Каковы особенности строения прокариотической клетки кратко

Обновлено: 03.07.2024

1 кольцевая хромосома у бактерий (нуклеоид). Двуцепочечная ДНК не связана с белками

Хромосомы линейные. Двуцепочечная ДНК связана с белками-гистонами

Мелкие, обычно свободные

Крупные. Могут быть свободными и связанными с ЭПС

Митохондрии, хлоропласты, комплекс Гольджи, ЭПС,лизосомы

Имеются, за исключением высших растений

Имеется у бактерий

У бактерий содержит муреин

У растений – целлюлозная, у грибов – хитиновая, у животных- нет

Способы деления клетки

Обычно поперечное деление, митоза и мейоза нет.

Митоз, мейоз, амитоз

Прокариоты - это организмы у которых нет ядра. К ним относятся бактерии и цианобактерии (сине-зеленые водоросли). Основные признаки прокариот:

1) отсутствует ядро, вместо ядра имеется его эквивалент - нуклеоид, лишенный ядерной оболочки и состоящий из одной молекулы ДНК, замкнутой в кольцо;

2) нет белков гистонов, которые упаковывают ДНК;

3) ДНК не имеет мозаичного строения, то есть, между генами нет неинформативных участков;

4) трансляция быстро следует за транскрипцией, нет созревания (процессинга) иРНК;

5) отсутствуют органоиды, имеющие мембранное строение,

6) отсутствует клеточный центр;

7) есть рибосомы;

8) есть мезосомы (впячивания плазматической мембраны), выполняющие функции мембранных органоидов;

9) органоиды движения (жгутики) не покрыты цитоплазматической мембраной;

10) характерно прямое бинарное деление.

Эукариоты это организмы, клетки которых имеют оформленное ядро, отграниченное от цитоплазмы ядерной оболочкой. К эукариотам относятся протисты, животные, растения и грибы. У эукариот:

1) Присутствует ядро, отграниченное от цитоплазмы двумембранной ядерной оболочкой,

2) ДНК связана с белками - гистонами, образуя хроматин, который при делении клеток превращается в хромосомы,

3) ДНК имеет мозаичное строение, то есть между генами располагаются неинформативные
участки - спейсеры, а гены имеют экзоны (информативные участки) и интроны (неинформативные участки),

4) у эукариот в ядре происходит дозревание иРНК — процессинг (неинформативные участки вырезаются с помощью ферментов, а информативные сшиваются),

5) имеются все органоиды цитоплазмы, имеющие мембранное и немембранное строение,

6) органоиды движения - жгутики и реснички - покрыты цитоплазматической мембраной;

• Относительная простота строения прокариотической клетки, по сравнению с клеткой эукариот, противоречит экономичной, но очень сложной ее организации

• Несколько видов прокариот исчерпывающе описаны с точки зрения клеточной биологии, однако они представляют собой лишь крайне малую часть многочисленной группы царства этих разнообразных организмов

• Многие основные черты организации прокариотических клеток сохранились в ходе эволюции

• Разнообразие форм и адаптационные возможности обеспечиваются множеством дополнительных структур и процессов, дающих возможность некоторым прокариотам существовать в особых и иногда тяжелых условиях

• Геном прокариот отличается высокой пластичностью и обладает рядом механизмов, позволяющих этим организмам быстро адаптироваться и развиваться

Прокариоты представляют собой одноклеточные организмы, для которых характерно отсутствие ядра. В эукариотической клетке ядро является клеточным компартментом, соде; жащим ДНК и ограниченным мембраной. Клетки прокариот отличаются от эукариотических клеток и по другим фундаментальным признакам. Как следует из рисунка ниже, прокариоты характеризуются относительно простым строением и организацией системы передачи генетической информации. Обычно они содержат одну кольцевую хромосому, которая вместе со связанными белками образует нуклеоид. Клетки большинства прокариот не содержат внутренних мембран, хотя они присутствуют у некоторых микроорганизмов, например у фотосинтезирующих бактерий.

В дальнейших статьях на сайте (рекомендуем пользоваться формой поиска на главной странице сайта) будет рассмотрено современное состояние наших знаний о строении клеток прокариот. Оболочка представляет собой слои, окружающие цитоплазму прокариотической клетки. Эти слои включают цитоплазматическую мембрану, клеточную стенку и капсулу. Наряду с этим, у некоторых бактерий есть наружная мембрана. Для этих бактерий характерно наличие тонкой клеточной стенки, и при окрашивании по Граму их клетки не включают фиолетовый краситель. Поэтому такие бактерии назваются грамотрицательными. В противоположность им, грамположитель-ные бактерии обладают более толстой клеточной стенкой и не имеют наружной мембраны. Ниже мы подробно рассмотрим строение различных слоев клеточной оболочки.

До сих пор детальные сведения о структуре и функциях прокариотической клетки ограничивались небольшим количеством легкодоступных модельных микроорганизмов Однако эволюционно прокариоты являются древними организмами и представлены многочисленными группами, характеризующимися широким разнообразием форм. На рисунке ниже представлены бактериальные клетки различной формы.

Филогенетическая систематика прокариот была затруднена, поскольку они не имеют пола, и поэтому, в отличие от высших организмов, к ним неприменима концепция вида. Вместе с тем, прокариоты обладают целым рядом механизмов, посредством которых может происходит горизонтальный перенос генов (т. е. генетический материал переносится между двумя организмами, ни один из которых не является потомком другого). Явление горизонтального переноса генов ограничивает попытки классифицировать прокариоты только по какому-то одному признаку. В исследованиях филогенетики прокариот революционизирующую роль сыграли молекулярные методы, в особенности секвенирование рРНК, и недавно разработанные приемы полного секвенирования генома.

Эти методы положили начало развитию работ в области систематического описания всего царства. Прокариоты подразделяются на два домена — Бактерии и Археи, о которых пойдет речь в следующем разделе.

Хотя в статьях на сайте в основном будут рассмотрены данные, полученные на Е. coli и В. subtilis и родственных им организмах, в случаях проявления значительных отклонений от традиционных парадигм мы будем привлекать результаты исследований других прокариот. Тем не менее очевидно, что огромное количество разнообразных данных ждет своего анализа.

Основные постулаты, полученные при исследованиях на Е. coli и В. subtilis, оказались весьма мощным инструментом понимания ряда общих свойств, характерных для групп организмов, которые они представляют. У этих организмов был хорошо изучен такой фундаментальный процесс, как клеточный цикл, а также охарактеризованы общие элементы строения клетки. Поэтому несколько статей на сайте посвящаются этим вопросам. Однако немаловажным фактором, который обусловливает интерес к изучению прокариот, является разнообразие условий их существования, и, таким образом, выяснение тех дополнительных структур и процессов, которые они выработали для приспособления к конкретной среде обитания.

В некоторых разделах описаны такие структуры, как капсулы и жгутики, и обсуждается их роль в различных функциях адаптивной природы. Выживаемость некоторых групп прокариот обеспечивается их способностью к постоянному развитию. Иногда это приводит к возникновению высокоспециализированных и дифференцированных клеточных типов, что напоминает процессы развития у высших организмов. Позже мы подробно опишем эти процессы, которые иногда представляют собой часть цикла развития прокариот или могут индуцироваться условиями стресса. Наконец, прокариоты вступают во взаимоотношения с человеком. Они могут быть патогенными факторами, комменсалами, или промышленными продуктами, а также оказывать мощное воздействие на окружающую среду. Несколько разделов настоящей главы описывают те стороны клеточной биологии, которые касаются подобных взаимоотношений.

Для прокариотической клетки характерно отсутствие ядра,
окруженного мембраной.
В зависимости от строения оболочки клеток, бактерии подразделяются на грамотрицательные и грамположительные.
Это отражает результаты их окрашивания по методу Грама.
В отличие от грамположительных бактерий, грамотрицательные не окрашиваются фиолетовым красителем
и характеризуются наличием наружной мембраны и тонкой клеточной стенки.
Три основные формы бактерий: шаровидные, палочковидные и спиралевидные.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Прокариоты – это древнейшие одноклеточные организмы, не имеющие оформленного ядра. К ним относятся бактерии и сине-зеленые водоросли.

Большинство прокариот имеет размер 1-5 мкм. Из внутриклеточных органелл имеются рибосомы, но меньших размеров, чем у эукариота. Мембрана клетки образует выпячивания плазмолеммы (мезосомы), выполняющие функции мембранных органоидов. На них расположены ферменты, обеспечивающие протекание процессов обмена веществ и энергии (ассимиляции и диссимиляции). Генетический материал прокариотических клеток (нуклеоид) представлен в виде кольцевой молекулы ДНК, связанный с небольшим количеством негистоновых белков. ДНК прокариот часто называют хромосомой, хотя структурно она существенно отличается от хромосом эукариот. В цитоплазме бактерий могут содержаться автономные генетические элементы – плазмиды. Размножаются прокариоты путем деления.

Типичная клетка прокариота включает:

· плазматическую (клеточную) мембрану;

Клеточная стенка - оболочка клетки, расположенная снаружи от цитоплазматической мембраны и выполняющая структурные, защитные и транспортные функции. Обнаруживается у большинства бактерий, архей, грибов и растений. Животные и многие простейшие не имеют клеточной стенки.

Плазмалемма - это перегородка, находящаяся внутри, непосредственно за оболочкой. Она делит клетку на определенные отсеки, которые направлены на компартменты или же органеллы. В них содержатся специализированные условия среды. Клеточная стенка полностью закрывает всю клеточную мембрану. Она выглядит как двойной слой молекул.

Цитоплазма - полужидкое содержимое клетки, внутренняя среда живой или умершей клетки, ограниченная плазматической мембраной.

Рибосомы - важнейшая немембранная органелла живой клетки, служащая для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК (мРНК).

Этот процесс называется трансляцией. Рибосомы имеют сферическую или слегка эллипсоидную форму, диаметром от 15—20 нанометров (прокариоты) до 25-30 нанометров (эукариоты), состоят из большой и малой субъединиц.

Жгутики и пили.Жгутики представляют собой внешние структуры клетки, которые служат пропеллерами, обеспечивающими ее движение.

Пили представляют собой внеклеточные белковые структуры, которые осуществляют самые разнообразные функции, включая обмен ДНК адгезию и образование биофильма клетками прокариот.

Биофильмы (biofilms, греч. bio(s) - жизнь и англ. film - пленка) - популяции или сообщества микроорганизмов (бактерий, грибов, водорослей), существующих в виде слизистых пленок, которые образуются на поверхности различных субстратов.

Нуклеоид(англ. Nucleoid) - неправильной формы зона в цитоплазме прокариотической клетки, в которой находится геномная ДНК и ассоциированные с ней белки.

Плазмиды (англ. plasmids) — небольшие молекулы ДНК, физически обособленные от хромосом и способные к автономной репликации.

Вопросы для самоконтроля:

1. Что изучает цитология?

2. Каковы особенности клеток прокариотов?

3.Что такое цитоплазма, и каково ее значение?

Раздел 1. Клетка.

Тема 2.Цитология

Лекция №5.Строение клеток эукариот.

Цель: формировать знания о клеточных формами жизни, различных типах клеток и особенностях их строения.

Задачи: рассмотреть единство всего живого на земле на основе знаний о клеточной теории; формировать понятие о клетке как открытой биологической системе, структурной и функциональной единицы жизни на земле; владеть основополагающими понятиями и представлениями о живой природе, ее уровневой организации и эволюции; уверенное пользование биологической терминологией и символикой; формировать ОК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.

План:

1. Вирусы.Вирусы - неклеточные формы жизни, внутриклеточные паразиты, паразитируют на генетическом уровне.

Состав: нуклеиновые кислоты (либо ДНК, либо РНК) и белков, образующих оболочку вокруг этой нуклеиновой кислоты. В состав некоторых вирусов входят липиды и углеводы.




Размеры вирусов - 10–300 нм. Форма вирусов: шаровидная, палочковидная, нитевидная, цилиндрическая и др.

Капсид - оболочка вируса, образована белковыми субъединицами, уложенными определенным образом. Капсид защищает нуклеиновую кислоту вируса от различных воздействий, обеспечивает осаждение вируса на поверхности клетки-хозяина. Суперкапсид - у сложноорганизованных вирусов (ВИЧ, вирусы гриппа, герпеса).

Вирусы способны паразитировать в клетках большинства существующих живых организмов, вызывая различные заболевания.

Возбудитель СПИДа - вирус иммунодефицита человека (ВИЧ) - ретровирус. Имеет сферическую форму, диаметром 100–150 нм.

Вирус иммунодефицита человека поражает CD4-лимфоциты (хелперы), на поверхности которых есть рецепторы, способные связываться с поверхностным белком ВИЧ. Кроме того, ВИЧ проникает в клетки ЦНС, нейроглии, кишечника. Иммунная система организма человека утрачивает свои защитные свойства и оказывается не в состоянии противостоять возбудителям различных инфекций.

СПИД передается половым путем, через кровь и ткани, содержащие вирус иммунодефицита, от матери к плоду.

Эукариоты

Эукариоты – все организмы, кроме бактерий и цианобактерий. Они обладают, в отличии от прокариотов, оформленным клеточным ядром, ограниченным от цитоплазмы ядерной оболочкой.

В цитоплазме эукариотических клеток имеются различные органоиды, выполняющие специфические функции (рибосомы, митохондрии, аппарат Гольджи, эндоплазматическая сеть и др.).

Размножаются они митотическим или мейотическим делением (в последнем случае при образовании половых клеток или при образовании спор у растений). Средний размер эукариотических клеток порядка 23мкм.

Типичная клетка эукариота включает:

· плазматическую (клеточную) мембрану;

· аппарат (комплекс) Гольджи;

Ядрышко - немембранный внутриядерный субкомпартмент, присущий всем без исключения эукариотическим организмам.

Ядро (лат. nucleus) — это один из структурных компонентов эукариотической клетки, содержащий генетическую информацию (молекулы ДНК), осуществляющий основные функции: хранение, передача и реализация наследственной информации с обеспечением синтеза белка.

Хромосомы - нуклеопротеидные структуры клетки, в которых хранится наследственная информация.

Рибосомы - важнейшая немембранная органелла живой клетки, служащая для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК (мРНК).

Эндоплазмати́ческий рети́кулум (ЭПР) (лат. reticulum — сеточка), или эндоплазматическая сеть (ЭПС), - внутриклеточная органелла эукариотической клетки, представляющая собой разветвлённую систему из окружённых мембраной уплощённых полостей, пузырьков и канальцев.

Аппарат (комплекс) Гольджи - мембранная структура эукариотической клетки, органелла, в основном предназначенная для выведения веществ, синтезированных в эндоплазматическом ретикулуме.

Цитоскелет - это клеточный каркас или скелет, находящийся в цитоплазме живой клетки.

Центриоль — внутриклеточная органелла эукариотической клетки.

Митохондрия – это двумембранный органоид эукариотической клетки, основная функция которого синтез АТФ – источника энергии для жизнедеятельности клетки.

Вопросы для самоконтроля:

1. Каковы особенности клеток эукариотов?

2. Почему вирусы считают неклеточной формой жизни?

3. Дайте характеристику бактериофагам.

Раздел 1. Клетка.

Тема 2.Цитология.

Лекция №8. Химическая организация клетки.

Цель:дать представление о химической организации клеток.

Задачи:раскрыть роль нуклеиновых кислот в жизнедеятельности клетки; рассмотреть особенности органических и неорганических веществ; формирование ОК 6. Работать в коллективе и команде, взаимодействовать с коллегами и социальными партнёрами.

План:

1. Неорганические вещества.

2. Органические вещества.

3. Нуклеиновые кислоты.

В состав живой клетки входят те же химические элементы, которые входят в состав неживой природы. Из 104 элементов периодической системы Д. И. Менделеева в клетках обнаружено 60.

Их делят на три группы:

1. основные элементы - кислород, углерод, водород и азот (98% состава клетки);

2. элементы, составляющие десятые и сотые доли процента - калий, фосфор, сера, магний, железо, хлор, кальций, натрий (в сумме 1,9%);

3. все остальные элементы, присутствующие в еще более малых количествах -микроэлементы.

Молекулярный состав клетки сложный и разнородный. Отдельные соединения - вода и минеральные соли - встречаются также в неживой природе; другие - органические соединения: углеводы, жиры, белки, нуклеиновые кислоты и др.- характерны только для живых организмов.

Прокариоты – это древнейшие одноклеточные организмы, не имеющие оформленного ядра. К ним относятся бактерии и сине-зеленые водоросли.

Большинство прокариот имеет размер 1-5 мкм. Из внутриклеточных органелл имеются рибосомы, но меньших размеров, чем у эукариота. Мембрана клетки образует выпячивания плазмолеммы (мезосомы), выполняющие функции мембранных органоидов. На них расположены ферменты, обеспечивающие протекание процессов обмена веществ и энергии (ассимиляции и диссимиляции). Генетический материал прокариотических клеток (нуклеоид) представлен в виде кольцевой молекулы ДНК, связанный с небольшим количеством негистоновых белков. ДНК прокариот часто называют хромосомой, хотя структурно она существенно отличается от хромосом эукариот. В цитоплазме бактерий могут содержаться автономные генетические элементы – плазмиды. Размножаются прокариоты путем деления.

Типичная клетка прокариота включает:

· плазматическую (клеточную) мембрану;

Клеточная стенка - оболочка клетки, расположенная снаружи от цитоплазматической мембраны и выполняющая структурные, защитные и транспортные функции. Обнаруживается у большинства бактерий, архей, грибов и растений. Животные и многие простейшие не имеют клеточной стенки.

Плазмалемма - это перегородка, находящаяся внутри, непосредственно за оболочкой. Она делит клетку на определенные отсеки, которые направлены на компартменты или же органеллы. В них содержатся специализированные условия среды. Клеточная стенка полностью закрывает всю клеточную мембрану. Она выглядит как двойной слой молекул.

Цитоплазма - полужидкое содержимое клетки, внутренняя среда живой или умершей клетки, ограниченная плазматической мембраной.

Рибосомы - важнейшая немембранная органелла живой клетки, служащая для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК (мРНК).

Этот процесс называется трансляцией. Рибосомы имеют сферическую или слегка эллипсоидную форму, диаметром от 15—20 нанометров (прокариоты) до 25-30 нанометров (эукариоты), состоят из большой и малой субъединиц.

Жгутики и пили.Жгутики представляют собой внешние структуры клетки, которые служат пропеллерами, обеспечивающими ее движение.

Пили представляют собой внеклеточные белковые структуры, которые осуществляют самые разнообразные функции, включая обмен ДНК адгезию и образование биофильма клетками прокариот.

Биофильмы (biofilms, греч. bio(s) - жизнь и англ. film - пленка) - популяции или сообщества микроорганизмов (бактерий, грибов, водорослей), существующих в виде слизистых пленок, которые образуются на поверхности различных субстратов.

Нуклеоид(англ. Nucleoid) - неправильной формы зона в цитоплазме прокариотической клетки, в которой находится геномная ДНК и ассоциированные с ней белки.

Плазмиды (англ. plasmids) — небольшие молекулы ДНК, физически обособленные от хромосом и способные к автономной репликации.

Вопросы для самоконтроля:

1. Что изучает цитология?

2. Каковы особенности клеток прокариотов?

3.Что такое цитоплазма, и каково ее значение?

Раздел 1. Клетка.

Тема 2.Цитология

Лекция №5.Строение клеток эукариот.

Цель: формировать знания о клеточных формами жизни, различных типах клеток и особенностях их строения.

Задачи: рассмотреть единство всего живого на земле на основе знаний о клеточной теории; формировать понятие о клетке как открытой биологической системе, структурной и функциональной единицы жизни на земле; владеть основополагающими понятиями и представлениями о живой природе, ее уровневой организации и эволюции; уверенное пользование биологической терминологией и символикой; формировать ОК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.

План:

1. Вирусы.Вирусы - неклеточные формы жизни, внутриклеточные паразиты, паразитируют на генетическом уровне.

Состав: нуклеиновые кислоты (либо ДНК, либо РНК) и белков, образующих оболочку вокруг этой нуклеиновой кислоты. В состав некоторых вирусов входят липиды и углеводы.

Размеры вирусов - 10–300 нм. Форма вирусов: шаровидная, палочковидная, нитевидная, цилиндрическая и др.

Капсид - оболочка вируса, образована белковыми субъединицами, уложенными определенным образом. Капсид защищает нуклеиновую кислоту вируса от различных воздействий, обеспечивает осаждение вируса на поверхности клетки-хозяина. Суперкапсид - у сложноорганизованных вирусов (ВИЧ, вирусы гриппа, герпеса).

Вирусы способны паразитировать в клетках большинства существующих живых организмов, вызывая различные заболевания.

Возбудитель СПИДа - вирус иммунодефицита человека (ВИЧ) - ретровирус. Имеет сферическую форму, диаметром 100–150 нм.

Вирус иммунодефицита человека поражает CD4-лимфоциты (хелперы), на поверхности которых есть рецепторы, способные связываться с поверхностным белком ВИЧ. Кроме того, ВИЧ проникает в клетки ЦНС, нейроглии, кишечника. Иммунная система организма человека утрачивает свои защитные свойства и оказывается не в состоянии противостоять возбудителям различных инфекций.

СПИД передается половым путем, через кровь и ткани, содержащие вирус иммунодефицита, от матери к плоду.

Эукариоты

Эукариоты – все организмы, кроме бактерий и цианобактерий. Они обладают, в отличии от прокариотов, оформленным клеточным ядром, ограниченным от цитоплазмы ядерной оболочкой.

В цитоплазме эукариотических клеток имеются различные органоиды, выполняющие специфические функции (рибосомы, митохондрии, аппарат Гольджи, эндоплазматическая сеть и др.).

Размножаются они митотическим или мейотическим делением (в последнем случае при образовании половых клеток или при образовании спор у растений). Средний размер эукариотических клеток порядка 23мкм.

Типичная клетка эукариота включает:

· плазматическую (клеточную) мембрану;

· аппарат (комплекс) Гольджи;

Ядрышко - немембранный внутриядерный субкомпартмент, присущий всем без исключения эукариотическим организмам.

Ядро (лат. nucleus) — это один из структурных компонентов эукариотической клетки, содержащий генетическую информацию (молекулы ДНК), осуществляющий основные функции: хранение, передача и реализация наследственной информации с обеспечением синтеза белка.

Хромосомы - нуклеопротеидные структуры клетки, в которых хранится наследственная информация.

Рибосомы - важнейшая немембранная органелла живой клетки, служащая для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК (мРНК).

Эндоплазмати́ческий рети́кулум (ЭПР) (лат. reticulum — сеточка), или эндоплазматическая сеть (ЭПС), - внутриклеточная органелла эукариотической клетки, представляющая собой разветвлённую систему из окружённых мембраной уплощённых полостей, пузырьков и канальцев.

Аппарат (комплекс) Гольджи - мембранная структура эукариотической клетки, органелла, в основном предназначенная для выведения веществ, синтезированных в эндоплазматическом ретикулуме.

Цитоскелет - это клеточный каркас или скелет, находящийся в цитоплазме живой клетки.

Центриоль — внутриклеточная органелла эукариотической клетки.

Митохондрия – это двумембранный органоид эукариотической клетки, основная функция которого синтез АТФ – источника энергии для жизнедеятельности клетки.

Вопросы для самоконтроля:

1. Каковы особенности клеток эукариотов?

2. Почему вирусы считают неклеточной формой жизни?

3. Дайте характеристику бактериофагам.

Раздел 1. Клетка.

Тема 2.Цитология.

Лекция №8. Химическая организация клетки.

Цель:дать представление о химической организации клеток.

Задачи:раскрыть роль нуклеиновых кислот в жизнедеятельности клетки; рассмотреть особенности органических и неорганических веществ; формирование ОК 6. Работать в коллективе и команде, взаимодействовать с коллегами и социальными партнёрами.

План:

1. Неорганические вещества.

2. Органические вещества.

3. Нуклеиновые кислоты.

В состав живой клетки входят те же химические элементы, которые входят в состав неживой природы. Из 104 элементов периодической системы Д. И. Менделеева в клетках обнаружено 60.

Их делят на три группы:

1. основные элементы - кислород, углерод, водород и азот (98% состава клетки);

2. элементы, составляющие десятые и сотые доли процента - калий, фосфор, сера, магний, железо, хлор, кальций, натрий (в сумме 1,9%);

3. все остальные элементы, присутствующие в еще более малых количествах -микроэлементы.

Молекулярный состав клетки сложный и разнородный. Отдельные соединения - вода и минеральные соли - встречаются также в неживой природе; другие - органические соединения: углеводы, жиры, белки, нуклеиновые кислоты и др.- характерны только для живых организмов.

Как вы знаете, клетки прокариот, в отличие от эукариотических, лишены ядра и мембранных органоидов. Прокариотами являются бактерии, а эукариотами — протисты, грибы, растения и животные.

Строение прокариотических клеток. Размеры клеток прокариот обычно составляют от 0,5 до 10 мкм. Однако встречаются бактерии как бóльших, так и меньших размеров. Форма бактериальных клеток также различается. Например, клетки кокков имеют шаровидную форму, бацилл — палочковидную, а у спирилл они закручены в виде спиралей. Несмотря на различия в размерах и форме, все прокариотические клетки устроены по единому плану и состоят из поверхностного аппарата и цитоплазмы (рис. 15.1).


В состав поверхностного аппарата бактериальной клетки входят цитоплазматическая мембрана (плазмалемма) и клеточная стенка, иногда — слизистая капсула. У некоторых прокариот поверхностный аппарат помимо плазмалеммы и клеточной стенки включает наружную мембрану, похожую по строению на плазмалемму.

Цитоплазматическая мембрана клеток прокариот может образовывать различные по форме впячивания в цитоплазму. По составу, структуре и выполняемым функциям плазмалемма бактерий сходна с цитоплазматической мембраной эукариотических клеток. Жесткая клеточная стенка обеспечивает поддержание формы бактериальной клетки и ее защиту от механических повреждений. Она предохраняет клетку от разрыва в результате действия высокого тургорного давления, вызванного поступлением воды в цитоплазму путем осмоса . *Как вам уже известно, прочность клеточной стенки прокариот обеспечивает каркас, состоящий из пептидогликана муреина.*

*В конце XIX в. датский микробиолог К. Грам разработал особый метод окрашивания прокариотических клеток, на основе которого бактерии были разделены на две группы. Бактерии, клетки которых окрашиваются по методу Грама в сине-фиолетовый цвет, называют грамположительными, а те, которые приобретают красную или розовую окраску, — грамотрицательными.*

*Метод окраски по Граму относится к сложным способам окрашивания, при котором используются два красителя — основной и дополнительный. Сначала клетки бактерий обрабатывают основным красителем — анилиновым (например, генциановым фиолетовым или метиловым фиолетовым), а затем этот краситель фиксируют раствором йода. При последующем промывании окрашенного препарата спиртом грамположительные бактерии сохраняют сине-фиолетовую окраску, а грамотрицательные обесцвечиваются. После этого добавляется дополнительный краситель (фуксин), который окрашивает клетки грамотрицательных бактерий в красный или розовый цвет.*

*Различия между грамположительными и грамотрицательными прокариотами связаны прежде всего с составом и строением поверхностного аппарата их клеток (рис. 15.2). Так, у грамположительных бактерий клеточная стенка толстая, а у грамотрицательных — намного тоньше и, следовательно, менее жесткая. Однако у грамотрицательных бактерий снаружи от клеточной стенки имеется наружная мембрана, обладающая, как и плазмалемма, избирательной проницаемостью. Она является дополнительным барьером, ограничивающим доступ различных веществ в клетку. Этим обусловлена бóльшая устойчивость грамотрицательных бактерий к действию ряда антибиотиков, ферментов и ядов.*


У некоторых бактерий поверх клеточной стенки или наружной мембраны есть слизистая капсула, состоящая главным образом из полисахаридов. Капсула защищает клетку от механических повреждений и высыхания, а у болезнетворных бактерий — еще и от действия иммунной системы организма-хозяина.

На поверхности клеток многих бактерий имеются тонкие *полые внутри* белковые выросты — ворсинки. Они служат для прикрепления к разным субстратам или другим клеткам. *Специальные ворсинки принимают участие в половом процессе бактерий — конъюгации. С их помощью обеспечивается контакт между двумя бактериальными клетками и передача наследственной информации из одной клетки в другую. Конъюгация у бактерий не связана с размножением, поскольку в результате этого процесса не происходит увеличения количества особей.*

Клетки некоторых прокариот имеют органоиды движения — жгутики. Бывают клетки с одним, несколькими или множеством жгутиков. *По строению и механизму работы жгутики бактерий принципиально отличаются от жгутиков и ресничек эукариотических клеток. Бактериальный жгутик не покрыт плазмалеммой. Он представляет собой длинный полый цилиндр, состоящий из молекул белка флагеллина и имеющий форму спирали. Толщина жгутика составляет 10—20 нм. Его основание образовано несколькими белками, которые способны вращаться друг относительно друга, что и лежит в основе вращения всего жгутика. При этом для движения жгутика используется не энергия АТФ, как у эукариот, а энергия, которая выделяется в процессе транспорта ионов водорода (Н + ) через плазмалемму.*

В цитоплазме прокариотической клетки расположена кольцевая молекула ДНК — бактериальная хромосома. *Область цитоплазмы, в которой она находится, обычно занимает центральную часть клетки и называется нуклеоидом.* В клетках большинства бактерий, кроме бактериальной хромосомы , содержатся небольшие кольцевые молекулы ДНК — плазмиды. *Они могут удваиваться независимо от бактериальной хромосомы и передаваться от одной бактерии к другой при конъюгации.* Плазмиды не являются обязательными компонентами бактериальной клетки. Однако они могут содержать наследственную информацию, которая обеспечивает проявление у клетки свойств, помогающих ей выжить в определенных условиях окружающей среды. Примером могут служить плазмиды, обусловливающие устойчивость к тем или иным антибиотикам или токсинам.

В каждой прокариотической клетке обязательно присутствуют *70S* рибосомы. *Они могут свободно располагаться в гиалоплазме или прикрепляться к цитоплазматической мембране.* В клетках бактерий также могут содержаться *различные включения, например трофические —* капли липидов, крахмальные зерна или гранулы гликогена. Их отложение происходит в условиях избытка питательных веществ, а потребление — при истощении пищевых ресурсов.

*У некоторых прокариот, обитающих в водной среде, в гиалоплазме имеются так называемые газовые пузырьки. Они заполнены смесью газов и ограничены белковой оболочкой, непроницаемой для воды. Газовые пузырьки позволяют регулировать глубину погружения бактериальной клетки с минимальными затратами энергии. При увеличении их объема клетка всплывает, а при уменьшении — погружается. Это особенно важно, например, для фотосинтезирующих прокариот. Возможность регулировать глубину погружения позволяет им находиться в условиях с оптимальной концентрацией углекислого газа и освещенностью.

Некоторые виды прокариот при наступлении неблагоприятных условий могут переходить в состояние бактериальной споры. При спорообразовании происходит уплотнение участка цитоплазмы, содержащего бактериальную хромосому. Далее вокруг этого участка формируется прочная многослойная оболочка. Бактериальные споры отличаются очень высокой устойчивостью к действию высоких и низких температур, ядовитых веществ, радиоактивного излучения и др. Они могут сохранять жизнеспособность в течение многих лет и прорастать, когда условия вновь становятся благоприятными. Важно отметить, что спорообразование у прокариот не является способом бесполого размножения, а служит для перенесения неблагоприятных условий.*

Организмы одноклеточных и многоклеточных делятся на две категории — эукариоты и прокариоты.

Клетки животных, а также почти все растения и грибы обладают интерфазным ядром. Кроме того, прокариотические и эукариотические клетки (прокариоты и эукариоты) имеют стандартные для всех клеток органоиды. Такие организмы называются ядерными или эукариотами.

Прокариоты или доядерные — это не такая большая категория организмов, как эукариоты, но более древняя по своему происхождению. К ним относятся бактерии сине-зеленые водоросли (цианобактерии). У них нет настоящего ядра и большинства органоидов, присущих цитоплазме.

Но у эукариот и прокариот есть свои особенности. Обратимся к сравнению клеток прокариот и эукариот, в частности, рассмотрим строение прокариотической и эукариотической клеток, а также обозначим различия прокариот и эукариот.

Сравнительная характеристика прокариот и эукариот

Характеристика клеток прокариот

При сравнении прокариот и эукариот важно подробно остановиться на строении.

Прокариотическая и эукариотическая клетки имеют разное строение. Строение клеток прокариот достаточно простое. Клетка прокариот не имеет ядра, ядрышка и хромосом. Клеточное ядро в этом случае заменяет нуклеоид. Он представляет собой похожее на ядро образование, без оболочки с одной кольцевой молекулой ДНК, которая связана с небольшим количеством белка. Также можно сказать, что это скопление белков и нуклеиновых кислот: они лежат в цитоплазме и не отделены от нее мембранами.

Последний момент является ключевым для деления клеток на прокариот и эукариот (доядерные и ядерные). Далее мы посмотрим сравнение эукариотических и прокариотических клеток в таблице.

В прокариотических клетках нет внутренних мембран — за исключением вмятин плазмолеммы. Исходя из этого получается, что органеллы прокариот немногочисленны: митохондрий, эндоплазматической сети, хлоропластов, лизосом, комплекса Гольджи. Все перечисленное есть в эукариотических клетках — там они окружены мембраной. Вакуоли также отсутствуют.

В прокариотических клетках есть только одна единственная органелла — это рибосома. Но здесь рибосомы мельче, чем у клеток эукариот.

Строение клетки прокариот характеризуется тем, что у клеток есть плотная клеточная стенка, которая их покрывает, и часто слизистая капсула.

Клеточная стенка состоит из муреина. Молекула муреина, в свою очередь, включает параллельно расположенные полисахаридные цепи: они сшиты друг с другом короткими цепями пептидов.

Плазматическая мембрана характеризуется тем, что у нее есть способность прогибаться внутрь цитоплазмы и образовывать, таким образом, мезосомы. На мембранах мезосом находятся окислительно-восстановительные ферменты, а фотосминтезирующие прокариоты имеют также соответствующие пигменты: бактериохлорофилл (бактерии) и фикобилины (цианобактерии). За счет этого мембраны получают возможность осуществлять функции, свойственные митохондриям, хлоропластам и другим органеллам.

Для прокариот характерно бесполое размножение. Оно происходит в результате простого деления клетки пополам.

Сравнительная характеристика клеток, представленных в таблице, поможет различать два типа клеток без каких-либо проблем.

Сравнительная характеристика прокариот и эукариот в таблице:

Сравнительная характеристика прокариот и эукариот

Если посмотреть на сравнение клеток прокариот и эукариот в таблице, то становится понятно, в чем заключается их похожесть и отличия. В таблице прокариоты и эукариоты — это практически две разные клетки.

Кстати, сравнение клеток прокариот и эукариот в таблице в 9 классе уже необходимо уметь делать.

Сравнительная характеристика эукариот и прокариот будет неполной без анализа первых. Так что помимо сравнительной характеристики клеток в таблице нужно знать, что собой представляют эукариоты.

Характеристика клеток эукариот

Эукариотическая и прокариотическая клетки обладают разным составом.

Несмотря на то, что клетки эукариот включают те же структурные элементы, что и прокариотические клетки, строение клетки эукариот сложнее. К таким элементам относятся цитоплазма, клеточная стенка эукариот, плазмолемма.

Строение клеток эукариот характеризуется разделением на компартменты (реакционные пространства) при помощи множества мембран. В каждом из компартментов происходят разнообразные химические реакции — одновременно и независимо друг от друга.

Ниже представлены сведения об эукариотической клетке в таблице (сравнение клеток разных царств эукариот не приводим).

Строение эукариотической клетки в таблице, а точнее, в одной картинке:

Сравнительная характеристика прокариот и эукариот

​​​​​​​

Из таблицы строения эукариотической клетки понятно, насколько сложным оно является.

Главные функции в клетке выполняют ядро и различные органеллы, такие как митохондрии, комплекс Гольджи, рибосомы и др. Что касается ядра, пластид и митохондрий, то они отделены от цитоплазмы при помощи двухмембранной оболочки. Генетический материал содержится в ядре клетки.

Функция хлоропластов — улавливание солнечной энергии и преобразование ее в химическую энергию углеводов при помощи фотосинтеза.

Митохондрии получают энергию в процессе расщепления белков, углеводов, жиров и других органических соединений.

Эндоплазматическая сеть и комплекс Гольджи — это мембранные системы цитоплазмы эукариотических клеток. Их наличие обеспечивает нормальное осуществление всех жизненных процессов в клетке.

Лизосомы, вакуоли и пероксисомы отвечают за выполнение специфических функций.

Немембранное происхождение имеют хромосомы, рибосомы, микротрубочки и микрофиламенты.

Основной способ размножения эукариотических клеток — митоз.

Эта основная информация по сравнению прокариотической и эукариотической клетки. Отличия прокариот от эукариот в таблице наглядно видны.

Читайте также: