесса, исходные реагирующие вещества полностью переходят в продукты реакции. Например:

Невозможно получить металлическую медь, проводя реакцию в обратном направлении, т.к. данная реакция необратима. В таких процессах реагенты полностью переходят в продукты, т.е. реакция протекает до конца.

Но основная часть химических реакций обратима, т.е. вероятно параллельное протекание реакции в прямом и обратном направлениях. Иначе говоря, реагенты лишь частично переходят в продукты и реакционная система будет состоять как из реагентов, так и из продуктов. Система в данном случае находится в состоянии химического равновесия.

При обратимых процессах, вначале прямая реакция имеет максимальную скорость, которая постепенно снижается, в связи с уменьшением количества реагентов.

Обратная реакция, наоборот, вначале имеет минимальную скорость, которая увеличивается по мере накапливания продуктов.

В конце концов, наступает момент, когда скорости обоих реакций становятся равными – система приходит в состояние равновесия.

При наступлении состояния равновесия, концентрации компонентов остаются неизменными, но химическая реакция при этом не прекращается.

Т.о. химическое равновесие – это динамичное (подвижное) состояние.

Для наглядности, приведем следующий рисунок:

химическое равновесие

химическое равновесие

Допустим, протекает некая обратимая химическая реакция:

а А + b В = с С + d D

тогда, исходя из закона действующих масс, запишем выражения для скорости прямой υ1 и обратной υ2 реакций:

В состоянии химического равновесия, скорости прямой и обратной реакции равны, т.е.:

Для любого обратимого процесса, при заданных условиях константа равновесия K является величиной постоянной. Она не зависит от концентраций веществ, т.к. при изменении количества одного из веществ, количества других компонентов также меняются.

При изменении условий протекания химического процесса, возможно смещение равновесия.

Принцип Ле-Шателье

Все вышеперечисленные факторы влияют на смещение химического равновесия, которое подчиняется принципу Ле-Шателье:

если изменить одно из условий, при котором система находится в состоянии равновесия – концентрацию, давление или температуру, — то равновесие сместится в направлении той реакции, которая противодействует этому изменению.

Т.е. равновесие стремится к смещению в направлении, приводящему к уменьшению влияния воздействия, которое привело к нарушению состояния равновесия.

Итак, рассмотрим отдельно влияние каждого их факторов на состояние равновесия.

Факторы, влияющие на смещение химического равновесия:

  • изменение концентраций реагентов или продуктов,
  • изменение давления,
  • изменение температуры,
  • внесение катализатора в реакционную среду.

Рассмотрим каждый фактор, влияющий на смещение равновесия подробнее:

Влияние изменения концентраций реагентов или продуктов

покажем на примере процесса Габера:

Если в равновесную систему, состоящую из N2(г), H2(г) и NH3(г), добавить, например, азот, то химическое равновесие должно сместиться в направлении, которое способствовало бы уменьшению количества водорода в сторону его исходного значения, т.е. в направлении образования дополнительного количества аммиака (вправо). При этом одновременно произойдет и уменьшение количества водорода.

При добавлении в систему водорода, также произойдет смещение равновесия в сторону образования нового количества аммиака (вправо). Тогда как внесение в равновесную систему аммиака, согласно принципу Ле-Шателье, вызовет смещение равновесия в сторону того процесса, который благоприятен для образования исходных веществ (влево), т.е. концентрация аммиака должна уменьшится посредством разложения некоторого его количества на азот и водород.

Уменьшение концентрации одного из компонентов, сместит равновесное состояние системы в сторону образования этого компонента.

Влияние изменения давления

Влияние изменения давления имеет смысл, если в исследуемом процессе принимают участие газообразные компоненты и при этом имеет место изменение общего числа молекул. Если общее число молекул в системе остается постоянным, то изменение давления не влияет на ее равновесие, например:

Если полное давление равновесной системы увеличивать посредством уменьшения ее объема, то равновесие сместится в сторону уменьшения объема. Т.е. в сторону уменьшения числа молей газа в системе. В реакции:

из 4 молеул газа (1 N2(г) и 3 H2(г)) образуется 2 молекулы газа (2 NH3(г)), т.е. давление в системе уменьшается. Вследствие чего, рост давления будет способствовать образованию дополнительного количества аммиака, т.е. химическое равновесие сместится в сторону его образования (вправо).

Если температура системы постоянна, то изменение полного давления системы не приведет к изменению константы равновесия К.

Влияние изменения температуры системы

Изменение температуры влияет не только на смещение ее равновесия, но также и на константу равновесия К.

Если равновесной системе, при постоянном давлении, сообщать дополнительную теплоту, то химическое равновесие сместится в сторону поглощения теплоты.

Итак, как видно, прямая реакция протекает с выделением теплоты, а обратная – с поглощением.

При увеличении температуры, равновесие этой реакции смещается в сторону реакции разложения аммиака (влево), т.к. она является эндотермической и ослабляет внешнее воздействие – повышение температуры.

Напротив, охлаждение приводит к смещению равновесия в направлении синтеза аммиака (вправо), т.к. реакция является экзотермической и противодействует охлаждению.

Таким образом, повышение температуры благоприятствует смещению химического равновесия в сторону эндотермической реакции, а падение температуры – в направлении экзотермического процесса.

Константы равновесия всех экзотермических процессов при росте температуры уменьшаются, а эндотермических процессов – увеличиваются.

Влияние катализатора

Внесение катализатора в систему приводит к тому, что скорости как прямой, так и обратной реакций увеличиваются. Изменяется скорость приближения к состоянию равновесия, но k при этом не меняется.

Принцип Ле-Шателье также применим к таким реакциям, в которых компоненты находятся в различных фазовых состояниях, т.е. к гетерогенным реакциям. Тогда речь будет идти о гетерогенном равновесии, например:

Это выражение показывает нам, что не важно, какое количество CaCO3(тв) и CaO(тв) содержится в равновесной системе, пока в ней присутствует хотя бы незначительное количество любого из этих веществ.

Химическое равновесие - состояние химической системы, при котором скорость прямой реакции равна скорости обратной.

В большом количестве заданий, которые мне довелось увидеть, я ни один раз видел, как коверкают это определение. Например, в заданиях верно-неверно предлагают похожий вариант, однако говорят о "равенстве концентраций исходных веществ и продуктов" - это грубая ошибка. Химическое равновесие - равенство скоростей.

Химическое равновесие

Принцип Ле Шателье

В 1884 году французским химиком Анри Ле Шателье был предложен принцип, согласно которому, если на систему, находящуюся в состоянии равновесия, оказать внешнее воздействие (изменить температуру, давление, концентрацию), то система будет стремиться компенсировать внешнее воздействие.

Анри Ле Шателье

Это принцип обоснован термодинамически и доказан. Однако в такой абстрактной формулировке его сложно применить для решения конкретных задач по химическому равновесию. В этой статье я покажу конкретные примеры и обозначу алгоритм действия, чтобы вы могли успешно справляться с заданиями.

Влияние изменения концентрации на химическое равновесие

При увеличении концентрации какого-либо компонента химической реакции, система будет стремиться восстановить равновесие: равновесие будет смещаться в сторону расходования добавленного компонента.

Объясню проще: если вы увеличиваете концентрацию вещества, которое находится в левой части, равновесие сместится в правую сторону. Если добавляете вещество из левой части (продуктов реакции) - смещается в сторону исходных веществ. Посмотрите на пример ниже.

Химическое равновесие и концентрация

Если мы попытаемся удалить какое-либо вещество из системы (уменьшить его концентрацию), то система будет стремиться заполнить "пустое" место, которые мы создали. Наглядно демонстрирую на примере:

Химическое равновесие и концентрация

Можно подвести итог полученным знаниям таким образом: "Куда добавляем - оттуда смещается, откуда берем - туда смещается". Воспользуйтесь этой или придумайте свое правило для запоминания этой закономерности ;)

Изменения давления и химическое равновесие

Если речь в задании идет об изменении давления, то первое, что нужно сделать, это посчитать количество газов в уравнении слева и справа. Твердые вещества и жидкости считать не нужно. Например:

В приведенном уравнении количество молекул газа в левой части - 1, в правой - 2.

Запомните правило: "При увеличении давления равновесие смещается в сторону меньших газов, при уменьшении давления - в сторону больших газов". Для нашей системы правило действует таким образом:

Химическое равновесие и давление

В случае, если слева и справа количество молекул газа одинаково, например, в реакции:

Слева - 2 газа, и справа - 2. В такой реакции увеличение или уменьшение давления не повлияет на химическое равновесие.

Изменение температуры и химическое равновесие

Если в задании увеличивают или уменьшают температуру, то первое, что вы должны оценить: экзотермическая это реакция или эндотермическая.

Следуйте следующему правилу: "При увеличении температуры равновесие смещается в сторону эндотермической реакции, при уменьшении - в сторону экзотермической реакции". У любой обратимой реакции есть экзо- и эндотермические части:

Химическое равновесие и температура

Поэтому данное правило универсально и применимо для всех реакций. Для примера разберем следующие задачи:

Химическое равновесие и температура

Чтобы не осталось белых пятен, возьмем экзотермическую реакцию и повторим с ней подобный эксперимент.

Химическое равновесие и температура

Катализатор и ингибитор

Действие катализатора и ингибитора соответственно касается только ускорения и замедления химической реакции. Они никоим образом не влияют на равновесие.

Константа равновесия

Константой равновесия называют отношения скоростей прямой и обратной реакции. Для реакции типа aA + bB = cC + dD константа равновесия будет записана следующим образом:

Константа равновесия

Решим задачу. Дана реакция: 2NO + Cl2 ⇄ 2NOCl . Вычислите константу равновесия, если равновесные концентрации веществ для данной реакции: c(NO) = 1.8 моль/л , c(Cl2) = 1.2 моль/л , c(NOCl) = 0.8 моль/л.

Задача на константу равновесия

Константу равновесия для данной задачи можно представить в виде 1.64 * 10 -1 .

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

где A и B – исходные вещества прямой реакции; C и D – продукты прямой реакции; а, в, с, и d – стехиометрические коэффициенты.

В начальный момент времени, когда концентрация веществ A и B наибольшая, скорость прямой реакции также будет наибольшей и по закону действующих масс равна

где k1 – константа скорости прямой реакции.

С течением времени концентрация веществ A и B уменьшается, а, следовательно, уменьшается и скорость прямой реакции.

В начальный момент времени концентрация веществ C и D равна нулю, а, следовательно, и скорость обратной реакции равна нулю, с течением времени концентрация веществ C и D возрастает, а, следовательно, возрастает и скорость обратной реакции и она будет равна

где k2 – константа скорости обратной реакции.

В момент достижения равновесия, концентрации принимают значение равновесных, а скорости равны между собой uпр = uобр, следовательно

Перенесем константы скорости в одну сторону, а концентрации в другую:

Отношение двух постоянных величин есть величина постоянная, и называется она константой химического равновесия:

Константа равновесия показывает во сколько раз скорость прямой реакции больше или меньше скорости обратной реакции.

Константа равновесия – это отношение произведения равновесных концентраций продуктов реакции, взятых в степени их стехиометрических коэффициентов к произведению равновесных концентраций исходных веществ, взятых в степени их стехиометрических коэффициентов.

Величина константы равновесия зависит от природы реагирующих веществ и температуры, и не зависит от концентрации в момент равновесия, поскольку их отношение – всегда величина постоянная, численно равная константе равновесия. Если гомогенная реакция идет между веществами в растворе, то константа равновесия обозначается KС, а если между газами, то KР.

где РС, РD, РА и РВ – равновесные давления участников реакции.

Перенесем объем в правую сторону

р = RT, т. е. р = CRT (6.9)

Подставим уравнение (6.9) в (6.7), для каждого реагента и упростим

где Dn – изменение числа молей газообразных участников реакции

Dn = (с + d) – (а + в) (6.11)

Из уравнения (6.12) видно, что KР = КС, если не меняется количество молей газообразных участников реакции (Dn = 0) или газы в системе отсутствуют.

Необходимо отметить, что в случае гетерогенного процесса концентрацию твердой или жидкой фазы в системе не учитывают.

Например, константа равновесия для реакции вида 2А + 3В = С + 4D, при условии, что все вещества газы и имеет вид

а если D – твердое, то

Константа равновесия имеет большое теоретическое и практическое значение. Численное значение константы равновесия позволяет судить о практической возможности и глубине протекания химической реакции.

Если K > 1, то данная реакция протекает со значительным выходом продуктов реакции; если K > 10 4 , то реакция необратима; если K -4 , то такая реакция невозможна.

Зная константу равновесия, можно определить состав реакционной смеси в момент равновесия и рассчитать константу выхода продуктов реакции. Константу равновесия можно определить, используя экспериментальные методы, анализируя количественный состав реакционной смеси в момент равновесия, или применяя теоретические расчеты. Для многих реакций при стандартных условиях константа равновесия – это табличная величина.

6.3. Факторы, влияющие на химическое равновесие. Принцип Ле-Шателье

При внешнем воздействии на систему происходит смещение химического равновесия, т. е. изменяются равновесные концентрации исходных веществ и продуктов реакции. Если в результате внешнего воздействия увеличиваются равновесные концентрации продуктов реакции, то говорят о смещении равновесия вправо (в сторону прямой реакции). Если вследствие внешнего воздействия увеличиваются равновесные концентрации исходных веществ, то говорят о смещении равновесия влево (в сторону обратной реакции).




Влияние различных факторов на смещение химического равновесия отражает принцип Ле-Шателье (1884): если на систему, находящуюся в устойчивом химическом равновесии воздействовать извне, изменяя температуру, давление или концентрацию, то химическое равновесие смещается в том направлении, при котором эффект произведенного воздействия уменьшается.

Необходимо отметить, что катализатор не смещает химическое равновесие, а только ускоряет его наступление.

Рассмотрим влияние каждого фактора на смещение химического равновесия для реакции общего вида:

аA + вB = сC + dD ± Q.

Влияние изменения концентрации. Согласно принципу Ле-Шателье, увеличение концентрации одного из компонентов равновесной химической реакции приводит к сдвигу равновесия в сторону усиления той реакции, при которой происходит химическая переработка этого компонента. И наоборот, уменьшение концентрации одного из компонентов приводит к сдвигу равновесия в сторону образования этого компонента.

Таким образом, увеличение концентрации вещества А или В смещает равновесие в прямом направлении; увеличение концентрации вещества С или D смещает равновесие в обратном направлении; уменьшение концентрации А или В смещает равновесие в обратном направлении; уменьшение концентрации вещества С или D смещает равновесие в прямом направлении. (Схематично можно записать: ­CАили CВ ®; ­CСили CD ¬; ¯ CАили CВ ¬; ¯ CСили CD ®).

Влияние температуры. Общее правило, определяющее влияние температуры на равновесие, имеет следующую формулировку: повышение температуры способствует сдвигу равновесия в сторону эндотермической реакции (- Q); понижение температуры способствует сдвигу равновесия в сторону экзотермической реакции (+ Q).

Реакции, протекающие без тепловых эффектов, не смещают химического равновесия при изменении температуры. Повышение температуры в этом случае приводит лишь к более быстрому установлению равновесия, которое было бы достигнуто в данной системе и без нагревания, но за более длительное время.

Таким образом, в экзотермической реакции (+ Q) увеличение температуры приводит к сдвигу равновесия в обратном направлении и, наоборот, в эндотермической реакции (- Q) увеличение температуры приводит к сдвигу в прямом направлении, а уменьшение температуры – в обратном направлении. (Схематично можно записать: при +Q ­Т ¬; ¯Т ®; при -Q ­Т ®; ¯Т ¬).

Влияние давления. Как показывает опыт, давление оказывает заметное влияние на смещение только тех равновесных реакций, в которых участвуют газообразные вещества, и при этом изменение числа молей газообразных участников реакции (Dn) не равно нулю. При увеличении давления равновесие смещается в сторону той реакции, которая сопровождается образованием меньшего количества молей газообразных веществ, а при понижении давления – в сторону образования большего количества молей газообразных веществ.

Таким образом, если Dn = 0, то давление не влияет на смещение химического равновесия; если Dn 0, то увеличение давления смещает равновесие в обратном направлении, а уменьшение давления – в сторону прямой реакции. (Схематично можно записать: при Dn = 0 Р не влияет; при Dn 0 ­Р ¬, ¯Р ®). Принцип Ле-Шателье применим как к гомогенным, так и к гетерогенным системам и дает качественную характеристику сдвига равновесия.

Рассмотрим обратимую химическую реакцию общего вида, в которой все вещества находятся в одном агрегатном состоянии, например, жидком:

аA + вB D сC + dD,

где A и B – исходные вещества прямой реакции; C и D – продукты прямой реакции; а, в, с, и d – стехиометрические коэффициенты.

В начальный момент времени, когда концентрация веществ A и B наибольшая, скорость прямой реакции также будет наибольшей и по закону действующих масс равна

где k1 – константа скорости прямой реакции.

С течением времени концентрация веществ A и B уменьшается, а, следовательно, уменьшается и скорость прямой реакции.

В начальный момент времени концентрация веществ C и D равна нулю, а, следовательно, и скорость обратной реакции равна нулю, с течением времени концентрация веществ C и D возрастает, а, следовательно, возрастает и скорость обратной реакции и она будет равна

где k2 – константа скорости обратной реакции.

В момент достижения равновесия, концентрации принимают значение равновесных, а скорости равны между собой uпр = uобр, следовательно

Перенесем константы скорости в одну сторону, а концентрации в другую:

Отношение двух постоянных величин есть величина постоянная, и называется она константой химического равновесия:

Константа равновесия показывает во сколько раз скорость прямой реакции больше или меньше скорости обратной реакции.

Константа равновесия – это отношение произведения равновесных концентраций продуктов реакции, взятых в степени их стехиометрических коэффициентов к произведению равновесных концентраций исходных веществ, взятых в степени их стехиометрических коэффициентов.

Величина константы равновесия зависит от природы реагирующих веществ и температуры, и не зависит от концентрации в момент равновесия, поскольку их отношение – всегда величина постоянная, численно равная константе равновесия. Если гомогенная реакция идет между веществами в растворе, то константа равновесия обозначается KС, а если между газами, то KР.

где РС, РD, РА и РВ – равновесные давления участников реакции.

Перенесем объем в правую сторону

р = RT, т. е. р = CRT (6.9)

Подставим уравнение (6.9) в (6.7), для каждого реагента и упростим

где Dn – изменение числа молей газообразных участников реакции

Dn = (с + d) – (а + в) (6.11)

Из уравнения (6.12) видно, что KР = КС, если не меняется количество молей газообразных участников реакции (Dn = 0) или газы в системе отсутствуют.

Необходимо отметить, что в случае гетерогенного процесса концентрацию твердой или жидкой фазы в системе не учитывают.

Например, константа равновесия для реакции вида 2А + 3В = С + 4D, при условии, что все вещества газы и имеет вид

а если D – твердое, то

Константа равновесия имеет большое теоретическое и практическое значение. Численное значение константы равновесия позволяет судить о практической возможности и глубине протекания химической реакции.

Если K > 1, то данная реакция протекает со значительным выходом продуктов реакции; если K > 10 4 , то реакция необратима; если K -4 , то такая реакция невозможна.

Зная константу равновесия, можно определить состав реакционной смеси в момент равновесия и рассчитать константу выхода продуктов реакции. Константу равновесия можно определить, используя экспериментальные методы, анализируя количественный состав реакционной смеси в момент равновесия, или применяя теоретические расчеты. Для многих реакций при стандартных условиях константа равновесия – это табличная величина.

6.3. Факторы, влияющие на химическое равновесие. Принцип Ле-Шателье

При внешнем воздействии на систему происходит смещение химического равновесия, т. е. изменяются равновесные концентрации исходных веществ и продуктов реакции. Если в результате внешнего воздействия увеличиваются равновесные концентрации продуктов реакции, то говорят о смещении равновесия вправо (в сторону прямой реакции). Если вследствие внешнего воздействия увеличиваются равновесные концентрации исходных веществ, то говорят о смещении равновесия влево (в сторону обратной реакции).

Влияние различных факторов на смещение химического равновесия отражает принцип Ле-Шателье (1884): если на систему, находящуюся в устойчивом химическом равновесии воздействовать извне, изменяя температуру, давление или концентрацию, то химическое равновесие смещается в том направлении, при котором эффект произведенного воздействия уменьшается.

Необходимо отметить, что катализатор не смещает химическое равновесие, а только ускоряет его наступление.

Рассмотрим влияние каждого фактора на смещение химического равновесия для реакции общего вида:

аA + вB = сC + dD ± Q.

Влияние изменения концентрации. Согласно принципу Ле-Шателье, увеличение концентрации одного из компонентов равновесной химической реакции приводит к сдвигу равновесия в сторону усиления той реакции, при которой происходит химическая переработка этого компонента. И наоборот, уменьшение концентрации одного из компонентов приводит к сдвигу равновесия в сторону образования этого компонента.

Таким образом, увеличение концентрации вещества А или В смещает равновесие в прямом направлении; увеличение концентрации вещества С или D смещает равновесие в обратном направлении; уменьшение концентрации А или В смещает равновесие в обратном направлении; уменьшение концентрации вещества С или D смещает равновесие в прямом направлении. (Схематично можно записать: ­CАили CВ ®; ­CСили CD ¬; ¯ CАили CВ ¬; ¯ CСили CD ®).

Влияние температуры. Общее правило, определяющее влияние температуры на равновесие, имеет следующую формулировку: повышение температуры способствует сдвигу равновесия в сторону эндотермической реакции (- Q); понижение температуры способствует сдвигу равновесия в сторону экзотермической реакции (+ Q).

Реакции, протекающие без тепловых эффектов, не смещают химического равновесия при изменении температуры. Повышение температуры в этом случае приводит лишь к более быстрому установлению равновесия, которое было бы достигнуто в данной системе и без нагревания, но за более длительное время.

Таким образом, в экзотермической реакции (+ Q) увеличение температуры приводит к сдвигу равновесия в обратном направлении и, наоборот, в эндотермической реакции (- Q) увеличение температуры приводит к сдвигу в прямом направлении, а уменьшение температуры – в обратном направлении. (Схематично можно записать: при +Q ­Т ¬; ¯Т ®; при -Q ­Т ®; ¯Т ¬).

Влияние давления. Как показывает опыт, давление оказывает заметное влияние на смещение только тех равновесных реакций, в которых участвуют газообразные вещества, и при этом изменение числа молей газообразных участников реакции (Dn) не равно нулю. При увеличении давления равновесие смещается в сторону той реакции, которая сопровождается образованием меньшего количества молей газообразных веществ, а при понижении давления – в сторону образования большего количества молей газообразных веществ.

Таким образом, если Dn = 0, то давление не влияет на смещение химического равновесия; если Dn 0, то увеличение давления смещает равновесие в обратном направлении, а уменьшение давления – в сторону прямой реакции. (Схематично можно записать: при Dn = 0 Р не влияет; при Dn 0 ­Р ¬, ¯Р ®). Принцип Ле-Шателье применим как к гомогенным, так и к гетерогенным системам и дает качественную характеристику сдвига равновесия.

Равновесным считается состояние системы, которое остается неизменным, причем это состояние не обусловлено действием каких-либо внешних сил. Состояние системы реагирующих веществ, при котором скорость прямой реакции становится равной скорости обратной реакции, называется химическим равновесием. Такое равновесие называется еще подвижным или динамическим равновесием.

  1. Состояние системы остается неизменным во времени при сохранении внешних условий.
  2. Равновесие является динамическим, то есть обусловлено протеканием прямой и обратной реакции с одинаковыми скоростями.
  3. Любое внешнее воздействие вызывает изменение в равновесии системы; если внешнее воздействие снимается, то система снова возвращается в исходное состояние.
  4. К состоянию равновесия можно подойти с двух сторон – как со стороны исходных веществ, так и со стороны продуктов реакции.
  5. В состоянии равновесия энергия Гиббса достигает своего минимального значения.

Влияние изменения внешних условий на положение равновесия определяется принципом Ле Шателье (принципом подвижного равновесия):

Если на систему, находящуюся в состоянии равновесия, производить какое–либо внешнее воздействие, то в системе усилится то из направлений процесса, которое ослабляет эффект этого воздействия, и положение равновесия сместится в том же направлении.

Принцип Ле Шателье применим не только к химическим процессам, но и к физическим, таким как кипение, кристаллизация, растворение и т. д.

Рассмотрим влияние различных факторов на химическое равновесие на примере реакции окисления NO:

При повышении температуры равновесие сдвигается в сторону эндотермической реакции, при понижении температуры – в сторону экзотермической реакции.

Степень смещения равновесия определяется абсолютной величиной теплового эффекта: чем больше по абсолютной величине энтальпия реакции ΔH, тем значительнее влияние температуры на состояние равновесия.

В рассматриваемой реакции синтеза оксида азота (IV) повышение температуры сместит равновесие в сторону исходных веществ.

Сжатие смещает равновесие в направлении процесса, который сопровождается уменьшением объема газообразных веществ, а понижение давления сдвигает равновесие в противоположную сторону.

В рассматриваемом примере в левой части уравнения находится три объема, а в правой – два. Так как увеличение давления благоприятствует процессу, протекающему с уменьшением объема, то при повышении давления равновесие сместится вправо, т.е. в сторону продукта реакции – NO2. Уменьшение давления сместит равновесие в обратную сторону. Следует обратить внимание на то, что, если в уравнении обратимой реакции число молекул газообразных веществ в правой и левой частях равны, то изменение давления не оказывает влияния на положение равновесия.

Для рассматриваемой реакции введение в равновесную систему дополнительных количеств NO или O2 вызывает смещение равновесия в том направлении, при котором концентрация этих веществ уменьшается, следовательно, происходит сдвиг равновесия в сторону образования NO2. Увеличение концентрации NO2 смещает равновесие в сторону исходных веществ.

Катализатор одинаково ускоряет как прямую, так и обратную реакции и поэтому не влияет на смещение химического равновесия.

При введении в равновесную систему (при Р = const) инертного газа концентрации реагентов (парциальные давления) уменьшаются. Поскольку рассматриваемый процесс окисления NO идет с уменьшением объема, то при добавлении инертного газа равновесие сместится в сторону исходных веществ.

Для химической реакции:

константа химической реакции Кс есть отношение:

В этом уравнении в квадратных скобках – концентрации реагирующих веществ, которые устанавливаются при химическом равновесии, т.е. равновесные концентрации веществ.

Константа химического равновесия связана с изменением энергии Гиббса уравнением:

ΔGT о = – RTlnK (2)

Задача 1. При некоторой температуре равновесные концентрации в системе 2CO (г) + O2 (г)→2CO2 (г) составляли: [CO] = 0,2 моль/л, [O2] = 0,32 моль/л, [CO2] = 0,16 моль/л. Определите константу равновесия при этой температуре и исходные концентрации CO и O2, если исходная смесь не содержала СО2.

Решение.

Во второй строке под Спрореагир понимается концентрация прореагировавших исходных веществ и концентрация образующегося CO2, причем, Сисходн= Спрореагир + Сравн.

Задача 2. Используя справочные данные, рассчитайте константу равновесия процесса

Решение.

ΔG298 о = 2·(- 16,71) кДж = -33,42·10 3 Дж.

lnK = 33,42·10 3 /(8,314× 298) = 13,489. K = 7,21× 10 5 .

Задача 3. Определите равновесную концентрацию HI в системе

если при некоторой температуре константа равновесия равна 4, а исходные концентрации H2 , I2 и HI равны, соответственно, 1, 2 и 0 моль/л.

Решение. Пусть к некоторому моменту времени прореагировало x моль/л H2.

Вещество H2 I2 HI
сисходн., моль/л 1 2 0
спрореагир., моль/л x x 2x
cравн., моль/л 1-x 2-x 2x

Тогда, К = (2х) 2 /((1-х)(2-х))

Решая это уравнение, получаем x = 0,67.

Значит, равновесная концентрация HI равна 2× 0,67 = 1,34 моль/л.

Решение.

Если К = 1, то ΔG о T = — RTlnK = 0;

ΔН о 298 = -202 – (- 115,9) = -86,1 кДж = — 86,1× 10 3 Дж;

ΔS о 298 = 239,7 – 218,7 – 130,52 = -109,52 Дж/К;

0 = — 86100 — Т·(-109,52)

Задача 5. Для реакции SO2(Г) + Cl2(Г) →SO2Cl2(Г) при некоторой температуре константа равновесия равна 4. Определите равновесную концентрацию SO2Cl2, если исходные концентрации SO2, Cl2 и SO2Cl2 равны 2, 2 и 1 моль/л соответственно.

Решение. Пусть к некоторому моменту времени прореагировало x моль/л SO2.

Вещество SO2 Cl2 SO2Cl2
cисходн., моль/л 2 2 1
cпрореагир., моль/л x x х
cравн., моль/л 2-x 2-x x + 1

Решая это уравнение, находим: x1 = 3 и x2 = 1,25. Но x1 = 3 не удовлетворяет условию задачи.

Следовательно, [SO2Cl2] = 1,25 + 1 = 2,25 моль/л.

1. В какой из приведенных реакций повышение давления сместит равновесие вправо? Ответ обоснуйте.

Так как увеличение давления благоприятствует процессу, протекающему с уменьшением количества
газообразных веществ, то равновесие сместится вправо в реакции 3.

2. При некоторой температуре равновесные концентрации в системе:

составляли: [HBr] = 0,3 моль/л, [H2] = 0,6 моль/л, [Br2] = 0,6 моль/л. Определите константу равновесия и исходную концентрацию HBr.

К = 4; исходная концентрация HBr составляет 1,5 моль/л.

3. Для реакции H2(г) + S(г) →H2S(г) при некоторой температуре константа равновесия равна 2. Определите равновесные концентрации H2 и S, если исходные концентрации H2, S и H2S равны, соответственно, 2, 3 и 0 моль/л.

[H2] = 0,5 моль/л; [S] = 1,5 моль/л.

4. Используя справочные данные, вычислите температуру, при которой константа равновесия процесса

становится равной 1. Примите, что ΔН о Т≈ΔН о 298, а ΔS о T≈ΔS о 298

5. Используя справочные данные, рассчитайте константу равновесия процесса:

7. При температуре 500 К константа равновесия процесса:

равна 3,4·10 -5 . Вычислите Δ G о 500.

8. При температуре 800 К константа равновесия процесса н-С6Н14(г)+ 2С3Н6(г)2(г) равна 8,71. Определите ΔG о f,8003Н6(г)), если ΔG о f,800(н-С6Н14(г)) = 305,77 кДж/моль.

9. Для реакции СО(г) + Cl2(г) →СO2Cl2(г) при некоторой температуре равновесная концентрация СO2Cl2(г) равна 1,2 моль/л. Определите константу равновесия данного процесса, если исходные концентрации СО(г) и Cl2(г) равны соответственно 2,0 и 1,8 моль/л.

10. При некоторой температуре равновесные концентрации в системе 2SО2(г) + О2(г) →2SO3(г) составляли: [SО2 ]=0,10 моль/л, [О2]=0,16 моль/л, [SО3]=0,08 моль/л. Вычислите константу равновесия и исходные концентрации SО2 и О2.

К=4,0; исходная концентрация SО2 составляет 0,18 моль/л;
исходная концентрация О2 составляет 0,20 моль/л.


Количественная характеристика, показывающая направление реакции и смещение концентрации веществ, называется константой равновесия химической реакции. Константа равновесия зависит от температуры и природы реагентов.

Обратимые и необратимые реакции

Все реакции можно разделить на два типа:

  • обратимые, одновременно протекающие в двух взаимно противоположных направлениях;
  • необратимые, протекающие в одном направлении с полным расходом хотя бы одного исходного вещества.

При необратимых реакциях обычно образуются нерастворимые вещества в виде осадка или газа. К таким реакциям относятся:


Рис. 1. Образование осадка BaSO4.

Обратимые реакции возможны только в определённых неизменных условиях. Исходные вещества дают новое вещество, которое тут же распадается на составные части и собирается вновь. Например, в результате реакции 2NO + O2 ↔ 2NO2 оксид азота (IV) легко разлагается на оксид азота (II) и кислород.

Равновесие

Через определённое время скорость обратимой реакции замедляется. Достигается химическое равновесие – состояние, при котором не происходит изменения концентрации исходных веществ и продуктов реакции с течением времени, так как скорость прямой и обратной реакций уравниваются. Равновесие возможно только в гомогенных системах, то есть все реагирующие вещества являются либо жидкостями, либо газами.

Рассмотрим химическое равновесие на примере реакции взаимодействия водорода с йодом:

Как только смешиваются два реагента – водород и йод – йодоводорода ещё не существует, так как простые вещества только вступают в реакцию. Большое количество исходных веществ активно реагируют друг с другом, поэтому скорость прямой реакции будет максимальной. При этом обратная реакция не протекает, и скорость её равна нулю.

Скорость прямой реакции можно выразить графически:

где kпр – константа скорости прямой реакции.

Со временем реагенты расходуются, их концентрация снижается. Соответственно, скорость прямой реакции уменьшается. Одновременно с этим увеличивается концентрация нового вещества – йодоводорода. При накоплении он начинает разлагаться, и скорость обратной реакции повышается. Её можно выразить как

Йодоводород в квадрате, так как коэффициент молекулы равен двум.

В определённый момент скорости прямой и обратной реакции уравниваются. Наступает состояние химического равновесия.

График зависимости скорости реакции от времени

Рис. 2. График зависимости скорости реакции от времени.

Равновесие можно сместить либо в сторону исходных веществ, либо в сторону продуктов реакции. Смещение под воздействием внешних факторов называется принципом Ле Шателье. На равновесие влияют температура, давление, концентрация одного из веществ.

Расчёт константы

В состоянии равновесия обе реакции идут, но при этом концентрации веществ находятся в равновесии (образуются равновесные концентрации), так как уравновешенны скорости (νпр = νобр).

Химическое равновесие характеризуется константой химического равновесия, которая выражается сводной формулой:

Константы скорости реакции можно выразить через соотношение скорости реакции. Возьмём условное уравнение обратной реакции:

Читайте также: