Изобретение солнечной батареи кратко

Обновлено: 02.07.2024

  • 1839: Явление фотогальванического эффекта

Александр Беккерель, изучавший влияние света на электролиты, в 1839 совершенно случайно обнаружил, что под воздействием излучения в растворе возникает электрическое напряжение. Французский физик в третьем поколении не был тем, кто придумал солнечные панели. Но именно этот эффект, впоследствии названный фотовольтаическим, положил начало будущей гелио индустрии.

  • 1873: Обнаружена фотопроводимость селена

Только спустя 44 года британский инженер Уиллоби Смит смог пройти путь от жидкого электролита до твердого селена. Кусочек этого материала стал первой фотоэлектрической ячейкой, которая при поглощении излучения становилась электропроводящей. На протяжении следующих трех лет эксперименты над селеном проводили физики Уилл Адамс и Рич Дэй. В 1876 они окончательно поняли, что солнечная энергия может собираться, преобразовываться и сохранятся. Правда, пока это была только теория.

Александр Беккерель, Александр Столетов, Альберт Эйнштейн

  • 1883: Первый в мире работающий фотоэлемент
  • 1887: Объяснение природы фотоэлектрического эффекта

Далее над удивительным свойством фотонов передавать свою энергию электронам работали многие известные физики. Генриху Герцу даже удалось обнаружить, что максимальной генерации можно добиться не от видимого, а от ультрафиолетового излучения. Но только великий Альберт Эйнштейн сумел объяснить саму природу фотоэлектрического эффекта. За что позднее был справедливо удостоен Нобелевской премии.

  • 1953: Открытие полупроводниковых возможностей кремния

Более полувека после работ Эйнштейна ученым и изобретателям не удавалось повысить эффективность экспериментальных гелио установок. Причиной тому были полупроводниковые ограничения селена и необходимость использовать в элементах золото. Только в 1953 коллективу лаборатории Белла удалось найти другой, более дешевый, практичный и широко распространенный материал. Этим материалом стал кремний, и первая же система на его основе показала КПД 6%.

  • 1956: Старт коммерческого изготовления панелей

Первыми, кто создал солнечные панели современного образца и вывел их на коммерческий рынок, стала компания Western Electric. Несмотря на все еще высокую стоимость оборудования, покупатели находились. Наиболее известная приобретенная солнечная электростанция тех времен – набор гелио панелей, установленных на крыше Белого дома по указанию президента Кеннеди.

  • 1958: Фотоэлектрические элементы в космосе

Отдельную благодарность следует вынести тем, кто придумал и построил солнечные батареи для космических аппаратов. Никаким другим путем стабильно получать электроэнергию для оборудования за пределами земли на тот момент было невозможно. И сейчас не существует ни одного стационарного спутника, космической станции или корабля, которые не использовали бы фотоэлектрические преобразователи.

  • 1971 - 1979: Создание экономически выгодных панелей
  • 1981: Кто создатель первой солнечной электростанции башенного типа?

Следующее десятилетие стало временем появления крупных гелио станций башенного типа. Термодинамическая электростанция Solar Two в пустыне Мохава (США) начала работу в 1981, постепенно увеличивая количество зеркал до 1999 года.

Годом позже тем же концерном Arco Solar был построен калифорнийский солнечный парк, способный генерировать более 1 МВт энергии в час.

В 1983 компания запустила гигантскую ферму из сотни тысяч солнечных батарей общей мощностью 5,2 МВт.

  • 1994: Первые солнечные батареи с КПД 30%

Американская Национальная лаборатория возобновляемой энергии стала той, кто впервые придумал солнечные батареи на редкоземельных элементах вместо кремния. Сейчас они известны как CIGS, или комбинация фосфидов и арсенидов германия, индия и галлия. КПД первых же образцов составил 30%. Современные экспериментальные ячейки приближаются к показателю 45%.

  • 1995: Кто и когда изобрел интегрированные солнечные панели?

Имя этого человека – Томас Фалуджи. Патент на гелио батареи, интегрированные в специальные выдвигающиеся навесы, был подан в 1995. Сегодня интеграцией фотовольтаики в любые конструкции и предметы никого не удивишь. Она присутствует в черепице для домов Илона Маска, автомобильных трейлерах, китайских копеечных фонарях и даже одежде.

  • 2015: Фотоэлектрические пленки, напечатанные на принтере

Первые промышленные образцы были представлены в 2015 году. И сегодня все, кто создает солнечные батареи ближайшего будущего, ориентируются на тонкопленочные технологии. Панели третьего поколения не толще бумаги, печатаются на 3D-принтерах и уже сейчас достигают эффективности более 20%. Они дешевы, экологически безопасны, универсальны, могут быстро изготавливаться целыми рулонами, и со временем могут полностью заменить тяжелые и дорогостоящие кремниевые модули.

Многие киноактеры, певцы, стремящиеся показать свою приверженность экологическим ценностям, устанавливают их на своих домах.

На западе они используются и в промышленности, и в военной сфере, и в быту.

Однако в России это пока только развивающаяся сфера. Некоторые люди не доверяют этой технологии. Есть скептики.

Так в чем же их преимущества? И почему на Западе их так активно внедряют? И кто вообще придумал эту "штукенцию"?

Об этом наш сегодняшний материал.

История создания

Вопросом использования солнечной энергии стали особо интересоваться в XIX веке. В 1842 году французский физик Александр Эдмон Беккерель впервые смог преобразовать солнечный свет в электричество. До Первой мировой вoйны даже были проекта создания солнечных электростанций, но начавшаяся вoйнa эти планы нарушила.

Только 25 марта 1948 года в Италии фотохимик Джакомо Луиджи Чемичан смог создать первую в мире солнечную батарею. Через 10 лет новая технология была опробована американцами в космосе.

Они установили их в качестве элемента питания американского cпyтника "Авангард 1". Через пару месяцев это повторили и советские космонавты, установив солнечную батарею на аппарат "Cпyтник 3".

Так постепенно солнечные панели стали распространяться по миру.

То есть, технологии начали массово применяться в разных странах почти одновременно.

Использование

Если в начале пути их использовали только в космонавтике, то теперь их сфера использования расширилась максимально.

Солнечные батареи сегодня используются в сельском хозяйстве, промышленности, вoeнно-космической сфере, медицине, дорожном строительстве, автомобилестроительстве, авиации и, конечно, в быту.

Полученная панелями электроэнергия идет на:

- освещение помещений, улиц, придомовых территорий

- обеспечение электроэнергией медицинского и телекоммуникативного оборудования

Также их использование помогает энергосбережению.

Достоинства и плюсы

Неиссякаемость и доступность солнечной энергии

Солнце светит везде. И в Африке, и в Европе, и в Китае, и в России. Поэтому солнечные батареи могут использоваться в любой стране, в любом городе, в любой точке света.

И солнце явно в обозримом будущем не погаснет. А пока оно светит - есть подзарядка для солнечных батарей.

Экологическая безвpeдность

В процессе работы эти батареи не вырабатывают ничего вpeдного, и для экологии они совершенно безопасны.

Но есть одно но. Процесс создания батарей не очень экологичен.

Долгосрочность

Срок службы солнечных батарей - 20-25 лет. Ведь они не имеют подвижных частей!

Только после 20 лет они начинают терять свои мощности, и необходима замена.

А теперь представьте, что ваша электрическая лампочка будет работать 20-25 лет. Просто невозможно! А солнечные панели работают так долго.

Автономность

Если вы не оплатили электричество, дома не будет работать чайник, телевизор, не подзарядить телефон. В общем, нет электричества - нет цивилизации.

С солнечными батареями такого точно не случится! Они не зависят от "сети". И не нужно бояться долгов.

Экономия

Вам необходимо только купить солнечные батареи, и все. Не нужно оплачивать квитанции, покупать новые лампочки, ремонтировать люстры.

Простое обслуживание

Требуется только протирать пыль и счищать снег. 20-25 лет только это и больше ничего.

А теперь вы готовы установить у себя солнечную батарею? А может, вы уже их установили и активно используете? Поделитесь в комментариях.

Cолнце есть и будет всегда! Возможно, это слишком смелое заявление, но это действительно так. По крайней мере, с точки зрения человечества. Пусть оно и взорвется через сколько-то там миллионов лет, но к тому времени мы уже покинем эту планету или сами, или в виде кучки пепла, которую развеет в космосе очередной огромный камень, налетевший на наш голубой шарик. Именно из-за такой стабильности Солнца его можно и нужно использовать для получения энергии. Люди уже давно научились это делать и сейчас продолжают совершенствовать технологии солнечной энергетики. Но как же работают солнечные панели, батареи и вообще, как можно превратить свет в электричество внутри розетки?


Солнечные панели позволяют сделать электричество чуть ли не бесплатным.

Когда появились солнечные батареи

Солнечные батареи были изобретены достаточно давно. Впервые эффект преобразования света в электричество был обнаружен Александром Эдмоном Беккерелем в 1842 году. Для создания первых прототипов потребовалось почти сто лет.

В 1948 году, а именно 25 марта, итальянский фотохимик Джакомо Луиджи Чемичан смог сделать то, что мы теперь используем и развиваем. Спустя 10 лет в 1958 году технология впервые была опробована в космосе в качестве элемента питания американского спутника, названного ”Авангард-1”. Спутник был запущен 17 марта, а уже 15 мая того же года это достижение повторили в СССР (аппарат ”Спутник-3”). То есть технологи начала массово применяться в разных странах почти одновременно.

Использование солнечных панелей в космосе — обычная практика.

Подобные конструкции применяются в космосе до сих пор, как важный источник энергии. А еще их используют на Земле для обеспечения энергией домов и даже целых городов. А еще их начали встраивать в гражданские электромобили для обеспечения большей автономности.

Как работают солнечные панели

Стоит немного уточнить, что понятие ”солнечная батарея” не очень правильное. Точнее правильное, но не имеющее отношение к тем системам питания, о которых мы говорим. Батарея там обычная, но получает энергию от солнечных панелей, которые преобразуют в электричество свет солнца.

В основе солнечной панели лежат фотоэлектрические ячейки, которые помещены внутрь общей рамы. Для создания таких ячеек чаще всего используется кремний, но возможно использование и других полупроводников.

Энергия вырабатывается в тот момент, когда на полупроводник попадают солнечные лучи и нагревают его. В результате этого внутри полупроводника высвобождаются электроны. Под действием электрического поля электроны начинают двигаться более упорядоченно, что и приводит к появлению электрического тока.


Примерно так выглядит солнечная панель.

Для того, чтобы получить электричество, надо подключить контакты к обеим сторонам фотоэлемента. В результате этого он начнет питать электричеством подключенный потребитель или просто заряжать батарею, которая потом будет отдавать электричество в сеть, когда это понадобится.

Основной упор на кремний делается из-за его кристаллических особенностей. Впрочем, в чистом виде кремний сам по себе является плохим проводником и для изменения свойств к нему делается крайне малое количество примесей, которые улучшают его проводимость. В основном в число примесей входит фосфор.

Как полупроводники вырабатывают электричество?

Полупроводник является материалом, в атомах которого либо есть лишние электроны (n-тип), либо их не хватает (p-тип). То есть полупроводник состоит из двух слоев с разной проводимостью.

В качестве катода в такой схеме используется n-слой. Анодом является p-слой. То есть электроны из первого слоя могут переходить во второй. Переход происходит за счет выбивания электронов фотонами света. Один фотон выбивает один электрон. После этого они, проходя через аккумулятор, попадают обратно в n-слой и все идет по кругу.


Когда энергия выработана, все начинается по кругу, а свет всегда горит.

В современных солнечных панелях в качестве полупроводника используется кремний, а начиналось все с селена. Селен показал крайне низкий КПД — не более одного процента — и ему сразу стали искать замену. Сейчас кремний в целом удовлетворяет требования промышленности, но есть у него и один существенный минус.

Обработка и очистка кремния для приведения его к тому виду, в котором его можно будет использовать, является достаточно затратной процедурой. Чтобы снизить стоимость производства, проводят эксперименты с его альтернативами — медью, индием, галием и кадмием.

Эффективность солнечных панелей

Есть у кремния еще один минус, который не так существенен, как стоимость, но с которым тоже надо бороться. Дело в том, что кремний очень сильно отражает свет и из-за этого элемент вырабатывает меньше электричества.


Даже повесив столько панелей, все равно надо обеспечивать их нормальную работу. В том числе бороться с отражением света.

Для того, чтобы уменьшить такие потери, фотоэлементы покрывают специальным антибликовым покрытием. Кроме такого слоя, надо использовать и защитный слой, который позволит элементу быть более долговечным и противостоять не только дождю и пыли, но даже падающим веткам небольшого размера. При установке на крыше дома это очень актуально.


Солнце -сила! Ее надо использовать!

Несмотря на общую удовлетворенность технологией и постоянную борьбу за улучшение показателей, современным солнечным панелям все равно есть куда стремиться. На данный момент массово производятся панели, которые перерабатывают до 20 процентов попадающего на них света. Но есть и более современные панели, которые пока ”доводятся до ума” — они могут перерабатывать до 40 процентов света.

Фотоэлектрические солнечные панели представляют собой тонкие кремниевые пластины, которые преобразуют солнечный свет в электричество. Производство солнечных батарей сегодня как никогда актуально, т.к. они выступают в качестве источников энергии в широком спектре областей, в том числе в телекоммуникационной, космической отраслях, медицине, связи, микроэлектронике и т.п. Солнечные батареи в виде больших массивов используются в различных спутниках и солнечных электростанциях.

История создания солнечных батарей

История создания солнечных батарей началась еще в 19 веке, а технология их производства развивалась удивительно быстро. Причиной служили постоянно проводимые исследования в области преобразования солнечной энергии в электрическую. Еще в 1839 году Антуан-Сезар Беккерель представил созданную им химическую батарею, которая под воздействием солнца вырабатывала электричество. Первая солнечная батарея имела КПД всего 1%. То есть только один процент солнечного света был преобразован в электричество. В 1873 году Уиллоуби Смит обнаружил чувствительность селена к свету, а в 1877 году Адамс и Дэй отметили, что селен под воздействием света производит электрический ток. Чарльз Фриттс в 1880 году использовал покрытый золотом селен для производства первого солнечного элемента, который также имел эффективность 1%. Тем не менее, Фриттс считал свои солнечные элементы революционными. Он рассматривал возможность использования бесплатной солнечной энергии как средство диверсификации поставок энергии, предсказывая, что производимые солнечные батареи вскоре заменят существующие электростанции.
С объяснением в 1905 году Альбертом Эйнштейном фотоэффекта появились надежды на создание солнечных батарей с более высоким КПД, но прогресс оказался незначительным. В середине 20 века исследования в области диодов и транзисторов дали необходимые для ученых знания. В 1954 году Гордон Пирсон, Дэррил Чапин и Кэл Фуллер произвели кремниевый солнечный элемент, имеющий КПД 4%. В дальнейшем эффективность ячейки была повышена до 15%. Солнечные батареи были впервые использованы в сельских районах и отдаленных городах в качестве источника питания для системы телефонной связи, где они успешно использовались на протяжении многих лет.
В настоящее время производимые солнечные батареи пока не могут полностью удовлетворить потребности в энергии, но они стали основным источником энергии для обеспечения искусственных спутников Земли. Существующие на то время топливные системы и аккумуляторные батареи имели слишком большой вес. Солнечные батареи имеют большее значение соотношения вырабатываемой энергии к весу, чем все другие традиционные источники энергии, и являются экономически более эффективными.
Пока количество установленных крупномасштабных энергетических фотоэлектрических систем невелико. Большинство усилий направлено на обеспечение с их помощью электроэнергией отдаленных и труднодоступных мест. Мощность ежегодно устанавливаемых солнечных электростанций составляет около 50 мегаватт. Но солнечные батареи обеспечивают лишь около 1 процента всей производимой в настоящее время электроэнергии. Сторонники солнечной энергетики утверждают, что количество солнечного излучения, достигающего поверхности Земли каждый год, могло бы легко обеспечить потребности в энергии несколько раз. Но история создания солнечных батарей должна пройти длинный путь, прежде чем осуществить мечту Чарльза Фриттса по получению бесплатной и доступной солнечной энергии.

Читайте также: