Каков физический смысл коэффициента упругости пружины кратко

Обновлено: 07.07.2024

При деформации тела возникает сила, которая стремится восстановить прежние размеры и форму тела. Эта сила возникает вследствие электромагнитного взаимодействия между атомами и молекулами вещества. Ее называют силой упругости .

Простейшим видом деформации являются деформации растяжения и сжатия (рис. 1.12.1).

При малых деформациях () сила упругости пропорциональна деформации тела и направлена в сторону, противоположную направлению перемещения частиц тела при деформации:

Это соотношение выражает экспериментально установленный закон Гука . Коэффициент называется жесткостью тела . В системе СИ жесткость измеряется в ньютонах на метр (). Коэффициент жесткости зависит от формы и размеров тела, а также от материала. В физике закон Гука для деформации растяжения или сжатия принято записывать в другой форме. Отношение называется относительной деформацией , а отношение , где – площадь поперечного сечения деформированного тела, называется напряжением . Тогда закон Гука можно сформулировать так: относительная деформация пропорциональна напряжению :

Коэффициент в этой формуле называется модулем Юнга . Модуль Юнга зависит только от свойств материала и не зависит от размеров и формы тела. Модуль Юнга различных материалов меняется в широких пределах. Для стали, например, , а для резины , т. е. на пять порядков меньше.

Закон Гука может быть обобщен и на случай более сложных деформаций. Например, при деформации изгиба упругая сила пропорциональна прогибу стержня, концы которого лежат на двух опорах (рис. 1.12.2).

Упругую силу действующую на тело со стороны опоры (или подвеса), называют силой реакции опоры . При соприкосновении тел сила реакции опоры направлена перпендикулярно поверхности соприкосновения. Поэтому ее часто называют силой нормального давления . Если тело лежит на горизонтальном неподвижном столе, сила реакции опоры направлена вертикально вверх и уравновешивает силу тяжести: Сила с которой тело действует на стол, называется весом тела.

В технике часто применяются спиралеобразные пружины (рис. 1.12.3). При растяжении или сжатии пружин возникают упругие силы, которые также подчиняются закону Гука. Коэффициент называют жесткостью пружины . В пределах применимости закона Гука пружины способны сильно изменять свою длину. Поэтому их часто используют для измерения сил. Пружину, растяжение которой проградуировано в единицах силы, называют динамометром . Следует иметь в виду, что при растяжении или сжатии пружины в ее витках возникают сложные деформации кручения и изгиба.

В отличие от пружин и некоторых эластичных материалов (резина) деформация растяжения или сжатия упругих стержней (или проволок) подчиняются линейному закону Гука в очень узких пределах. Для металлов относительная деформация не должна превышать . При больших деформациях возникают необратимые явления (текучесть) и разрушение материала.

Каковы цели лабораторной работы и что нужно сделать для их достижения?

Назовите составные части лабораторной установки и их назначение.

Какие величины измеряются в данной работе непосредственно? Какие вычисляются?

В каких единицах измеряется и от чего зависит момент инерции тела или системы тел? Каков его физический смысл?

Какова здесь единица измерения коэффициента k в СИ?

Найдите первую, а затем вторую производную от  по уравнению (3.3). Каков их физический смысл?

Как направлены векторы ипри крутильных колебаниях?

Выведите формулы (3.6), (3.7) (3.9).

Подумайте, как повлияет учёт момента инерции подвески на получаемые значения моментов инерции тела.

Работа № 4. Определение коэффициента упругости пружины

Цель работы: ознакомиться с двумя методами определения коэффициента упругости пружины и определить его практически.

Оборудование: стойка с пружинами, грузы, линейка, секундомер.

Теория метода и описание установки

Лабораторная установка представляет собой стойку с кронштейном, к которому подвешены две пружины различной жесткости (рис. 4.1). К нижним концам пружин прикреплены подвески для помещения на них грузов. Удлинение пружин можно измерять по линейкам, вертикально закрепленным на поворачивающемся кронштейне. На рис. 4.1 показаны три состояния одной из пружин.

Первые два состояния – это состояния равновесия, т. е. ускорение тела равно нулю. В первом состоянии подвеска пустая, и длина пружины с подвеской равна l . Во втором состоянии пружина удлинилась под действием положенного на подвеску груза массой т на величину l, и её длина с подвеской стала равна l. В третьем состоянии удлинение пружины с грузом больше равновесного удлинения l на величину х, которую называют смещением от положения равновесия. В этом состоянии ускорение тела не равно нулю. Также на рисунке показана ось координат Ох, направленная вертикально вниз. За х = 0 принято положение равновесия.

На тело, подвешенное на пружине, действуют сила упругости и сила тяжести (см. рис. 4.1), которые сообщают телу ускорение в соответствии со вторым законом Ньютона

Используя этот закон, можно определить коэффициент упругости пружины двумя способами.

Задание 1. Определение коэффициента упругости пружины статическим методом

В случае покоящегося груза силы тяжести и упругости равны по величине:

Величина упругой силы, по закону Гука, пропорциональна удлинению l пружины, т.е.

Fyпр = kl.(4.3)Равенства (4.2) и (4.3) позволяют найти коэффициент упругости пружины по измеренному удлинению, вызванному грузом известной массы т:

Выполнение измерений

Измерения удлинения проводят для одной из двух пружин (по указанию преподавателя), для чего на подвеску помещают грузы различной массы. Сначала с помощью закреплённой вертикально линейки измеряют длину пружины с пустой подвеской – l . Затем на подвеску кладут самый большой груз из полученного набора, измеряют длину l (см. рис. 4.1). Массы грузов в граммах указаны прямо на них. Затем на первый груз помещают любой другой груз, снова замеряют длину и т.д., до 5 грузов. Общую массу грузов на подвеске и результаты измерений длины заносят в табл. 4.1, где l – координата подвески без груза, l – с грузом. (Подумайте, нужно ли здесь учитывать массу подвески).


  • 5 – 9 классы
  • Физика
  • 6 баллов

Физический смысл коэффициента упругости?

  • Попроси больше объяснений
  • Следить
  • Отметить нарушение

Ответ


Чем выше коэффициент упругости, тем жестче струна и тем тяжелее она поддается растяжению или сжатию. Он показывает какую силу нужно приложить, чтобы растянуть или сжать тело на единицу длины.

Если под воздействием внешних сил на твердое тело оно деформируется, то в нем происходят смещения частиц узлов кристаллической решетки. Этому сдвигу противостоят силы взаимодействия частиц. Так возникают силы упругости, которые приложены к телу, подвергшемуся деформации. Модуль силы упругости пропорционален деформации:

\[dF_<upr></p>
<p>=\sigma dS=K\frac \qquad (1)\]

\frac<\Delta x></p>
<p>где  — напряжение при упругой деформации, K — модуль упругости, который равен напряжению при относительной деформации, равной единице. где
— относительная деформация, — абсолютная деформация, — первоначальное значение величины, которая характеризовала форму или размеры тела.

\alpha =\frac<1></p>
<p>Коэффициентом упругости называют физическую величину, которая связывает в законе Гука удлинение, возникающее при деформации упругого тела и силу упругости. Величина равная
называется коэффициентом упругости. Она показывает изменение размера тела под воздействием нагрузки при упругой деформации.

Коэффициент упругости зависит от материала тела, его размеров. Так при увеличении длины пружины и уменьшении ее толщины коэффициент упругости уменьшается.

Модуль Юнга и коэффициент упругости

При продольной деформации, в одностороннем растяжении (сжатии) мерой деформации служит относительное удлинение, которое обозначают " width="21" height="22" />
или " width="17" height="22" />
. При этом модуль силы упругости определяют как:

\[F_<upr></p>
<p>=E\fracS \qquad (2)\]

где — модуль Юнга, который в рассматриваемом случае равен модулю упругости (" width="94" height="22" />
) и характеризующий упругие свойства тела; — первоначальная длина тела; — изменение длины при нагрузке " width="74" height="18" />
. При =\sigma ;" width="155" height="22" />
S — площадь поперечного сечения образца.

Коэффициент упругости растянутой (сжатой) пружины

При растяжении (сжатии) пружины вдоль оси X закон Гука записывается как:

где — модуль проекции силы упругости; — коэффициент упругости пружины, — удлинение пружины. Тогда коэффициент упругости — это сила, которую следует приложить к пружине, чтобы изменить ее длину на единицу.

Единицы измерения

Основной единицей измерения коэффициента упругости в системе СИ является:

\[\left[k\right]=\frac<H></p>
<p>\]

Примеры решения задач

Задание Какова работа, совершается при сжатии пружины на величину ? Считать, что сила упругости пропорциональна сжатию, коэффициент упругости пружины равен k.
Решение В качестве основной формулы используем определение работы вида:

\[A=\int^</p>
<p>_0<\overline<F>d\overline=-\int^_0>\]

Сила по условию пропорциональна величине сжатия, что математически можно представить как:

Подставим выражения для силы (1.2) в формулу (1.1):

\[A=\int^<l_0></p>
<p>_0<-Fdl=\int^<l_0>_0^2>.>>\]

Задание Вагон массой двигался со скоростью . Он ударился о стенку. При ударе каждый буфер вагона сжался на l м. Буферов два. Каковы коэффициенты упругости пружин, если считать, что они равны?
Решение Сделаем рисунок.

Формула коэффициента упругости

Работа по сжатию амортизаторов поезда совершается за счет кинетической энергии. Используем результат Примера 1:

\[A=\frac<kl^2></p>
<p> \qquad \left(2.1\right)\]

Работа при сжатии одного буфера:

\[A_1=\frac<kl^2></p>
<p> \qquad \left(2.2\right),\]

\[A_2=\frac<kl^2></p>
<p> \qquad \left(2.3\right)\]

Результирующая работа равна сумме работ:

\[A=A_1+A_2=kl^2 \qquad \left(2.4\right)\]

В таком случае изменение кинетической энергии вагона, равно совершенной работе:

\[\Delta E_k=\frac<mv^2></p>
<p>=kl^2 \qquad \left(2.5\right)\]

Из выражения (2.5) получим:

\[k=\frac<mv^2></p>
<p>\]


Если вы возьмете резиновый шарик и шар из камня и начнете кидать в стену (скучный день выдался, мало ли) — заметите, что они отталкиваются совершенно по-разному. Про силу упругости, которая объясняет этот процесс — в этой статье.

О чем эта статья:

Сила: что это за величина

В повседневной жизни мы часто встречаем, как любое тело деформируется (меняет форму или размер), ускоряется или замедляется, падает. В общем, чего только с разными телами в реальной жизни не происходит. Причиной любого действия или взаимодействия является сила.

Сила — это физическая векторная величина, которая является мерой действия одного тела на другое.

Она измеряется в ньютонах — это единица измерения названа в честь Исаака Ньютона.

что такое сила

Сила — величина векторная. Это значит, что, помимо модуля, у нее есть направление. От того, куда направлена сила, зависит результат действия этой силы.

Вот стоите вы на лонгборде: можете оттолкнуться вправо, а можете влево — в зависимости от того, в какую сторону оттолкнетесь, результат будет разный. В данном случае результат выражается в направлении движения.

векторная величина

Деформация

Деформация — это изменение формы и размеров тела (или части тела) под действием внешних сил

Происходит деформация из-за различных факторов: при изменении температуры, влажности, фазовых превращениях и других воздействиях, вызывающих изменение положения частиц тела.

На появление того или иного вида деформации большое влияние оказывает характер приложенных к телу сил. Одни процессы деформации связаны с преимущественно перпендикулярно (нормально) приложенной силой, а другие — преимущественно с силой, приложенной по касательной.

По характеру приложенной к телу нагрузки виды деформации подразделяют следующим образом:

Деформация при кручении

Деформация при изгибе

Сила упругости: Закон Гука

Давайте займемся баскетболом. Начнем набивать мяч о пол, он будет чудесно отскакивать. Этот удар можно назвать упругим. Если при ударе деформации не будет совсем, то он будет называться абсолютно упругим.

Если вы перепутали мяч и взяли пластилиновый, он деформируется при ударе и не оттолкнется от пола. Такой удар будет называться абсолютно неупругим.

Деформацию тоже можно назвать упругой (при которой тело стремится вернуть свою форму и размер в изначальное состояние) и неупругой (когда тело не может вернуться в исходное состояние).

При деформации возникает сила упругости— это та сила, которая стремится вернуть тело в исходное состояние, в котором оно было до деформации.

Сила упругости, возникающая при упругой деформации растяжения или сжатия тела, пропорциональна абсолютному значению изменения длины тела. Выражение, описывающее эту закономерность, называется законом Гука.

Какой буквой обозначается сила упругости?

Закон Гука

—сила упругости [Н]

k — коэффициент жесткости [Н/м]

х — изменение длины (деформация) [м]

Изменение длины может обозначаться по-разному в различных источниках.

Варианты обозначений: x, ∆x, ∆l.

Это равноценные обозначения — можно использовать любое удобное.

Задачка

На сколько удлинится рыболовная леска жесткостью 0,3 кН/м при равномерном (без ускорения) поднятии вверх рыбы весом 300 г?

Решение:

Сначала определим силу тяжести. Не забываем массу представить в единицах СИ – килограммах.

m = 300 г = 0,3 кг

Если принять ускорение свободного падения равным 10 м/с*с, то модуль силы тяжести равен :

F = mg = 0,3*10 = 3 Н.

Вспомним закон Гука:

И выразим из него модуль удлинения лески:

Так как одна сила уравновешивает другую, мы можем их приравнять:

Подставим числа, жесткость лески при этом выражаем в ньютонах:

Ответ: удлинение лески равно 1 см.

Параллельное и последовательное соединение пружин

В Законе Гука есть такая величина, как коэффициент жесткости— это характеристика тела, которая показывает его способность сопротивляться деформации. Чем больше коэффициент жесткости, тем больше эта способность, а как следствие из Закона Гука — и сила упругости.

Чаще всего эта характеристика используется для описания жесткости пружины. Но если мы соединим несколько пружин, то их суммарная жесткость нужно будет рассчитать. Разберемся, каким же образом.

Последовательное соединение системы пружин

Последовательное соединение характерно наличием одной точки соединения пружин.

система пружин

При последовательном соединении общая жесткость системы уменьшается. Формула для расчета коэффициента упругости будет иметь следующий вид:

Коэффициент жесткости при последовательном соединении пружин

k — общая жесткость системы [Н/м]

k1, k2, …, ki — отдельные жесткости каждого элемента [Н/м]

i — общее количество всех пружин, задействованных в системе [-]

Параллельное соединение системы пружин

Последовательное соединение характерно наличием двух точек соединения пружин.

параллельное соединение систем пружин

В случае когда пружины соединены параллельно величина общего коэффициента жесткости системы будет увеличиваться. Формула для расчета будет выглядеть так:

Коэффициент жесткости при параллельном соединении пружин

k — общая жесткость системы [Н/м]

k1, k2, …, ki — отдельные жесткости каждого элемента [Н/м]

i — общее количество всех пружин, задействованных в системе [-]

Задачка

Какова жесткость системы из двух пружин, жесткости которых k1 = 100 Н/м, k2 = 200 Н/м, соединенных: а) параллельно; б) последовательно?

Решение:

а) Рассмотрим параллельное соединение пружин.

параллельное соединение пружин

При параллельном соединении пружин общая жесткость

k = k₁ + k₂ = 100 + 200 = 300 Н/м

б) Рассмотрим последовательное соединение пружин.

последовательное соединение пружин

При последовательном соединении общая жесткость двух пружин

График зависимости силы упругости от жесткости

Закон Гука можно представить в виде графика. Это график зависимости силы упругости от изменения длины и по нему очень удобно можно рассчитать коэффициент жесткости. Давай рассмотрим на примере задач.

Задачка 1

Определите по графику коэффициент жесткости тела.

коэффициент жесткости

Решение:

Из Закона Гука выразим коэффициент жесткости тела:

Снимем значения с графика. Важно выбрать одну точку на графике и записать для нее значения обеих величин.

Например, возьмем вот эту точку.

точка на графике

В ней удлинение равно 2 см, а сила упругости 2 Н.

Переведем сантиметры в метры:

И подставим в формулу:

Ответ:жесткость пружины равна 100 Н/м

Онлайн-уроки физики в Skysmart не менее увлекательны, чем наши статьи!

Задачка 2

На рисунке представлены графики зависимости удлинения от модуля приложенной силы для стальной (1) и медной (2) проволок равной длины и диаметра. Сравнить жесткости проволок.

задача

Решение:

Возьмем точки на графиках, у которых будет одинаковая сила, но разное удлинение.

решение задачи

Мы видим, что при одинаковой силе удлинение 2 проволоки (медной) больше, чем 1 (стальной). Если выразить из Закона Гука жесткость, то можно увидеть, что она обратно пропорциональна удлинению.

При внешнем воздействии тело ускоряется либо деформируется. Последнее явление проявляется изменением форм или размеров. Если объект восстанавливается в покое на 100%, деформация называется упругой (резинка), а в остальных случаях — пластической (лепка изделий из глины). Для вычисления первого показателя используется формула жесткости пружины (F = k · x).

Понятие жесткости пружины, формула для расчета величины

Трактовка понятий

В физике упругая деформация возникает из-за силы, равной по модулю оказываемому воздействию. Сила упругости для пружины (F) пропорциональна её удлинению. Для определения жесткости пружины зависимость записывается математически с помощью следующей формулы: F = k·x; где х — длина предмета после его растяжения, а k — коэффициент жесткости.

Формула считается частным случаем закона Гука, который используется для растяжимого тонкого стержня. Чрезмерное воздействие приводит к появлению разных дефектов. Для процесса характерны некоторые особенности, от чего зависит жесткость пружины:

  • геометрические параметры детали;
  • срок эксплуатации;
  • значение коэффициента k, который при определённых условиях способствует снижению сжатия и сохранению силы на одинаковом уровне;
  • тип используемого материала (сталь, сплав) в процессе изготовления пружины.

На практических занятиях по физике в 7 классе применяются изделия разных типов. В автомобилестроении используется цветовое обозначение. Для расчета коэффициента жесткости пружины специалисты ориентируются на формулу k=Gd 4 /8D 3 n, где:

Показатели, влияющие на значение коэффициента

  • G — определяет модуль сдвига (свойство зависит, к примеру, от используемого сырья);
  • d — диаметр куска проволоки (величина определяется в период производства путём проката, а результат записывается в технической документации);
  • D — диаметр витков, которые получаются в результате намотки на проволоку (расчет осуществляется с учетом поставленных задач и зависит от нагрузки, оказываемой для сжатия объекта);
  • n — количество витков в системе (показатель варьируется в значительном диапазоне, от чего зависят эксплуатационные характеристики предмета).

С помощью формулы может измеряться жёсткость цилиндрической пружины, используемой в разных механизмах. Показатель измеряется в Ньютонах и обозначается Н.

Практические занятия

Механики и физики обозначают с помощью k, c и D коэффициент упругости, пропорциональности, жесткости. Смысл математической записи одинаковый. Численно показатель равняется силе, которая создаёт колебания на одну единицу длины. На практических работах по физике используется в качестве последней величины 1 метр.

Чем выше k, тем больше сопротивление предмета относительно деформации. Дополнительно коэффициент показывает степень устойчивости тела к колебаниям со стороны внешней нагрузки. Параметр зависит от длины и диаметра винтового изделия, количества витков, сырья. Единица измерения жесткости пружины — Н/м.

На практике перед школьниками и механиками может стоять более сложная задача, к примеру, найти общую жёсткость. В таком случае пружины соединены последовательным либо параллельным способом. В первом случае уменьшается суммарная жесткость. Если пружины расположены последовательно, используется следующая формула: 1/k = 1/k1 + 1/k2 + … + 1/ki, где:

  • k — суммарная жёсткость соединений;
  • k1 …ki — жёсткость каждого элемента системы;
  • i — число пружин в цепи.

Если невесомые (расположены горизонтально) предметы соединены параллельно, значение общего k будет увеличиваться. Величина вычисляется по следующей формуле: k = k1 + k2 + … + ki.

Основная методика для вычислений

На практике коэффициент Гука определяется самостоятельно. Для эксперимента потребуется пружина, линейка, груз с определённой массой. Необходимо соблюдать следующую последовательность действий:

Тематические задачи, примеры их решения

  1. Пружина фиксируется вертикально. Для этого используется любая удобная опора со свободной нижней частью.
  2. Линейкой измеряется длина предмета. Результат записывается как х1.
  3. На свободный конец подвешивается груз с известной массой m.
  4. Измеряется длина изделия под воздействием амплитуды. Вывод записывается как х2.
  5. Производит подсчёт абсолютного удлинения: x = x2-x1. Для определения энергии (силы) и k в международной системе СИ осуществляется перевод длины из разных единиц измерения в метры.
  6. Сила, спровоцировавшая деформацию, считается силой тяжести тела. Она рассчитывается по формуле: F = mg, где м является массой используемого груза (вес переводится в килограммы), а g (равен 9,8) — постоянная величина, с помощью которой отмечается ускорение свободного падения.

Если вышеописанные вычисления произведены, необходимо найти значение коэффициента жёсткости. Используется закон Гука, из которого следует, что k=F/x.

Решение задач

Формула для расчета жесткости пружин

Для нахождения жёсткости в случае использования разных предметов, включая пружинные маятники с разной частотой колебаний, применяется формула Гука либо следствие, вытекающее из неё.

Задача № 1. Пружина имеет длину 10 см. На неё оказывается сила в 100 Н. Изделие растянулось на 14 см. Нужно найти k.

Решение: предварительно вычисляется абсолютное удлинение: 14−10=4 см. Результат переводится в метры: 0,04 м. Используя основную формулу, находится k. Его значение равняется 2500 Н/м.

Задача № 2. На пружину подвешивается груз массой 10 кг. Изделие растягивается на 4 см. Нужно найти длину, на которую растянется пружина, если использовать груз массой в 25 кг.

Решение: Определяется сила тяжести путем умножения 10 кг на 9.8. Результат записывается в Ньютонах. Определяется k=98/0.04=2450 Н/м. Рассчитывается, с какой силой воздействует второй груз: F=mg=245 Н. Для нахождения абсолютного удлинения используется формула x=F/k. Во втором случае х равняется 0,1 м.

Применение цилиндрических пружин

Цилиндрические пружины

На производстве наиболее востребованы цилиндрические пружины, так как они обладают уникальными особенностями. При создании системы отмечается центральная ось, вдоль которой действуют разные силы. В процессе изготовления подобных изделий используется проволока соответствующего диаметра.

Для её изготовления понадобится специальный сплав либо обычные металлы. Сам материал должен обладать высокой упругостью. Проволока может иметь витки одного диаметра либо разных радиусов. Большим спросом пользуются цилиндрическая пружина, которая в сжатом состоянии обладает незначительной толщиной.

Главными параметрами изделия считаются:

  • малый, средний и большой диаметр витков и самой проволоки;
  • шаг размещения отдельный колец.

В задачах по физике вычисляется k для двух состояний: растяжение и сжатие. В любом случае используется одна формула для определения величины. Разница понятий:

Формула для расчета жесткости пружин

  1. Исполнение, рассчитанное на сжатие, характеризуется дальним размещением витков. Расстояние, образуемое между ними, появляется возможность на сжатие.
  2. Модель, связанная с растяжением, имеет кольца, расположенные плотно между собой. Такая форма определяет то, что при максимальной силе растяжение минимальное.

Отдельно рассматриваются варианты на изгиб и кручение. Такие детали рассчитываются по специальным формулам. Для разных соединений характерны определённые особенности. Чтобы провести определения растяжения, учитывается момент теста.

Показатель зависит от характеристик проволоки, оказываемой силы либо массы тела. Для всех систем используются разные формулы, но полученные результаты не имеют погрешностей. Чтобы провести тесты для вычисления основных параметров, используется специальное оборудование. Простые задачи с деформацией пружин решают ученики на уроках физике в 7−8 классе. О параллельном и последовательном соединении элементов системы узнают учащиеся старших классов.

Читайте также: