Когда наступает динамическое равновесие между паром и жидкостью кратко

Обновлено: 30.06.2024

Самое интересное состояние газа — это насыщенный пар. Он находится в равновесии с жидкостью.

Количество жидкости в открытом сосуде вследствие испарения непрерывно уменьшается.

В первый момент, после того как мы нальем жидкость в сосуд и закроем его, жидкость будет испаряться и плотность пара над жидкостью будет увеличиваться. Однако одновременно с этим будет расти и число молекул, возвращающихся в результате хаотического теплового движения обратно в жидкость. Чем больше плотность пара, тем большее число его молекул возвращается в жидкость. В открытом сосуде картина иная: покинувшие жидкость молекулы могут не возвращаться в жидкость.

В закрытом сосуде в конце концов устанавливается равновесное состояние: число молекул, покидающих поверхность жидкости, становится равным числу молекул пара, возвращающихся за то же время в жидкость. Такое равновесие называется динамическим или подвижным. При динамическом равновесии между жидкостью и ее паром одновременно происходит и испа-рение жидкости, и конденсация пара, и оба процесса в среднем компенсируют друг друга (рис. 6.2).

Пар, находящийся в динамическом равновесии со своей жидкостью, называется насыщенным паром. Это название подчеркивает, что в данном объеме при данной температуре не может находиться большее количество пара. Если воздух из сосуда с жидкостью откачан, то над поверхностью жидкости будет находиться только ее насыщенный пар.

Насыщенный пар имеет при данной температуре наибольшее количество молекул в единице объема (а значит, и наибольшую плотность) и оказывает наибольшее давление.

Пар, не находящийся в состоянии равновесия со своей жидкостью, называется ненасыщенным.

При испарении одновременно с переходом молекул из жидкости в пар происходит и обратный процесс. Беспорядочно двигаясь над поверхностью жидкости, часть молекул, покинувших ее, снова возвращается в жидкость.

Если испарение происходит в закрытом сосуде, то сначала число молекул, вылетевших из жидкости, будет больше числа молекул, возвратившихся обратно в жидкость. Поэтому плотность пара в сосуде будет постепенно увеличиваться. С увеличением плотности пара увеличивается и число молекул, возвращающихся в жидкость. Довольно скоро число молекул, вылетающих из жидкости, станет равным числу молекул пара, возвращающихся обратно в жидкость. С этого момента число молекул пара над жидкостью будет постоянным. Для воды при комнатной температу­ре это число приблизительно равно 10 22 молекул за 1 с на 1 см 2 площади поверхности. Наступает так называемое динамическое равновесие между паром и жидкостью.

Пар, находящийся в динамическом равновесии со своей жидкостью, называется насыщенным паром.

Это означает, что в данном объеме при данной температуре не может находиться большее количество пара.

При динамическом равновесии масса жидкости в закрытом сосуде не изменяется, хотя жидкость продолжает испаряться. Точно так же не изменяется и масса насыщенного пара над этой жидкостью, хотя пар продолжает конденсироваться.

Давление насыщенного пара .

При сжатии насыщенного пара, температура которого под­держивается постоянной, равновесие сначала начнет нарушаться: плотность пара возрастет, и вследствие этого из газа в жидкость будет переходить больше молекул, чем из жидкости в газ; продолжаться это будет до тех пор, пока концентрация пара в новом объеме не станет прежней, соответствующей концентрации насыщенного пара при данной температуре (и равновесие восста­новится). Объясняется это тем, что число молекул, покидающих жидкость за единицу времени, зависит только от температуры.

Итак, концентрация молекул насыщенного пара при постоянной температуре не зависит от его объема.

Поскольку давление газа пропорционально концентрации его молекул, то и давление насыщенного пара не зависит от занимаемого им объема. Давление р0, при котором жидкость находит­ся в равновесии со своим паром, называют давлением насыщенного пара.

При сжатии насыщенного пара большая его часть переходит в жидкое состояние. Жидкость занимает меньший объем, чем пар той же массы. В результате объем пара при неизменной его плотности уменьшается.

Зависимость давления насыщенного пара от температуры.

Для идеального газа справедлива линейная зависимость давления от температуры при постоянном объеме. Применительно к насыщенному пару с давлением р0 эта зависимость выражается равенством:

Так как давление насыщенного пара не зависит от объема, то, следова­тельно, оно зависит только от температуры.

Экспериментально определенная зависимость p0(T) отличается от зави­симости (p0=nkT) для идеального газа.

Молекулярная физика Насыщенные и ненасыщенные пары

С увеличением температуры давление насыщенного пара растет быстрее, чем давление идеального га­за (участок кривой АВ на рисунке). Это становится особенно очевидным, если провести изохору через точку A (пунктирная прямая). Происходит это потому, что при нагревании жидкости часть ее превращается в пар, и плотность пара растет. Поэтому, согласно формуле (p0=nkT), давление насы­щенного пара растет не только в результате повышения температуры жидкости, но и вследствие увеличения концентрации молекул (плотности) пара. Главное различие в поведении идеального газа и насыщенного пара заключается в из­менении массы пара при изменении температуры при неизменном объеме (в закрытом сосуде) или при изменении объема при постоянной температуре. С идеальным газом ничего подобного происходить не может (молекулярно-кинетическая теория идеального газа не предусматривает фазового перехода газа в жидкость).

После испарения всей жидкости поведение пара будет соответствовать поведению идеального газа (участок ВС кривой на рисунке выше).

Ненасыщенный пар.

Если в пространстве, содержащем пары какой-либо жидкости, может происходить дальнейшее испарение этой жидкости, то пар, находящийся в этом пространстве, является ненасыщенным.

Пар, не находящийся в состоянии равновесия со своей жидкостью, называется ненасыщенным.

Ненасыщенный пар можно простым сжатием превратить в жидкость. Как только это превращение началось, пар, находящийся в равновесии с жидкостью, становится насыщенным.

У всех веществ есть три агрегатных состояния – твердое, жидкое и газообразное, которые проявляются при особых условиях.

Фазовый переход – это переход вещества от одного состояния к другому.

Примерами такого процесса являются конденсация и испарение.

Если создать определенные условия, можно превратить любой реальный газ (например, азот, водород, кислород) в жидкость. Для этого необходимо понижение температуры ниже некоторого минимума, называемого критической температурой. Она обозначается T к р . Так, для азота значение этого параметра равно 126 К , для воды – 647 , 3 К , для кислорода – 154 , 3 К . При поддержании комнатной температуры вода может сохранять как газообразное, так и жидкое состояние, а азот и кислород – только газообразное.

Испарение – это фазовый переход вещества в газообразное состояние из жидкого.

Молекулярно-кинетическая теория объясняет этот процесс постепенным перемещением с поверхности жидкости тех молекул, чья кинетическая энергия больше, чем энергия их связи с остальными молекулами жидкого вещества. Вследствие испарения средняя кинетическая энергия оставшихся молекул уменьшается, что, в свою очередь, приводит к снижению температуры жидкости, если к ней не подведен дополнительный источник внешней энергии.

Конденсация – это фазовый переход вещества из газообразного состояния в жидкое (процесс, обратный испарению).

Во время конденсации молекулы пара возвращаются обратно в жидкое состояние.

Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары

Рисунок 3 . 4 . 1 . Модель испарения и конденсации.

Динамическое равновесие

Если сосуд, в котором находится жидкость или газ, закупорен, то в таком случае его содержимое может находиться в динамическом равновесии, т.е. скорость процессов конденсации и испарения будет одинаковой (из жидкости будет испаряться столько молекул, сколько возвращается обратно из пара). Такая система получила название двухфазной.

Насыщенный пар – это пар, который находится со своей жидкостью в состоянии динамического равновесия.

Существует зависимость между количеством молекул, испаряющихся с поверхности жидкости в течение одной секунды, и температурой этой жидкости. Скорость процесса конденсации зависит от концентрации молекул пара и скорости их теплового движения, которая, в свою очередь, также находится в прямой зависимости от температуры. Следовательно, можно сделать вывод, что при равновесии жидкости и ее пара концентрация молекул будет определяться равновесной температурой. При повышении температуры необходима высокая концентрация молекул пара, чтобы испарение и конденсация стали одинаковыми по скорости.

Поскольку, как мы уже выяснили, концентрация и температура будут определять давление пара (газа), мы можем сформулировать следующее утверждение:

Давление насыщенного пара p 0 определенного вещества не зависит от объема, но находится в прямой зависимости от температуры.

Именно по этой причине изотермы реальных газов на плоскости включают в себя горизонтальные фрагменты, которые соответствуют двухфазной системе.

Динамическое равновесие

Если температура будет расти, увеличатся и давление насыщенного пара, и его плотность, а вот плотность жидкости, наоборот, будет снижаться из-за теплового расширения. При достижении критической для данного вещества температуры плотность жидкости и газа уравниваются, после прохождения этой точки физические различия между насыщенным паром и жидкостью исчезают.

Возьмем насыщенный пар и будем сжимать его изотермически при T T к р . Его давление будет постепенно возрастать, пока не сравняется с давлением насыщенного пара. Постепенно на дне сосуда появится жидкость, и между ней и ее насыщенным паром возникнет динамическое равновесие. По мере уменьшения объема будет происходить конденсация все большей части пара при неизменном давлении (на изотерме это состояние соответствует горизонтальному участку). После того, как весь пар перейдет в жидкое состояние, давление начнет резко увеличиваться при дальнейшем уменьшении объема, поскольку жидкость сжимается слабо.

Необязательно проходить двухфазную область, чтобы совершить переход от газа к жидкости. Процесс можно провести и в обход критической точки. На изображении такой вариант показан при помощи ломаной линии A B C .

Динамическое равновесие

Рисунок 3 . 4 . 3 . Модель изотермы реального газа.

Воздух, которым мы дышим, при некотором давлении всегда включает в себя водяные пары. Это давление, как правило, меньше, чем давление насыщенного пара.

Относительная влажность воздуха – это отношение парциального давления к давлению насыщенного водяного пара.

В виде формулы это можно записать так:

Для описания ненасыщенного пара допустимо использовать и уравнение состояния идеального газа с учетом обычных для реального газа ограничений: не слишком большого давления пара ( p ≤ ( 10 6 – 10 7 ) П а ) и температуры выше значения, определенного для каждого конкретного вещества.

Для описания насыщенного пара применимы законы идеального газа. Однако при этом давление для каждой температуры должно быть определено по кривой равновесия для данного вещества.

Чем выше температура, тем выше давление насыщенного пара. Эту зависимость из законов идеального газа вывести нельзя. При условии постоянной концентрации молекул давление газа будет постоянно возрастать прямо пропорционально температуре. Если пар является насыщенным, то с ростом температуры будет расти не только концентрация, но и средняя кинетическая энергия молекул. Из этого следует, что чем выше температура, тем быстрее растет давление насыщенного пара. Этот процесс происходит быстрее, чем рост давления идеального газа при условии постоянной концентрации молекул в нем.

Что такое кипение

Выше мы указывали, что испарение идет в основном с поверхности, но оно также может происходить и из основного объема жидкости. Любое жидкое вещество включает в себя мелкие газовые пузырьки. Если внешнее давление (т.е. давление газа в них) уравнять с давлением насыщенного пара, то произойдет испарение жидкости внутри пузырьков, и они начнут наполняться паром, расширяться и всплывать на поверхность. Этот процесс называется кипением. Таким образом, температура кипения зависит от внешнего давления.

Жидкость начинает кипеть при такой температуре, при которой внешнее давление и давление ее насыщенных паров будут равны.

Если атмосферное давление нормальное, то для кипения воды нужна температура 100 ° С . При ней давление насыщенных водяных паров будет равно 1 а т м . Если мы будем кипятить воду в горах, то из-за уменьшения атмосферного давления температура кипения снизится до 70 ° С .

Жидкость может кипеть только в открытом сосуде. Если его герметично закрыть, то нарушится равновесие между жидкостью и ее насыщенным паром. Узнать температуру кипения при различных значениях давления можно с помощью кривой равновесия.

Кривые равновесия состояний вещества

На изображении выше с помощью изотерма реального газа показаны процессы фазовых переходов – конденсации и испарения. Эта схема является неполной, поскольку вещество может принимать также и твердое состояние. Достижение термодинамического равновесия между фазами вещества при заданной температуре возможно лишь при определенном давлении в системе.

Кривая фазового равновесия – это зависимость между равновесным давлением и температурой.

Примером такой зависимости может быть кривая равновесия жидкости и насыщенного пара. Если мы построим кривые, отображающие равновесие между фазами одного вещества, на плоскости, то мы увидим определенные области, которые соответствуют разным агрегатным состояниям вещества – жидкому, твердому, газообразному. Кривые, построенные в системе координат, называются фазовыми диаграммами.

Кривые равновесия состояний вещества

Рисунок 3 . 4 . 4 . Типичная фазовая диаграмма вещества. K – критическая точка, T – тройная точка. Область I – твердое тело, область I I – жидкость, область I I I – газообразное вещество.

Равновесие между газообразной и твердой фазой вещества отображает так называемая кривая сублимации (на рисунке она обозначена как 0 T ), между паром и жидкостью – кривая испарения, которая заканчивается в критической точке. Кривая равновесия между жидкостью и твердым телом называется кривой плавления.

Тройная точка – это точка, в которой сходятся все кривые равновесия, т.е. возможны все фазы вещества.

Многие вещества достигают тройной точки при давлении меньше 1 а т м ≈ 10 5 П а . Они плавятся при нагревании в атмосферном давлении. Так, у воды тройная точка имеет координаты T т р = 273 , 16 К , p т р = 6 , 02 · 10 2 П а . Именно на ней основана абсолютная температурная шкала Кельвина.

У некоторых веществ достижение тройной точки происходит и при давлении выше 1 а т м .

Например, для углекислоты нужно давление в 5 , 11 а т м и температура T т р = 216 , 5 К . Если давление равно атмосферному, то для поддержания ее в твердом состоянии нужна низкая температура, а переход в жидкое состояние становится невозможен. Углекислота в равновесии со своим паром при атмосферном давлении называется сухим льдом. Это вещество не способно плавиться, а может только испаряться (сублимировать).

Задания 16.1 – 16.4

16.2. Заполните пропуски в тексте.
Насыщенным паром называется пар, находящийся в состоянии динамического равновесия со своей жидкостью. Пар становится насыщенным, если сосуд с жидкостью закрыт. Когда сосуд открыт, то число молекул, вылетающих с поверхности жидкости, заметно больше числа молекул пара, возвращающихся обратно в жидкость. Если же сосуд закрыть, то плотность пара увеличится, число возвращающихся в жидкость молекул увеличится и со временем станет равным числу молекул жидкости, покидающих ее поверхность. Наступает динамическое равновесие между жидкостью и ее паром.

16.3. На рисунках схематически показано соотношение числа молекул жидкости, покидающих ее поверхность и возвращающихся из окружающей среды обратно в жидкость. Для каждого случая ответьте на вопросы. Существует ли динамическое равновесие между паром и жидкостью? Можно ли считать пар насыщенным? Ответы обоснуйте.

Задания 16.1 – 16.4

а) Динамического равновесия нет, так как число молекул, уходящих с поверхности, больше прилетающих, потому пар ненасыщенный.
б) Динамического равновесия нет, так как число молекул, уходящих с поверхности, больше прилетающих, потому пар ненасыщенный.
в) Динамическое равновесие есть. Число уходящих с поверхности жидкости молекул равно количеству прилетающих, потому пар насыщенный.

16.4. В теплоизолированном сосуде 200 г холодной воды, взятой при температуре 0°С, смешивают с 600 г горячей воды, взятой пр температуре 80°С. Какая температура установится в сосуде в результате теплообмена? Потерями энергии можно пренебречь.

Читайте также: