Компилятор это в информатике кратко

Обновлено: 30.06.2024

Компилировать — проводить трансляцию машинной программы с проблемно-ориентированного языка на машинно-ориентированный язык. [3]

Содержание

Виды компиляторов [2]

  • Векторизующий. Транслирует исходный код в машинный код компьютеров, оснащённых векторным процессором.
  • Гибкий. Сконструирован по модульному принципу, управляется таблицами и запрограммирован на языке высокого уровня или реализован с помощью компилятора компиляторов.
  • Диалоговый. См.: диалоговый транслятор.
  • Инкрементальный. Повторно транслирует фрагменты программы и дополнения к ней без перекомпиляции всей программы.
  • Интерпретирующий (пошаговый). Последовательно выполняет независимую компиляцию каждого отдельного оператора (команды) исходной программы.
  • Компилятор компиляторов. Транслятор, воспринимающий формальное описание языка программирования и генерирующий компилятор для этого языка.
  • Отладочный. Устраняет отдельные виды синтаксических ошибок.
  • Резидентный. Постоянно находится в оперативной памяти и доступен для повторного использования многими задачами.
  • Самокомпилируемый. Написан на том же языке, с которого осуществляется трансляция.
  • Универсальный. Основан на формальном описании синтаксиса и семантики входного языка. Составными частями такого компилятора являются: ядро, синтаксический и семантический загрузчики.

Виды компиляции [2]

  • Пакетная. Компиляция нескольких исходных модулей в одном пункте задания.
  • Построчная. То же, что и интерпретация.
  • Условная. Компиляция, при которой транслируемый текст зависит от условий, заданных в исходной программе директивами компилятора. Так, в зависимости от значения некоторой константы, можно включать или выключать трансляцию части текста программы.

Структура компилятора

Процесс компиляции состоит из следующих этапов:

В конкретных реализациях компиляторов эти этапы могут быть разделены или, наоборот, совмещены в том или ином виде.

Генерация кода

Генерация машинного кода

Большинство компиляторов переводит программу с некоторого высокоуровневого языка программирования в машинный код, который может быть непосредственно выполнен процессором. Как правило, этот код также ориентирован на исполнение в среде конкретной операционной системы, поскольку использует предоставляемые ею возможности (системные вызовы, библиотеки функций). Архитектура (набор программно-аппаратных средств), для которой производится компиляция, называется целевой машиной.

Результат компиляции — исполнимый модуль — обладает максимальной возможной производительностью, однако привязан к определённой операционной системе и процессору (и не будет работать на других).

Для каждой целевой машины (IBM, Apple, Sun и т. д.) и каждой операционной системы или семейства операционных систем, работающих на целевой машине, требуется написание своего компилятора. Существуют также так называемые кросс-компиляторы, позволяющие на одной машине и в среде одной ОС генерировать код, предназначенный для выполнения на другой целевой машине и/или в среде другой ОС. Кроме того, компиляторы могут оптимизировать код под разные модели из одного семейства процессоров (путём поддержки специфичных для этих моделей особенностей или расширений наборов инструкций). Например, код, скомпилированный под процессоры семейства Pentium, может учитывать особенности распараллеливания инструкций и использовать их специфичные расширения — MMX, SSE и т. п.

Некоторые компиляторы переводят программу с языка высокого уровня не прямо в машинный код, а на язык ассемблера. Это делается для упрощения части компилятора, отвечающей за кодогенерацию, и повышения его переносимости (задача окончательной генерации кода и привязки его к требуемой целевой платформе перекладывается на ассемблер), либо для возможности контроля и исправления результата компиляции программистом.

Генерация байт-кода

Некоторые реализации интерпретируемых языков высокого уровня (например, Perl) используют байт-код для оптимизации исполнения: затратные этапы синтаксического анализа и преобразование текста программы в байт-код выполняются один раз при загрузке, затем соответствующий код может многократно использоваться без промежуточных этапов.

Динамическая компиляция

Из-за необходимости интерпретации байт-код выполняется значительно медленнее машинного кода сравнимой функциональности, однако он более переносим (не зависит от операционной системы и модели процессора). Чтобы ускорить выполнение байт-кода, используется динамическая компиляция, когда виртуальная машина транслирует псевдокод в машинный код непосредственно перед его первым исполнением (и в при повторных обращениях к коду исполняется уже скомпилированный вариант).

Декомпиляция

Существуют программы, которые решают обратную задачу — перевод программы с низкоуровневого языка на высокоуровневый. Этот процесс называют декомпиляцией, а такие программы — декомпиляторами. Но поскольку компиляция — это процесс с потерями, точно восстановить исходный код, скажем, на C++, в общем случае невозможно. Более эффективно декомпилируются программы в байт-кодах — например, существует довольно надёжный декомпилятор для Flash. Разновидностью декомпилирования является дизассемблирование машинного кода в код на языке ассемблера, который почти всегда выполняется успешно (при этом сложность может представлять самомодифицирующийся код или код, в котором собственно код и данные не разделены). Связано это с тем, что между кодами машинных команд и командами ассемблера имеется практически взаимно-однозначное соответствие.

Раздельная компиляция

Раздельная компиляция (англ. separate compilation ) — трансляция частей программы по отдельности с последующим объединением их компоновщиком в единый загрузочный модуль. [2]

Исторически особенностью компилятора, отражённой в его названии (англ. compile — собирать вместе, составлять), являлось то, что он производил как трансляцию, так и компоновку, при этом компилятор мог порождать сразу абсолютный код. Однако позже, с ростом сложности и размера программ (и увеличением времени, затрачиваемого на перекомпиляцию), возникла необходимость разделять программы на части и выделять библиотеки, которые можно компилировать независимо друг от друга. При трансляции каждой части программы компилятор порождает объектный модуль, содержащий дополнительную информацию, которая потом, при компоновке частей в исполнимый модуль, используется для связывания и разрешения ссылок между частями.

Интересные факты

Компиля́тор — программа или техническое средство, выполняющее компиляцию [1] [2] [3] .

Компили́ровать — проводить трансляцию машинной программы с предметно-ориентированного языка на машинно-ориентированный язык [3] .

Содержание

Виды компиляторов

  • Векторизующий. Транслирует исходный код в машинный код компьютеров, оснащённых векторным процессором.
  • Гибкий. Сконструирован по модульному принципу, управляется таблицами и запрограммирован на языке высокого уровня или реализован с помощью компилятора компиляторов.
  • Диалоговый. См.: диалоговый транслятор.
  • Инкрементальный. Повторно транслирует фрагменты программы и дополнения к ней без перекомпиляции всей программы.
  • Интерпретирующий (пошаговый). Последовательно выполняет независимую компиляцию каждого отдельного оператор оператора (команды) исходной программы.
  • Компилятор компиляторов. Транслятор, воспринимающий формальное описание языка программирования и генерирующий компилятор для этого языка.
  • Отладочный. Устраняет отдельные виды синтаксических ошибок.
  • Резидентный. Постоянно находится в оперативной памяти и доступен для повторного использования многими задачами.
  • Самокомпилируемый. Написан на том же языке, с которого осуществляется трансляция.
  • Универсальный. Основан на формальном описании синтаксиса и семантики входного языка. Составными частями такого компилятора являются: ядро, синтаксический и семантический загрузчики.

Виды компиляции

  • Пакетная. Компиляция нескольких исходных модулей в одном пункте задания.
  • Построчная. Машинный код порождается и затем исполняется для каждой завершённой грамматической конструкции языка. Внешне воспринимается как интерпретация, но устройство иное.
  • Условная. Компиляция, при которой транслируемый текст зависит от условий, заданных в исходной программе директивами компилятора. Так, в зависимости от значения некоторой константы, можно включать или выключать трансляцию части текста программы.

Структура компилятора

Процесс компиляции состоит из следующих этапов:

В конкретных реализациях компиляторов эти этапы могут быть разделены или, наоборот, совмещены в том или ином виде.

Генерация кода

Генерация машинного кода

Большинство компиляторов переводит программу с некоторого высокоуровневого языка программирования в машинный код, который может быть непосредственно выполнен процессором. Как правило, этот код также ориентирован на исполнение в среде конкретной операционной системы, поскольку использует предоставляемые ею возможности (системные вызовы, библиотеки функций). Архитектура (набор программно-аппаратных средств), для которой производится компиляция, называется целевой машиной.

Результат компиляции — исполнимый модуль — обладает максимальной возможной производительностью, однако привязан к определённой операционной системе и процессору (и не будет работать на других).

Для каждой целевой машины (IBM, Apple, Sun и т. д.) и каждой операционной системы или семейства операционных систем, работающих на целевой машине, требуется написание своего компилятора. Существуют также так называемые кросс-компиляторы, позволяющие на одной машине и в среде одной ОС генерировать код, предназначенный для выполнения на другой целевой машине и/или в среде другой ОС. Кроме того, компиляторы могут оптимизировать код под разные модели из одного семейства процессоров (путём поддержки специфичных для этих моделей особенностей или расширений наборов инструкций). Например, код, скомпилированный под процессоры семейства Pentium, может учитывать особенности распараллеливания инструкций и использовать их специфичные расширения — MMX, SSE и т. п.

Некоторые компиляторы переводят программу с языка высокого уровня не прямо в машинный код, а на язык ассемблера (примером может служить PureBasic, транслирующий бейсик-код в ассемблер FASM). Это делается для упрощения части компилятора, отвечающей за кодогенерацию, и повышения его переносимости (задача окончательной генерации кода и привязки его к требуемой целевой платформе перекладывается на ассемблер), либо для возможности контроля и исправления результата компиляции программистом.

Генерация байт-кода

Некоторые реализации интерпретируемых языков высокого уровня (например, Perl) используют байт-код для оптимизации исполнения: затратные этапы синтаксического анализа и преобразование текста программы в байт-код выполняются один раз при загрузке, затем соответствующий код может многократно использоваться без промежуточных этапов.

Динамическая компиляция

Из-за необходимости интерпретации байт-код выполняется значительно медленнее машинного кода сравнимой функциональности, однако он более переносим (не зависит от операционной системы и модели процессора). Чтобы ускорить выполнение байт-кода, используется динамическая компиляция, когда виртуальная машина транслирует псевдокод в машинный код непосредственно перед его первым исполнением (и при повторных обращениях к коду исполняется уже скомпилированный вариант).

Декомпиляция

Существуют программы, которые решают обратную задачу — перевод программы с низкоуровневого языка на высокоуровневый. Этот процесс называют декомпиляцией, а такие программы — декомпиляторами. Но поскольку компиляция — это процесс с потерями, точно восстановить исходный код, скажем, на C++, в общем случае невозможно. Более эффективно декомпилируются программы в байт-кодах — например, существует довольно надёжный декомпилятор для Adobe Flash. Разновидностью декомпилирования является дизассемблирование машинного кода в код на языке ассемблера, который почти всегда выполняется успешно (при этом сложность может представлять самомодифицирующийся код или код, в котором собственно код и данные не разделены). Связано это с тем, что между кодами машинных команд и командами ассемблера имеется практически взаимно-однозначное соответствие.

Раздельная компиляция

Раздельная компиляция (англ. separate compilation ) — трансляция частей программы по отдельности с последующим объединением их компоновщиком в единый загрузочный модуль.

Исторически особенностью компилятора, отражённой в его названии (англ. compile — собирать вместе, составлять), являлось то, что он производил как трансляцию, так и компоновку, при этом компилятор мог порождать сразу машинный код. Однако позже, с ростом сложности и размера программ (и увеличением времени, затрачиваемого на перекомпиляцию), возникла необходимость разделять программы на части и выделять библиотеки, которые можно компилировать независимо друг от друга. При трансляции каждой части программы компилятор порождает объектный модуль, содержащий дополнительную информацию, которая потом, при компоновке частей в исполнимый модуль, используется для связывания и разрешения ссылок между частями.

Интересные факты


Если вы программист, то наверняка слышали слово “компилятор”. Но знаете ли вы, что это такое на самом деле? Вы когда-нибудь задумывались, что происходит под капотом, когда вы запускаете команду javac (если у вас код на Java)? Вы когда-нибудь хотели создать свой собственный язык программирования? — и просто заводили бесполезный репозиторий GitHub, где все равно есть только один readme.md, потому что вы даже не знаете, с чего начать. Я думаю, что начинать стоит с этого: узнать больше о компиляторе.

Итак, в этой статье мы разберёмся, что представляет собой компилятор. Если вы опытный программист, который знает про компилятор каждую мелочь, то извините, эта статья не для вас. Но если вы — тот самый парень из абзаца выше, то вперёд за мной, в кроличью нору. На протяжении статьи я буду обсуждать следующие подтемы:

  • введение в компилятор;
  • типы компиляторов;
  • архитектура компилятора.

Мне хочется, чтобы к концу статьи вы могли понимать, что происходит под капотом, когда вы запускаете команду javac , а также получили некоторое представление о том, как написать свой собственный язык программирования.

Компилятор — это не что иное, как переводчик исходного кода.

Задача компилятора — перевести исходный код с одного языка на другой. Это означает, что если вы скормите компилятору исходный код Java, то сможете получить исходный код Python (не самый лучший пример, просто для понимания сути. На самом деле вы получите байт-код Java, который можно запустить на JVM). Для выполнения этого процесса у компилятора есть несколько взаимосвязанных компонентов.

Мы можем классифицировать компиляторы по-разному. В этой статье я расскажу о двух способах классификации компиляторов, однако особенно углубляться в это не буду.

Классификация компиляторов в соответствии с этапами компиляции

Здесь мы рассмотрим количество этапов, которые проходит компилятор. Некоторые компиляторы непосредственно преобразуют высокоуровневый исходный код в машинный код, а некоторые — сначала преобразуют высокоуровневый исходный код в промежуточное представление перед преобразованием в машинный код.

Таким образом, в соответствии с этой классификацией можно выделить три типа компиляторов:

  1. Однопроходной компилятор.
  2. Двухпроходной компилятор.
  3. Многопроходной компилятор.

Если вы хотите узнать больше об этой классификации компиляторов, посмотрите сюда.

Классификация компиляторов в соответствии с исходным кодом и целевым кодом

Для преобразования исходного кода в целевой применяются разные подходы. Некоторые компиляторы преобразуют код на высокоуровневом языке в машинный. Некоторые компиляторы преобразуют с одного языка высокого уровня на другой язык высокого уровня. Таким образом, здесь выделяются следующие типы:

  1. Кросс-компиляторы — такие компиляторы работают на одной платформе и производят код для запуска на другой платформе. Например, компилятор работает на платформе X и создает код для запуска на платформе Y. Такими компиляторами пользуются разработчики встроенных систем.
  2. Традиционные компиляторы — нам лучше всего знаком именно этот тип компиляторов. Такие компиляторы преобразуют исходный код языка высокого уровня в исходный код машинного языка. Набор компиляторов GCC преобразует эти языки в низкоуровневые, которые выполняются на этих платформах.
  3. Транспилеры — они преобразуют исходный код языка высокого уровня в исходный код другого языка высокого уровня. Например, Babel transpiler преобразует ECMAScript 2015+ в JavaScript.
  4. Декомпиляторы — они принимают низкоуровневый исходный код в качестве входных данных и пытаются создать высокоуровневый исходный код, который может быть успешно перекомпилирован.

Когда компилятор компилирует (переводит) исходный код, он проходит несколько этапов:

  1. Исходный код.
  2. Лексический анализ.
  3. Синтаксический анализ.
  4. Семантический анализ.
  5. Промежуточная генерация кода.
  6. Оптимизация кода.
  7. Генерация кода.
  8. Целевой код.

Мы можем разделить все эти этапы на две фазы, примерно как фронтенд и бэкенд. Эти фазы включают в себя следующие этапы:

Фронтенд

  • Лексический анализ.
  • Синтаксический анализ.
  • Семантический анализ.
  • Генерация промежуточного кода.

Бэкенд

В следующем разделе я кратко опишу, что происходит на каждой фазе. Если вы не программируете компиляторы, то нормально иметь о них лишь поверхностное представление, но если вы хотите разработать компилятор сами, то вам стоит подробно изучить их работу.

Лексический анализ

Теперь вы знаете, что компилятор — это программа, которая преобразует исходный код в другой исходный код. Компилятор получает исходный код в виде файла. Этот файл содержит код в текстовом формате, но компилятор не может работать с этим текстом. Необходимо преобразовать этот текст в некоторый другой формат, понятный компилятору. Для этого компилятор разбивает текст по маркерам. Помните, что эти маркеры заранее определены в грамматике языка. Маркеры пригодятся на следующих этапах процесса компиляции:


KEYWORD, BRACKET, IDENTIFIER, OPERATOR, NUMBER на приведенной выше диаграмме — это и есть маркеры. Компилятор использует лексический анализ для идентификации маркеров, и если он получает маркер, который не определен заранее в грамматике языка, то это будет считаться ошибкой.

Синтаксический анализ (парсинг)

На этом этапе компилятор проверяет, расположены ли идентифицированные ранее маркеры в правильном порядке. Для этого в каждом языке есть набор правил, называемый грамматикой. Во-первых, компилятор пытается построить структуру данных — дерево синтаксического анализа. Если компилятор смог успешно построить дерево синтаксического анализа в соответствии с заранее определенными правилами грамматики, то в исходном коде нет синтаксических ошибок. В противном случае возникают ошибки и компилятор их покажет.


Здесь мы сначала определили грамматику. Затем компилятор пытается построить дерево синтаксического анализа для исходного кода 2 + 3 * 3. В этом случае компилятору удается построить дерево синтаксического анализа (с правой стороны) в соответствии с грамматикой, следовательно в этой программе нет синтаксических ошибок.

Семантический анализ

Просто потому, что программа не содержит синтаксических ошибок, код еще не может считаться правильным. Рассмотрим предложение ниже.

Теперь предположим, что все слова в этом предложении — правильные лексемы, идентифицированные на этапе лексического анализа. Как люди, мы знаем, что в предложении на английском языке есть порядок подлежащее -> сказуемое -> дополнение.


Компилятор при анализе синтаксиса может решить, что в этом предложении нет синтаксических ошибок, потому что маркеры (слова) расположены в правильном порядке.

Теперь рассмотрим предложение ниже.


Предположим, что eat — правильный маркер в соответствии с грамматикой. Таким образом, предложение признается правильным на этапе лексического и синтаксического анализа, поскольку слова расположены в правильном порядке. Но в этом предложении нет никакого смысла — никто не может есть компиляторы.

Итак, согласно этапу семантического анализа, эта программа содержит ошибку. Мы называем эту разновидность ошибок семантическими ошибками. Взгляните на этот простой Java-код:

Здесь нет синтаксических ошибок. Все маркеры упорядочены правильно. Но на пятой строке int total = c + d — не имеет никакого значения, так как идентификаторы c и d не определены. Это и есть семантическая ошибка.

Генерация промежуточного кода

Любой компилятор может непосредственно генерировать машинный код из исходного. Так зачем же тогда нужна фаза генерации промежуточного кода?

Существуют различные типы машин. Таким образом, машинный код зависит от системы, а высокоуровневый исходный код — нет. Если компилятор непосредственно генерирует машинный код из исходного кода, то каждая машина нуждается в полной компиляции от фронта к бэку. Но когда компилятор генерирует промежуточный код (промежуточное представление), он уже может генерировать машинный код для каждой машины с его помощью, без повторения лексического анализа и парсинга для каждой машины.


Существует два основных типа промежуточных представлений:

  • Высокоуровневый — более близкий к высокоуровневому языку.
  • Низкоуровневый — более близкий к машинному коду.

Существует также несколько способов представления промежуточного представления.

  • AST — абстрактное синтаксическое дерево (графическое).
  • Постфиксная нотация.
  • Трехадресный код.
  • Двухадресный код.

Оптимизация кода

Этап оптимизации кода выполняет две основные задачи: минимизация времени или минимизация ресурсов. Что все это значит? Когда пользователь пишет код, нет ничего, кроме инструкций. Когда процессор выполняет эти инструкции, требуют время и ресурсы памяти. Таким образом, целью этапа оптимизации кода становится сокращение времени выполнения и ресурсов, потребляемых программой. Оптимизатор кода всегда следует трем правилам:

  1. Выходной код никоим образом не должен изменять значение исходного кода.
  2. Минимизируйте либо время, либо ресурсы, либо и то и другое вместе.
  3. Фаза оптимизации кода сама по себе не должна занимать много времени и замедлять весь процесс компиляции.

Существует два способа оптимизации кода:

  • Машинно-независимая оптимизация.
  • Машинно-зависимая оптимизация.

Машинно-независимая оптимизация принимает промежуточное представление относительно входных данных и не заботится ни о каких регистрах процессора и ячейках памяти. Она происходит после генерации промежуточного кода.

При машинно-зависимой оптимизации кода компилятор заботится о регистрах процессора, расположениях памяти и архитектуре машины. Она происходит после генерации машинного кода.

Генерация кода

Генерация кода — это последний этап процесса компиляции. Да, после может следовать машинно-зависимая оптимизация кода. Но мы можем рассматривать и то, и другое вместе как генерацию кода. На этом этапе компилятор генерирует машинно-зависимый код. Генератор кода должен иметь представление о среде выполнения целевой машины и ее наборе команд.

На этом этапе компилятор выполняет несколько основных задач:

  • Выбор инструкций — какую инструкцию использовать.
  • Создание расписания инструкций — в каком порядке должны быть упорядочены инструкции.
  • Распределение регистров — выделение переменных в регистры процессора.
  • Отладка данных — отладка кода с помощью отладочных данных.

Итоговый машинный код, сгенерированный генератором кода, может быть выполнен на целевой машине. Именно так высокоуровневый исходный код, который мы пишем в нашем любимом редакторе кода, преобразуется в формат, который можно запустить на любой целевой машине.

В этой статье я предоставляю только краткое описание. Если вам хочется углубиться в эти концепции, к вашим услугам миллионы ресурсов в интернете.

Компиляция в информатике — это формирование программы, которое включает транслирование всех программных модулей.

Введение

Под компиляцией понимаются процессы, которые облегчают диалог специалиста по написанию программ и компьютера. Формируя на этапе завершения свою программу, каждый программист вынужден использовать программу компиляции. В техническом описании эта программа занимает очень скромное место и определяется как утилита, которая осуществляет компиляцию. Компиляцией является операция преобразования программного приложения, которое выполнено на известном людям языке (определяется как язык высокого уровня), в команды языка низкого уровня, которые понимает компьютер. В итоге получается программа, приближённая к машинным кодам. Программа имеет вид объектного модуля или абсолютного кода. В отдельных случаях эта программа может походить на команды ассемблера. То есть, компиляцией является преобразование входных данных (исходного кода), описывающих некий алгоритм, выполненный на проблемном языке, в выбранный набор команд объектного кода (машинный язык).

Если сформулировать более коротко, то процесс компиляции — это трансляция программы из проблемно-ориентированного языка в машинно-ориентированный. Это простая и прозрачная формулировка, но на самом деле процесс компиляции представляется очень многоплановым.

Компиляция в информатике

Есть различные виды компиляции:

  1. Компиляция пакетного типа. Она преобразует сразу несколько исходных модулей в едином комплекте.
  2. Компиляция построчного типа. Аналог интерпретации, то есть пошаговой независимой компиляции всех следующих операторов.
  3. Условная компиляция, при которой преобразование исходного текста зависит от заданных исходных условий с помощью директив компилятора. То есть путём изменения величины некоторых констант, возможно отключать или наоборот включать преобразование участков исходной программы.

Чтобы программистам было удобно решать разнообразные задачи, можно выбрать наиболее подходящий для данного случая компилятор. Если же выполнить подробную классификацию компиляторов, то возможно определить некоторое количество аналогичных утилит:

Готовые работы на аналогичную тему

  1. Векторный компилятор. Выполняет перевод входных данных в машинный код, при этом выполняя подстройку под векторные процессоры.
  2. Гибкий компилятор. Базируется на модульном принципе и управляется при помощи таблиц. Его программа выполнена на языке высокого уровня и имеется возможность реализовать его посредством компилятора компиляторов.
  3. Инкрементальный компилятор. Выполняет вторичное преобразование компонентов исходной программы и приложений к ней, не делая перекомпиляцию всей программы.
  4. Компилятор пошаговый или выполняющий интерпретацию. Применяет методику поочерёдного проведения самостоятельной компиляции любого выбранного процесса исходного модуля.
  5. Компилятор компиляторов. Программа трансляции, воспринимающая формализованное представление языка программирования. У него имеется возможность самому сформировать необходимый компилятор для выбранного программного языка.
  6. Компилятор отладки. Способен выявить и устранить различные типы синтаксических ошибок.
  7. Резидентный компилятор. Имеет своё фиксированное расположение в оперативной памяти и может повторно применяться обширным диапазоном задач.
  8. Компилятор самокомпилируемый. Он формируется на том же языке, что и транслируемая программа. Это универсальный компилятор, в котором заложены семантика и синтаксис исходного языка. В его состав входят ядро, семантический и синтаксический загрузчики.

Наиболее часто встречаются задачи компиляции ядра для операционной системы Linux. Эта процедура способна разрешить обширный круг задач, которые связаны с привязкой аппаратного обеспечения и адаптации оптимальной версии операционной системы. При компиляции Java возможно применение компиляторов, которые работают под самыми разными платформами. Это даёт возможность перекомпиляции исходных кодов под нужды различных операционных систем разных брендов.

Структурное построение компилятора

В процессе выполнения компиляции, реализуются следующие этапы:

  1. Анализ лексики. Выполняется преобразование символики исходной программы в набор лексем (абстрактных единиц).
  2. Анализ синтаксиса (грамматики). Выполняется преобразование набора лексем в дерево разбора.
  3. Анализ семантики. Выполняется обработка дерева разбора для определения его смысловых значений (семантики). Это может быть процесс привязки идентификаторов к их видам, определение совместимости т так далее. В итоге формируется промежуточное представление (код), и возможно формирование дополненного дерева разбора или даже нового дерева. Возможно так же формирование абстрактного набора команд, удобного для последующего применения.
  4. Повышение оптимальности. Удаляются лишние образования и формируется упрощённый код без смысловых потерь. Процесс оптимизации возможно осуществлять на различных этапах. К примеру, можно оптимизировать промежуточный или окончательный машинный код.
  5. Процесс генерации кода. Выполняется трансформация промежуточных представлений в коды конечного языка.

Для разных типов компиляторов возможно подразделение или совмещение данных этапов в различных вариациях.

Трансляция и компоновка

Читайте также: