Каналы связи интернет кратко

Обновлено: 05.07.2024

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Каналы передачи данных сети Интернет

Канал передачи данных - это средства двухстороннего обмена данными, которые включают в себя линии связи и аппаратуру передачи (приема) данных. Каналы передачи данных связывают между собой источники информации и приемники информации.

Примерное графическое изображение связей между сетями Интернета

Подключение к Internet

Как мы уже говорили, компьютеры, постоянно подключенные к Internet и управляющие перемещением информации в сети (постоянное соединение), называют серверами Internet .

Временное подключение компьютера к серверу сети называют коммутируемым подключением. Если это подключение производится дистанционно (с помощью телефонных линий связи), то соединение называют соединением удаленного доступа.

Чтобы подключиться к Internet , надо подключить компьютер к другому компьютеру, имеющему постоянный IP -адрес. Каждый сервер сети имеет постоянный IP - a д pec – это межсетевой протокол ( Internet Protocol , IP ) отвечающий за адресацию.

Кроме наличия IP -адреса для подключениянеобходим модем. Он должен быть подключен к компьютеру для соединения по телефонному каналу с сервером Интернет-провайдера. Модемы обеспечивают передачу цифровых компьютерных данных по аналоговым телефонным каналам со скоростью до 56 Кбит/с.

Соединение удаленного доступа можно наглядно увидеть на рисунке

Цифровой сигнал

Цифровой сигнал

Телефонная линия (аналоговый сигнал)

Также необходимо купить время у Интернет (или сервис-провайдера) . Организации, предоставляющие право на такое подключение, называются поставщиками услуг Internet . Обычно эти организации коммерческие и оказывают услуги подключения по договору. Интернет-провайдеры предоставляют телефонные линии, по которым придется звонить, чтобы получить доступ в Интернет.

При заключении договора на обслуживание провайдер предоставляет следующую информацию.

1. Номер телефона, по которому выполняется соединение удаленного доступа с помощью телефонной линии и модема.

2. Имя пользователя ( login ), которое следует ввести для регистрации в момент соединения.

3. Пароль ( password ), ввод которого подтверждает имя пользователя.

Провайдеры Интернета имеют высокоскоростные соединения своих серверов с Интернетом (1 Мбит/с и выше) и поэтому могут предоставить Интернет-доступ по телефонным каналам одновременно сотням и тысячам пользователей. Важно, что при этом телефонный номер остается свободным. Обычные и ADSL-модемы подключаются к USB-порту компьютера и к разъему телефонной розетки.

пример ADSL – модема Пример обычного модема

Крупные организации подключают к Internet свои локальные сети на постоянной основе, и сами становятся частью Internet.

Способы подключения к Интернет

Способов подключения к оборудованию провайдера достаточно много. Это подключение по коммутируемой телефонной линии, по выделенной линии, по цифровой телефонной связи, по сети кабельного телевидения, по спутниковым каналам, по радиоканалу.

Каналы передачи данных

В зависимости от физической среды передачи данных каналы связи можно разделить на:

проводные линии связи без изолирующих и экранирующих оплеток;

кабельные, где для передачи сигналов используются такие линии связи как кабели "витая пара", коаксиальные кабели или оптоволоконные кабели;

беспроводные (радиоканалы наземной и спутниковой связи), использующие для передачи сигналов электромагнитные волны, которые распространяются по эфиру.

Проводные линии связи

Проводные (воздушные) линии связи используются для передачи телефонных и телеграфных сигналов, а также для передачи компьютерных данных. Эти линии связи применяются в качестве магистральных линий связи.

По проводным линиям связи могут быть организованы аналоговые и цифровые каналы передачи данных. Скорость передачи по проводным линиям является очень низкой. Кроме того, к недостаткам этих линий относятся помехозащищенность и возможность простого несанкционированного подключения к сети.

Кабельные каналы связи

В компьютерных сетях используются три типа кабелей.

Витая пара (twisted pair)

Кабель используется для передачи данных на скорости 10 Мбит/с и 100 Мбит/с. Коаксиальный кабель (coaxial cable)

Пропускная способность – 50-100 Мбит/с. Допустимая длина линии связи – несколько километров.

Оптоволоконный кабель (fiber optic)

Скорость передачи данных 3Гбит/c.

1264438199_dsl_router

Беспроводные (радиоканалы наземной и спутниковой связи)

Используют в случаях подключения неудобно расположенных или удаленных компьютерных сетей, когда прокладка кабеля затруднена или невозможна.

1264438039_bb457037

Радиорелейные каналы связи состоят из последовательности станций, являющихся ретрансляторами. Связь осуществляется в пределах прямой видимости, дальности между соседними станциями - до 50 км. Цифровые радиорелейные линии связи (ЦРРС) применяются в качестве региональных и местных систем связи и передачи данных, а также для связи между базовыми станциями сотовой связи.

Спутниковый канал

В спутниковых системах используются антенны для приема радиосигналов от наземных станций и ретрансляции этих сигналов обратно на наземные станции. В спутниковых сетях используются три основных типа спутников, которые находятся на геостационарных орбитах, средних или низких орбитах. Спутники запускаются, как правило, группами. Разнесенные друг от друга они могут обеспечить охват почти всей поверхности Земли. Работа спутникового канала передачи данных представлена на рисунке

sputnik_network

Целесообразнее использовать спутниковую связь для организации канала связи между станциями, расположенными на очень больших расстояниях, и возможности обслуживания абонентов в самых труднодоступных точках. Пропускная способность высокая – несколько десятков Мбит/c.

Сотовые каналы связи

Радиоканалы сотовой связи строятся по тем же принципам, что и сотовые телефонные сети. Сотовая связь - это беспроводная телекоммуникационная система, состоящая из сети наземных базовых приемо-передающих станций и сотового коммутатора (или центра коммутации мобильной связи).

Технологии доступа в Интернет

Пользователи портативных компьютеров могут подключаться к Интернету с использованием беспроводной технологии Wi-Fi. На вокзалах, аэропортах и других общественных местах устанавливаются точки доступа беспроводной связи, подключенные к Интернету. В радиусе 100 метров портативный компьютер, оснащенный беспроводной сетевой картой, автоматически получает доступ в Интернет со скоростью до 54 Мбит/с.

Bluetooth - это технология передачи данных на короткие расстояния (не более 10 м). Скорость передачи данных не превышает 1 Мбит/с.

WiMAX (Worldwide Interoperability for Microwave Access), аналогично WiFi - технология широкополосного доступа к Интернет. WiMAX, в отличие от традиционных технологий радиодоступа, работает и на отраженном сигнале, вне прямой видимости базовой станции. Информацию можно передавать на расстояния до 50 км со скоростью до 70 Мбит/с.

WiMAX частично удовлетворяет условиям сетей 4G, основанных на пакетных протоколах передачи данных. К семейству 4G относят технологии, которые позволяют передавать данные в сотовых сетях со скоростью выше 100 Мбит/сек. и повышенным качеством голосовой связи. Для передачи голоса в 4G предусмотрена технология VoIP.

RadioEthernet

RadioEthernet - технология широкополосного доступа к Интернет, обеспечивает скорость передачи данных от 1 до 11 Мбит/с, которая делится между всеми активными пользователями. Для работы RadioEthernet-канала необходима прямая видимость между антеннами абонентских точек. Радиус действия до 30 км .

MMDS (Multichannel Multipoint Distribution System)

MMDS (Multichannel Multipoint Distribution System). Эти системы способна обслуживать территорию в радиусе 50—60 км, при этом прямая видимость передатчика оператора является не обязательной. Средняя гарантированная скорость передачи данных составляет 500 Кбит/с — 1 Мбит/с, но можно обеспечить до 56 Мбит/с на один канал.

Мобильный GPRS – Internet

Мобильный GPRS – Интернет. Для пользования услугой "Мобильный Интернет" при помощи технологии GPRS необходимо иметь телефон со встроенным GPRS - модемом и компьютер. Технология GPRS обеспечивает скорость передачи данных до 114 Кбит/с. При использовании технологии GPRS тарифицируется не время соединения с Интернетом, а суммарный объем переданной и полученной информации. Вы сможете просматривать HTML-страницы, перекачивать файлы, работать с электронной почтой и любыми другими ресурсами Интернет.

Мобильный CDMA – Internet

Мобильный CDMA - Internet. Сеть стандарта CDMA - это стационарная и мобильная связь, а также скоростной мобильный интернет. Для пользования услугой "Мобильный Интернет" при помощи технологии CDMA необходимо иметь телефон со встроенным CDMA - модемом или CDMA модем и компьютер. Технология CDMA обеспечивает скорость передачи данных до 153 Кбит/с или до 2400 Кбит/с - по технологии EV-DO Revision 0.

В настоящее время технология CDMA предоставляет услуги мобильной связи третьего поколения. Технологии мобильной связи 3G (third generation — третье поколение) — набор услуг, который обеспечивает как высокоскоростной мобильный доступ к сети Интернет, так и организовывает видеотелефонную связь и мобильное телевидение. Мобильная связь третьего поколения строится на основе пакетной передачи данных. Сети третьего поколения 3G работают в диапазоне около 2 ГГц, передавая данные со скоростью до 14 Мбит/с.

Вывод: каждый способ подключения к сети зависит от нескольких показателей, а именно от финансово положения, населенного пункта и от потребностей потребления ресурсов Интернет.

Сегодня каждый день множество людей неожиданно открывает для себя существование глобальных компьютерных сетей, объединяющих компьютеры во всем мире в едином информационном пространстве, имя которому - Интернет. Это система каналов передачи данных и средств коммутации (переключения), обеспечивающих соединение пользовательских коммуникационных систем и обмен данными между ними.


1. Скорость передачи данных (пропускная способность)- максимально возможный объем передаваемой информации за 1с. Единица измерения скорости передачи данных - бод (количество бит в секунду).

Компьютерный канал связи

Неэкранированная витая пара

Экранированная витая пара

2. Надежность (способность передавать информацию без искажений и потерь).
3. Стоимость.
4. Резервы развития (расширяемость).


Витая пара состоит из двух изолированных проводов, свитых между собой. Скручивание проводов уменьшает влияние внешних электромагнитных полей на передаваемые сигналы. Самый простой вариант витой пары - телефонный кабель.

Витые пары имеют различные характеристики, определяемые размерами, изоляцией и шагом скручивания. Дешевизна этого вида передающей среды делает её достаточно популярной для вычислительных сетей.

Основной недостаток витой пары - плохая помехозащищённость и низкая скорость передачи информации. Технологические усовершенствования позволяют повысить скорость передачи и помехозащищённость (экранированная витая пара), но при этом возрастает стоимость этого типа передающей среды.

Для промышленного использования выпускается два типа коаксиальных кабелей: толстый и тонкий. Толстый кабель более прочен и передаёт сигналы нужной амплитуды на большее расстояние, чем тонкий. В то же время тонкий кабель значительно дешевле.


Оптоволоконный кабель - идеальная передающая среда, он не подвержен действию электромагнитных полей и сам практически не имеет излучения.

Сигнал в оптоволоконных каналах передается по стеклянной нити, диаметром 0.1-0.2 мм, состоящей из светонесущего сердечника, диаметром 2-30 микрометров и оболочки. Оболочка и сердечник имеют разные коэффициенты преломления, которые обеспечиваются добавкой в стекло окислов разных металлов (чаще всего - германия и кремния). С уменьшением диаметра сердечника возрастает полоса пропускания оптического волокна и качественные показатели системы связи. Однако, при этом возрастают технологические трудности, как при изготовлении волокна, так и при сращивании отдельных звеньев, что приводит к увеличению стоимости.

Преимущество волоконной оптики несомненно: реализуемые в оптических каналах скорости передачи информации пока недостижимы для медных кабелей.


Использование светового сигнала обеспечивает абсолютную независимость от электромагнитных помех природного происхождения и возникающих в результате функционирования самых разнообразных технических устройств на производствах, транспорте, в системах связи и в быту, а также отсутствие электромагнитного излучения от линии. Последнее гарантирует скрытность информации и принципиальную невозможность несанкционированного бесконтактного доступа. Это свойство позволяет использовать его в сетях, требующих повышенной секретности информации.

Оптические кабели находят все более широкое применение - от магистральных линий и корпоративных систем передачи данных до локальных компьютерных сетей.


Потребность в передаче данных с высокой скоростью и без потери качества выходит на первый план. Решение этой проблемы требует, помимо закупки активного сетевого оборудования, организацию линий связи. Для этого обычно используется кабельная проводка на основе медного или оптоволоконного кабеля. Однако, хорошо отработанные решения для организации ближней связи с использованием медных или волоконно-оптических линий не всегда удобны.

Прокладка кабеля часто влечет за собой значительные затруднения:

Из всего вышесказанного следует, что в ряде случаев использование беспроводных соединений может быть экономически выгодным. Преимущества беспроводных сетей передачи данных:

- возможная альтернатива использования арендованных линий;
- экономичность. Например, для организации временных сетей при частых структурных перестройках в организации, связанных с изменением конфигурации кабельной сети;
- объединение в сеть компьютеров там, где прокладка кабеля часто невозможна технически.

Беспроводное сетевое оборудование предназначено для передачи по радиоканалам информации (данных, телефонии, видео и др) между компьютерами, сетевыми и другими специализированными устройствами. В последнее время все большую популярность приобретает идея построения городской опорной сети с беспроводным доступом. Обычно такая сеть состоит из нескольких сот, в центре каждой из которых устанавливается беспроводной маршрутизатор со всенаправленной антенной, обеспечивающий доступ абонентов к опорной сети.

У абонентов устанавливается беспроводной маршрутизатор, снабженный направленной антенной, которая нацелена на центральную точку соты. Каждая сота представляет собой, по существу, беспроводной сегмент сети Ethernet суммарной пропускной способностью 2 Мбит/с. В настоящее время операторы городских опорных сетей с беспроводным доступом действуют примерно в 20 городах России. В Москве развернуты две экспериментальные опорные сети с беспроводным доступом.

Первыми такими устройствами, работающими в топологии точка-точка были радиорелейные станции, использующие традиционную амплитудную или частотную модуляцию радиосигнала.


Радиорелейные линии связи (РРЛ) предназначены для передачи сигналов в диапазонах дециметровых, сантиметровых и миллиметровых волн. Передача ведется через систему ретрансляторов, расположенных на расстоянии прямой видимости. Ретрансляторы осуществляют прием сигнала, усиление его, обработку и передачу на следующий ретранслятор. Общая протяженность РРЛ может достигать тысяч километров.

До недавнего времени РРЛ использовали диапазоны частот от 2 до 8 ГГц и представляли собой монументальные дорогостоящие структуры. Применялись сложные и дорогие антенные опоры: мачты или башни. Громоздкая аппаратура располагалась на станциях в специальных зданиях с собственной электростанцией и жилыми помещениями для обслуживающего персонала.

Однако, в последние годы, новейшие технологии и освоение диапазонов частот выше 10 ГГц, коренным образом изменили структуры и оборудование радиорелейных линий связи. Габариты и вес оборудования уменьшились в десятки и сотни раз. В типовом исполнении современная радиорелейная аппаратура состоит из наружного и внутреннего модулей, соединенных кабелем. Наружный модуль выполняется в виде моноблока весом в несколько килограмм, состоящего из приемопередатчиков и антенны. Наружный блок устанавливается на простой антенной опоре или на здании, дымовой трубе и прочих возвышенных местах. Внутренний модуль располагается в помещении, удаленном от наружного модуля на расстояние до 300 - 400 м и представляет собой настольную или настенную компактную конструкцию.
По сравнению с традиционными наземными медными или оптоволоконными линиями они имеют следующие преимущества: сравнительная дешевизна высокоскоростного канала связи, отсутствие работ, связанных с прокладкой наземных линий связи, нечувствительность к сложным для прохождения участкам трассы (магистральные трассы, путипроводы, реки, болота, леса и т.п.), централизованное обслуживание и ремонтопригодность.

К недостаткам можно отнести: ограниченную дальность одного сегмента, не превышающую 100 км не только из-за энергетики, но и из-за влияния кривизны земли на обеспечение прямой видимости (исключение - ТРЛ), зависимость качества связи от времени года и времени суток

Радиорелейки в основном используются для организации телефонных каналов связи, по которым с помошью мультиплексоров также можно передавать и данные. С начала 1990-х годов стали активно применяться устройства с кодовой (цифровой) модуляцией радиосигнала. Кодовая модуляция радиосигнала приводит к расширению его спектра и снижению его амплитуды до уровня шумов. Поэтому такие устройства получили название широкополосных шумоподобных систем (ШПС). Технология широкополосной беспроводной связи гарантирует высокое качество и надежность коммуникаций, устойчивость к индустриальным помехам и погодным условиям. Высокая эффективность применения таких систем привела к революционным изменениям в радиосвязи и возможности построения эффективных и надежных беспроводных сетей самого различного назначения.

Несмотря на понятный скепсис сетевых администраторов по поводу приписываемых беспроводным локальным сетям преимуществ, в многочисленных отчетах аналитиков утверждается, что беспроводные технологии в конце концов получили признание индустрии. Тому есть несколько причин, каждая из которых заставляет семь раз отмерить, прежде чем отказаться от беспроводной передачи данных.
Первая и наиболее очевидная причина - весьма существенное увеличение скорости передачи данных. Конечно, эта скорость все же меньше, чем при передаче по проводным соединениям в локальных сетях. Другая, не менее важная, причина состоит в том, что установка беспроводных систем, их сворачивание и обновление выполняются быстро, без утомительной возни с кабелями, распределительными панелями и концентраторами. Такие сети довольно легко модифицировать.

Тем не менее, индустрии беспроводного доступа предстоит решить еще немало проблем, и одна из важнейших относится к области стандартизации. Дело в том, что за общий частотный диапазон сегодня конкурирует несколько беспроводных технологий. Идея использования беспроводных каналов передачи данных в качестве альтернативы кабельным сетям приобретает все большую популярность. Наверное, когда в России будет создана широкая инфраструктура высокоскоростного абонентского доступа, необходимость в беспроводных каналах заметно снизится. Однако насколько быстро это произойдет - неизвестно, а пока беспроводные технологии могут принести очень большую пользу.

Спутниковый доступ в Интернет



Переход от аналогового телевещания к цифровому практически предопределил появление технологии спутникового доступа в Интернет.

Спутниковые линии связи работают в 9 - 11 диапазонах частот и, в перспективе, в оптических диапазонах. В этих системах сигнал с земной станции посылается на спутник, содержащий приемопередающую аппаратуру, там усиливается, обрабатывается и посылается обратно на Землю, обеспечивая связь на большие расстояния и перекрывая большие площади.

Существует множество разнообразных спутниковых систем, как коммерческого, так и специального назначения. Скорость передачи в спутниковом канале - до 45 Мбит/c.

Существует две основные схемы работы через спутник - симметричная и асимметричная. В первом случае клиент осуществляет и передачу запроса на спутник, и приём данных со спутника. Такое решение является чрезвычайно дорогим, как по части клиентского оборудования, так и по стоимости обслуживания, и применяется в основном в тех случаях, когда его использование является либо единственно возможным, либо более дешёвым, чем использование проводных или радиоканалов (например, в труднодоступных или удалённых районах с неразвитой инфраструктурой связи).

Прежде чем стать действительно массовым продуктом, спутниковый Интернет был успешно опробован в системах широковещания и мультивещания, на таких бизнес-приложениях, как системы дистанционного образования, информационные системы реального времени, новостные каналы, а также адресная рассылка данных из Интернета (push-технологии).

Реализация перечисленных решений через спутник позволяет обеспечить услуги на больших географически распределенных территориях при относительно низкой цене. Традиционные системы спутниковой связи постоянно развиваются, и главная тенденция их развития - удешевление. Но основное препятствие к использованию широкополосного спутникового доступа для Интернета - это стоимость выделенных широкополосных каналов связи: обычно более эффективно использовать каналы связи с низкой полосой пропускания.

Как устроен интернет и при чём тут акулы

Как устроен интернет, где находятся кабели и серверы, как работают веб-архивы и браузеры и правда ли, что акулы — главная опасность для всемирной сети? Расспросили эксперта и узнали ответы на базовые вопросы про интернет.



Леонид Юлдашев,

Что такое интернет?

Первые разработки начались в США. В 1969 году учёные создали университетскую компьютерную сеть ARPANet, которая считается прототипом интернета. Разработчики соединили несколько компьютеров разных университетов. Позже, когда число компьютерных сетей выросло, возникла задача соединить между собой уже их.

То, что мы называем интернетом, — это, в сущности, соединённые проводами компьютеры. Никаких облаков или виртуальной реальности.

Как работает интернет?

DNS-сервер даёт ответ: буквенному адресу интересующего вас сайта соответствует такой-то IP-адрес. И только тогда браузер отправляет на этот адрес запрос.

Тот в ответ отправляет файлы, и пользователь видит сайт, который он вбил в поисковую строку.

Почему сайтом может пользоваться много человек одновременно?

Как быстро работает браузер?

Промежуток времени, за который запрос с вашего компьютера достигает сервера и возвращается назад с необходимой информацией, называется ping. Для использования интернета в повседневных целях (например, скроллинга соцсетей) он не имеет значения.

Ping важен для геймеров и для видеоконференций. Если танк стреляет через секунду после нажатия на кнопку, можно проиграть. И, конечно, никто не любит, когда собеседник в Zoom-звонке вдруг замирает с открытым ртом. Ping больше 0,1 секунды считается медленным.

Почему реклама на сайтах знает так много?

Как работает веб-архив?

Изначально интернет задумывался как архив знаний человечества. Некоторые учёные и программисты хотели сделать так, чтобы всё, что попадает в интернет, осталось там навсегда. В 1996 году американские программисты Брюстер Кейл и Брюс Гиллиат решили, что нужно архивировать всё, что к этому моменту находилось в интернете.

То есть если интернет — это архив знаний человечества, то им захотелось создать архив архивов.

Сайты живут вечно?

Акулы — главная опасность интернета?

Существует легенда, будто акулы представляют собой главную опасность для интернета, потому что перекусывают подводные кабели. Кабели действительно лежат под водой, и их относительно легко повредить. Однако под водой находится гораздо больше кабелей, чем нужно для стабильной работы интернета.


Даже если акула и повредит кабель, интернет продолжит работать. К тому же кабели находятся очень глубоко — акулы там не плавают. А вот телеграфные кабели они перекусывали часто.

Гораздо опаснее для интернета рыболовецкие судна. Они могут сбросить якорь и перебить несколько кабелей сразу. Так, например, недавно произошло в Великобритании.

Изображение на обложке: Zoe Morgan-Montoya / Dribbble

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter

global-network

Самой знаменитой глобальной сетью является Интернет, представляющий собой набор взаимосвязанных сетей, функционирующих как одна сеть. Основным каналом связи Интернета является последовательность сетей, организованных правительством США для взаимосвязи суперкомпьютеров ключевых научно-исследовательских лабораторий. Этот канал называется опорной сетью (backbone) и поддерживается Национальным научным фондом США (National Science Foundation).

Со времен организации первоначальной опорной сети, доступ к которой имели лишь ограниченное количество специальных пользователей, Интернет разросся в сеть, охватывающую весь мир и предоставляющую доступ миллионам простых пользователей.
Для передачи по Интернету информация разбивается протоколом TCP/IP на пакеты необходимого размера. На пути к пункту назначения пакеты проходят через различные сети разных уровней. В зависимости от применяемой схемы маршрутизации отдельные пакеты могут передаваться в Интернете по разным маршрутам, а потом собираться в первоначальную последовательность по прибытию в пункт назначения.

В процессе перемещения пакета от источника к назначению он может пройти через несколько локальных сетей, региональных сетей, маршрутизаторов, повторителей, хабов, мостов и шлюзов. Региональные сети (midlevel network) — это просто сети, которые могут обмениваться информацией между собой без подключения к Интернету.

global-network3

Поставщики интернет-услуг.

Доступ к Интернету отдельным пользователям и сетям предоставляется компаниями — поставщиками интернет-услуг (ISP, Internet Service Provide). Эти компании владеют блоками адресов Интернета, которые они могут назначать своим клиентам. Когда пользователь подключается к поставщику интернет-услуг, он подключается к его серверу, который в свою очередь подключен к Интернету посредством устройств, называющихся маршрутизаторами. Маршрутизатор представляет собой устройство, которое получает сетевые пакеты от узлов сети и определяет их адрес назначения в Интернете и самый лучший маршрут для доставки пакета по этому адресу. Маршрутизация осуществляется на основе известных каналов в Интернете и объема трафика на разных сегментах. После этого маршрутизатор передает пакет в точку доступа к сети (Network Access Point, NAP).

Сервисы, предоставляемые поставщиком интернет-услуг своим клиентам, включают в себя:

• средство интернет-идентификации в виде IP-адреса;

• услуги электронной почты через серверы POP3 и SMTP;

• службы новостей через серверы Usenet;

• маршрутизацию через серверы DNS.

global-network2

IP-адрес.

Поставщики интернет-услуг предоставляют своим клиентам адреса для доступа в Интернет, которые называются адресами протокола IP или IP-адресами. IP-адрес однозначно идентифицирует пользователя в Интернете, позволяя ему получать различного рода информацию. Сейчас используются две версии адресации в Интернете: протокол IPv4 и протокол IPv6.

IP-адрес состоит из адреса сети и адреса узла. Адрес сети идентифицирует всю сеть, а адрес узла — отдельный узел в этой сети: маршрутизатор, сервер или рабочую станцию. Локальные сети разбиваются на 3 класса: A, B, C. Принадлежность сети к определенному классу определяется сетевой частью IP-адреса.

• Адреса сетей А зарезервированы для крупных сетей. Для сетевой части адреса применяются первые 8 битов (слева), а для адреса узла — последние 24 бита IP-адреса. Первый (старший) бит первого октета сетевого адреса равен 0, а за ним следует любая комбинация остальных 7 битов. Соответственно, IP-адреса класса А занимают диапазон 001.х.х.х — 126.х.х.х, что позволяет адресацию 126 отдельных сетей, в каждой из которых будет около 17 млн. узлов.

Диапазон адресов 1 27.х.х.х зарезервирован для тестирования сетевых систем. Некоторые из этих адресов принадлежат правительству США для тестирования опорной сети Интернета. Адрес 127.0.0.1 зарезервирован для тестирования шины локальной системы.

• Адреса класса В назначаются сетям среднего размера. Значение первых двух октетов лежит в числовом диапазоне 128.x.x.x — 191.254.0.0. Это позволяет адресовать до 16384 разных сетей, каждая из них может иметь 65 534 узлов.

• Адреса класса С применяются для сетей, где количество узлов сравнительно невелико. Сетевая часть адреса указывается первыми тремя октетами, а адрес сети — последним. Значение первых трех октетов, определяющих сетевой адрес, может быть в диапазоне 192.x.x.x — 223.254.254.0. Таким образом, адреса класса С позволяют адресацию приблизительно 2 млн. сетей, каждая из них может иметь до 254 узлов.

Версия IPv6 протокола IP была разработана с целью решения ожидаемой проблемы нехватки адресов, поддерживаемых версией IPv4. Адреса назначения и источника в IPv6 имеют длину 128 бит или 16 байт, что позволяет поддерживать громадное количество IP-адресов. Протокол IPv6 также предусматривает проверку подлинности отправителя пакета, а также шифрование содержимого пакета. Поддержка протокола IPv6 встроена в Windows 7 и во многие дистрибутивы Linux; и в последние годы этот протокол применяется все чаще. Протокол IPv6 обеспечивает поддержку мобильных телефонов, бортовых компьютеров автомобилей и широкий круг других подключенных к Интернету персональных устройств.

net

Подсети.

Узлы секций сети можно сгруппировать в подсети с общим диапазоном IP-адресов. Эти группы называются интрасетями. Каждый сегмент интрасети должен быть оснащен защитным шлюзом, играющим роль точки входа и выхода сегмента. Обычно роль шлюза играет устройство, называющееся маршрутизатором. Маршрутизатор — это интеллектуальное устройство, которое пересылает полученные данные на IP-адрес получателя.

В некоторых сетях в качестве внешнего шлюза применяется сетевой экран или, по-другому, брандмауэр (firewall). Обычный брандмауэр представляет собой комбинацию аппаратных и программных компонентов, создающих защитный барьер между сетями с разными уровнями безопасности. Администратор может настроить брандмауэр так, что он будет пропускать данные только на указанные IP-адреса и порты.

Для создания подсети маскируется сетевая часть IP-адреса узлов, которые нужно включить в данную подсеть. В связи с этим, мобильность данных ограничивается узлами подсети, так как эти узлы могут распознавать адреса только в пределах замаскированного диапазона. Для создания подсети существуют три основные причины.

  • Чтобы изолировать разные сегменты сети друг от друга. Возьмем, например, сеть из 1 000 компьютеров. Без применения сегментации данные каждого из этих 1 000 компьютеров будут проходить через все остальные компьютеры. Представьте себе нагрузку на канал связи. Кроме этого, каждый пользователь сети будут иметь доступ к данным всех других ее членов.
  • Чтобы эффективно использовать IP-адреса. Применение 32-битового представления IP-адреса допускает ограниченное количество адресов. Хотя 126 сетей, каждая с 17 млн. узлов, может казаться большим числом, в мировом сетевом масштабе этого количества адресов далеко не достаточно.
  • Чтобы позволить повторное использование одного IP-адреса сети. Например, разделение адресов класса С между двумя расположенными в разных местах подсетями позволяет выделить каждой подсети половину имеющихся адресов. Таким образом, обе подсети могут использовать один адрес сети класса С.

Читайте также: