Изомерия комплексных соединений кратко

Обновлено: 04.07.2024

Изомерией называют такое явление, когда вещества, имеющие одинаковый состав и молекулярную массу, обладают различным строением и, следовательно, различными свойствами. Изомерия широко распространена среди комплексных соединений и является одной из причин их многообразия. Различают геометрическую, оптическую, гидратную, ионизационную и другие виды изомерии.

1. Геометрическая изомерия.

Этот вид изомерии обусловлен различным расположением лигандов относительно друг друга и распространен у комплексных соединений, имеющих геометрию плоского квадрата, октаэдра или квадратной пирамиды. Линейные и тетраэдрические комплексы геометрических изомеров не имеют.

Смешанные комплексы состава [MeA2B2], имеющие конфигу-рацию плоского квадрата, могут иметь два изомера. Если одинаковые лиганды находятся по одну сторону от комплексообразователя, то образуется цис-изомер(от лат. cis - по эту сторону), а если по разные стороны, - образуется транс-изомер(от лат. trans - по ту сторону).

Геометрические изомеры могут проявлять различные свойства. Так, цис-изомер [Pt(NH3)2Cl2] оказывает лечебное действие при раковых заболеваниях, тогда как транс-изомер противоопухолевым действием не обладает:

Октаэдрические комплексы состава [MeA4B2] и [MeA3B3] также имеют по два геометрических изомера. С увеличением числа различных лигандов возрастает и число геометрических изомеров. Так, у октаэдрического комплекса с шестью различными лигандами существует 15 геометрических изомеров.

2. Оптическая изомерия.

Оптическая изомерия возникает у комплексных соединений, структуры внутренних сфер которых не совмещаются в трехмерном пространстве и являются как бы зеркальным отображением друг друга. Оптическая изомерия комплексных соединений возможна только тогда, когда внутренняя сфера не имеет ни одной плоскости симметрии, т.е. плоскости, которая разделила бы ее на две одинаковые части.

Комплексные соединения с координационным числом 4 могут иметь оптические изомеры только в том случае, если они построены тетраэдрически, и во внутренней сфере нет одинаковых лигандов:

К таким соединениям относятся, например, ионы тетраалкил-аммония [NR1R2R3R4] + , где R1, R2, R3, R4 - различные органические радикалы.

Важнейшим физическим свойством оптических изомеров является способность вращать плоскость поляризации света.

В целом, на макроуровне, по своим физическим и химическим свойствам оптические изомеры практически не отличаются друг от друга, но их физиологическое воздействие в ряде случаев может быть различным.

3. Сольватная изомерия.

Причиной возникновения сольватной изомерии является неодинаковое распределение молекул растворителя между внутренней и внешней сферами.

Например, для хлорида гексааквахрома (III) известны 3 изомера:

Доказательством существования этих форм является то, что раствор нитрата серебра в первом случае осаждает все ионы хлора, во втором - ⅔, а в третьем - ⅓ часть хлора.

При высушивании гидраты теряют только ту воду, которая находится во внешней сфере.

4. Ионизационная изомерия.

Этот вид изомерии связан с различным распределением ионов различного типа между внутренней и внешней сферами комплекса. Ионизационные изомеры могут быть, например, у соединения состава CoBrSO4∙(NH3)5: [Co(NH3)5Br]SO4 и [Co(NH3)5SO4]Br. Кристаллы ионизационных изомеров имеют различную окраску, а их растворы могут отличаются и по химическим свойствам: в первом случае из раствора не удается осадить ионы брома нитратом серебра, а во втором - осадить сульфат-ионы хлоридом бария.

5. Координационная изомерия.

Координационная изомерия может наблюдаться у комплексных соединений, состоящих из двух внутренних сфер и заключается в различном распределении лигандов между сферами. Например: [Pt(NH3)4][PdCl4] и [Pd(NH3)4][PtCl4].

Изомерией называют такое явление, когда вещества, имеющие одинаковый состав и молекулярную массу, обладают различным строением и, следовательно, различными свойствами. Изомерия широко распространена среди комплексных соединений и является одной из причин их многообразия. Различают геометрическую, оптическую, гидратную, ионизационную и другие виды изомерии.




1. Геометрическая изомерия.

Этот вид изомерии обусловлен различным расположением лигандов относительно друг друга и распространен у комплексных соединений, имеющих геометрию плоского квадрата, октаэдра или квадратной пирамиды. Линейные и тетраэдрические комплексы геометрических изомеров не имеют.

Смешанные комплексы состава [MeA2B2], имеющие конфигу-рацию плоского квадрата, могут иметь два изомера. Если одинаковые лиганды находятся по одну сторону от комплексообразователя, то образуется цис-изомер(от лат. cis - по эту сторону), а если по разные стороны, - образуется транс-изомер(от лат. trans - по ту сторону).

Геометрические изомеры могут проявлять различные свойства. Так, цис-изомер [Pt(NH3)2Cl2] оказывает лечебное действие при раковых заболеваниях, тогда как транс-изомер противоопухолевым действием не обладает:

Октаэдрические комплексы состава [MeA4B2] и [MeA3B3] также имеют по два геометрических изомера. С увеличением числа различных лигандов возрастает и число геометрических изомеров. Так, у октаэдрического комплекса с шестью различными лигандами существует 15 геометрических изомеров.

2. Оптическая изомерия.

Оптическая изомерия возникает у комплексных соединений, структуры внутренних сфер которых не совмещаются в трехмерном пространстве и являются как бы зеркальным отображением друг друга. Оптическая изомерия комплексных соединений возможна только тогда, когда внутренняя сфера не имеет ни одной плоскости симметрии, т.е. плоскости, которая разделила бы ее на две одинаковые части.

Комплексные соединения с координационным числом 4 могут иметь оптические изомеры только в том случае, если они построены тетраэдрически, и во внутренней сфере нет одинаковых лигандов:

К таким соединениям относятся, например, ионы тетраалкил-аммония [NR1R2R3R4] + , где R1, R2, R3, R4 - различные органические радикалы.

Важнейшим физическим свойством оптических изомеров является способность вращать плоскость поляризации света.

В целом, на макроуровне, по своим физическим и химическим свойствам оптические изомеры практически не отличаются друг от друга, но их физиологическое воздействие в ряде случаев может быть различным.

3. Сольватная изомерия.

Причиной возникновения сольватной изомерии является неодинаковое распределение молекул растворителя между внутренней и внешней сферами.

Например, для хлорида гексааквахрома (III) известны 3 изомера:

Доказательством существования этих форм является то, что раствор нитрата серебра в первом случае осаждает все ионы хлора, во втором - ⅔, а в третьем - ⅓ часть хлора.

При высушивании гидраты теряют только ту воду, которая находится во внешней сфере.

4. Ионизационная изомерия.

Этот вид изомерии связан с различным распределением ионов различного типа между внутренней и внешней сферами комплекса. Ионизационные изомеры могут быть, например, у соединения состава CoBrSO4∙(NH3)5: [Co(NH3)5Br]SO4 и [Co(NH3)5SO4]Br. Кристаллы ионизационных изомеров имеют различную окраску, а их растворы могут отличаются и по химическим свойствам: в первом случае из раствора не удается осадить ионы брома нитратом серебра, а во втором - осадить сульфат-ионы хлоридом бария.

5. Координационная изомерия.

Координационная изомерия может наблюдаться у комплексных соединений, состоящих из двух внутренних сфер и заключается в различном распределении лигандов между сферами. Например: [Pt(NH3)4][PdCl4] и [Pd(NH3)4][PtCl4].

Изомеры – соединения, имеющие одинаковый химический состав, но при этом отличающиеся физическими или химическими свойствами. Это отличие возникает в связи с различным положением одних и тех же групп атомов в изомерных соединениях.

Для комплексных соединений характерно несколько видов изомерии. Рассмотрим их.

Структурная изомерия комплексных соединений

В структурных изомерах наблюдается различие в пространственном расположении атомов.

изомерия положения

  1. Изомерия положения (связевая) возникает в тех случаях, когда возможна различная координация лиганда. Например, ион NO2 — в комплексных соединениях может координироваться либо через атом кислорода (а), либо через атом азота (б).
  2. Координационная изомерия возникает, когда лиганд либо образует координационную связь непосредственно с металлом, либо находится вне пределах координационной сферы. Например, для соединения CrCl3(H2O)6 возможны изомеры типа: [Cr(H2O)6]Cl3, [Cr(H2O)5Cl]Cl2 ⋅ H2O, [Cr(H2O)4Cl2]Cl⋅H2O.

Стереоизомерия (пространственная изомерия) комплексных соединений

Стереоизомеры имеют одинаковые химические связи, но различаются расположением их в пространстве.

1. Геометрическая изомерия (или цис-транс-изомерия) возникает вследствие различного пространственного расположения лигандов по отношению к комплексообразователю: цис – по одну сторону и транс – по разные стороны.

Этот вид изомерии характерен для октаэдрических комплексов и не наблюдается в тетраэдрических комплексах, вследствие того, что все вершины тетраэдра соседствуют друг с другом.

На рисунке ниже представлены геометрические изомеры октаэдрического комплекса Co(NH3)Cl2 + : а – цис-форма и б – транс-форма. Здесь группы NH3 для упрощения рисунка обозначены как N.

геометрическая изомерия

2. Оптическая изомерия. Оптические изомеры (энантиомеры) представляют несовместимые зеркальные изображения один другого. Их нельзя совместить до полного совпадения. На рисунке приведен пример двух оптических изомеров комплекса Co(en)3 3+

оптическая изомерия

Молекулы или ионы, у которых оптические изомеры являются зеркальным отражением друг друга, называются хиральными.

Отличить такие изомеры можно по их взаимодействию с плоскополяризованным светом. При пропускании такого поляризованного света через растворы оптических изомеров, его плоскость поляризации будет поворачиваться либо вправо, либо влево. Раствор оптического изомера, вращающего плоскость поляризации светового луча влево, т.е. против часовой стрелке, называется левовращающим (L-изомер), а раствор оптического изомера, вращающего плоскость поляризации светового луча вправо, т.е. по часовой стрелке, называется правовращающим (D-изомер).

При получении вещества, имеющего оптические изомеры, в лабораторных условиях может получиться не отдельные изомеры, а их смесь. Такая смесь, называемая рацемической, не вращает плоскость поляризации света.

Читайте также: