История возникновения магических квадратов кратко

Обновлено: 02.07.2024

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Магические квадраты

Магическим квадратом n -го порядка называ­ется квадратная таблица размером n х n , за­ полненная натуральными числами от 1 до n 2 , суммы которых по всем строкам, столбцам и обеим диагоналям одинаковы. Различают маги­ ческие квадраты четного и нечетного порядка (в зависимости o т четности n ), Поля таблицы, в которые записывают числа, называются клетка ми магического квадрата, а сумма чисел, стоя­ щих в любой строке, столбце или на диагонали, - его постоянной.

Из истории развития магических квадратов

Древние греки были знакомы с простейшим (3-го порядка) магическим квадратом. В одном из арабских манускриптов конца VIII в. упоминается его автор (который па самом деле лишь открыл заново то , что было известно за много ве­ ков до него) – философ-новопифагорец Апполон из Тиана, живший в начале нашей эры.

Европейцев с удивительными числовыми ква­ дратами познакомил византийский писатель и языковед Мосхопулос. Его работа была первым специальным сочинением на эту тему и содержа­ ла примеры магических квадратов разного поряд­ ка, составленных самим автором.

В средневековой Европе, как и на Востоке, маг ическим квадратам часто приписывали различ­ные мистические свойства. Поэтому не удиви­ тельно, что они пользовались особой популярно­ стью у прорицателей, астрологов и врачевателей. Бытовало даже поверье, что выгравированный на серебряной пластине магический квадрат защи­щает от чумы.

В начале XVI в знаменитый немецкий художн ик Альбрехт Дюрер увековечил магический квадрат в искусстве, изобразив

Квадрат Дюрера имеет размер 4 х 4 и состав­ лен из шестнадцати первых натуральных чисел, сумма которых в каждой строке, столбце и на диагонали равна 34. Оказывается, 34 равны и суммы других четверок чисел: расположенных в центре, в угловых клетках, по бокам центрально­ го квадрата (рис. 1.2, а), а также образующих четы­ре равных квадрата, на которые можно разделить исходный квадрат (рис. 1.2, б). А вот числа 15 и 14 в нижней строке квадрата указывают дату создания гравюры - 1514 г.

" Клод Гаспар Баше де Мезириак — французский мате­ матик. и поэт XVII века. Известен в частности, тем, что перевёл с греческого и издал и 1621 г, "Арифметику* Диофан­ та, снабдив книгу подробными комментариями.

" Бернар Френикль де Бесси — французский математик XVII в., занимавшийся в основном теорией чисел.

середине XVI в. в Европе появились первые сочинения, в которых магические квадраты пред­ стали в качестве объектов математического ис­следования. Так было положено начало их новой жизни. Затем последовало множество других работ , в частности таких известных математиков, как Штифель, Баше, Паскаль, Ферма, Бесси, Эйлер, Гаусс.

Например, Баше де Мезириак* описал простой графический способ построении квадратов нечет­ ного порядка. Последний не раз переоткрывался и, вероятно, был изобретен еще в древности. От метим, что в XVI - XV 1 I вв. составлением магиче­ ских квадратов занимались с таким же увлечени­ем, с каким сегодня придумывают и разгадывают кроссворды. Любопытно, что именно в одной из книг Баше магические квадраты впервые пред­ стали как математическая забава.

Примерно в то же время Пьер де Ферма разработал общий метод построения квадратов четно­ го порядка, а Френикль де Бесси** вычислил и построил все различные квадраты 4-го порядка (всего их насчитывается 880). Дальнейшее разви­ тие теории магических квадратов оказалось свя­ зано с развитием теории чисел и комбинаторики.

Он интересен тем, что сохраняет свойство

быть магическим после последовательной

перестановки строк (столбцов).

Разновидности магических квадратов.

Среди множества магических квадратов неко­ торые выделяются особыми свойствами: числа, из которых они составлены, удовлетворяют раз­ личным дополнительным условиям.

Легко убедиться в том, что квадрат останется совершенным, если подвергнуть его таким пре­образованиям, как поворот и симметрия. Оказы­ вается, существуют и другие преобразования, сохраняющие это свойство. Так, квадрат останет­ ся совершенным после того, как его верхнюю стро­ ку переставить вниз или левый столбец перенести к правой стороне (либо наоборот, нижнюю строку поместить сверху, а правый столбец - слева).

Отметим другое, следующее отсюда свойство: если расположить рядом два одинаковых квадрат а так, чтобы у них была общая сторона, полу­ чится своеобразный паркет, в котором числа, ока­ завшиеся в любой группе клеток размером 5x5, образуют совершенный квадрат (рис. 1.6).

Кстати, упоминавшийся ранее древнеиндий­ ский квадрат также является совершенным.

Некоторые магические квадраты отличаются симметричным рисунком. Рассмотрим следую­ щий квадрат 5-го порядка (рис. 1.7). Что интерес­ного можно заметить и расстановке образующих его чисел? Во-первых, четные и нечетные числа располагаются симметрично как относительно центра квадрата , так и относительно каждой из его осей симметрии.

* Можно сказать иначе; число, стоящее и центральной клетке квадрата, есть среднее арифметическое любой пары чисел из центрально - семеричных клеток.

Во-вторых, суммы пар чисел, занимающих цен­ трально - симметричные клетки, одинаковы и вдвое больше числа, стоящего в центре * (рис. 1.8).

И это не случайно. Натуральные числа 1, 2… 25 являются членами арифметической прогрес­сии. Как известно, суммы членов, равноудаленн ых от концов прогрессии, равны:

а 1 + а n = а 2 + а n -1 = . .

Но именно по этому принципу построены все двенадцать пар чисел.

1 + 25= 2 + 24 = . = 12 + 14 = 26 = n 2 + 1.

Наконец, оставшееся число 13 - непарное и помещается в центре квадрата. Кроме того, это единственное из двадцати пяти чисел, которое совпадает с номером своей клетки (если прону­ меровать все клетки по порядку построчно сверху вниз).

Аналогичными свойствами обладают таблица Ло Шу и квадрат Дюрера. Вообще квадрат, в кот ором любые два числа, расположенные симме­ трично относительно его центра, дают в сумме одно и то же число, называется симметрическим. (Причем неважно, какого он порядка: четного или нечетного.) Неверно было бы говорить о том, что именно симметрия строения является основным признаком магического квадрата. Вместе с тем она часто определяет его свойства и широко используется при построении магических квадратов.

МАГИЧЕСКИЙ КВАДРАТ, квадратная таблица из целых чисел, в которой суммы чисел вдоль любой строки, любого столбца и любой из двух главных диагоналей равны одному и тому же числу.

В 19 и 20 вв. интерес к магическим квадратам вспыхнул с новой силой. Их стали исследовать с помощью методов высшей алгебры и операционного исчисления.

Каждый элемент магического квадрата называется клеткой. Квадрат, сторона которого состоит из n клеток, содержит n 2 клеток и называется квадратом n-го порядка. В большинстве магических квадратов используются первые n последовательных натуральных чисел. Сумма S чисел, стоящих в каждой строке, каждом столбце и на любой диагонали, называется постоянной квадрата и равна S = n(n 2 + 1)/2. Доказано, что n і 3. Для квадрата 3-го порядка S = 15, 4-го порядка – S = 34, 5-го порядка – S = 65.

Две диагонали, проходящие через центр квадрата, называются главными диагоналями. Ломаной называется диагональ, которая, дойдя до края квадрата, продолжается параллельно первому отрезку от противоположного края (такую диагональ образуют заштрихованные клетки на рис. 3). Клетки, симметричные относительно центра квадрата, называются кососимметричными. Таковы, например, клетки a и b на рис. 3.

Правила построения магических квадратов делятся на три категории в зависимости от того, каков порядок квадрата: нечетен, равен удвоенному нечетному числу или равен учетверенному нечетному числу. Общий метод построения всех квадратов неизвестен, хотя широко применяются различные схемы, некоторые из которых мы рассмотрим ниже.

Магические квадраты нечетного порядка можно построить с помощью метода французского геометра 17 в. А.де ла Лубера. Рассмотрим этот метод на примере квадрата 5-го порядка (рис. 4). Число 1 помещается в центральную клетку верхней строки. Все натуральные числа располагаются в естественном порядке циклически снизу вверх в клетках диагоналей справа налево. Дойдя до верхнего края квадрата (как в случае числа 1), продолжаем заполнять диагональ, начинающуюся от нижней клетки следующего столбца. Дойдя до правого края квадрата (число 3), продолжаем заполнять диагональ, идущую от левой клетки строкой выше. Дойдя до заполненной клетки (число 5) или угла (число 15), траектория спускается на одну клетку вниз, после чего процесс заполнения продолжается.

Метод Ф.де ла Ира (1640–1718) основан на двух первоначальных квадратах. На рис. 5 показано, как с помощью этого метода строится квадрат 5-го порядка. В клетку первого квадрата вписываются числа от 1 до 5 так, что число 3 повторяется в клетках главной диагонали, идущей вправо вверх, и ни одно число не встречается дважды в одной строке или в одном столбце. То же самое мы проделываем с числами 0, 5, 10, 15, 20 с той лишь разницей, что число 10 теперь повторяется в клетках главной диагонали, идущей сверху вниз (рис. 5,б). Поклеточная сумма этих двух квадратов (рис. 5,в) образует магический квадрат. Этот метод используется и при построении квадратов четного порядка.

Если известен способ построения квадратов порядка m и порядка n, то можно построить квадрат порядка m ґ n. Суть этого способа показана на рис. 6. Здесь m = 3 и n = 3. Более крупный квадрат 3-го порядка (с числами, помеченными штрихами) строится методом де ла Лубера. В клетку с числом 1 ў (центральную клетку верхнего ряда) вписывается квадрат 3-го порядка из чисел от 1 до 9, также построенный методом де ла Лубера. В клетку с числом 2 ў (правую в нижней строке) вписывается квадрат 3-го порядка с числами от 10 до 18; в клетку с числом 3 ў – квадрат из чисел от 19 до 27 и т.д. В результате мы получим квадрат 9-го порядка. Такие квадраты называются составными.

Среди поклонников логических игр большой популярностью пользуется магический квадрат. Он представляет собой таблицу, заполненную особым образом цифрами. Причём сумма чисел одинакова по всем направлениям. Эту величину принято называть константой. Существует множество вариантов таких головоломок разной степени сложности.

Виды магических квадратов

История и современное применение

Первые подобные таблицы использовались ещё в Древней Греции и Китае. Это подтверждено археологическими находками. Арабы называли квадраты магическими, так как верили, что они обладают волшебными свойствами и могут защитить от многих напастей.

Магический квадрат история

В середине XVI в. вопросом о том, как работает магический квадрат, заинтересовались математики в Европе. Они начали активно исследовать загадочные сочетания цифр. Учёные стремились вывести общие принципы построения квадратов и найти всё множество возможных вариантов.

В современной общеобразовательной школе разные виды магических квадратов используются на уроках математики. Они способствуют развитию логического мышления и вызывают у детей живой интерес.

С их помощью школьники учатся планировать свою работу и контролировать её. В клетки можно вписывать не только отдельные цифры, но и математические выражения. Задачи на эту тему часто предлагаются на математических олимпиадах. Решать такие числовые задачи можно и онлайн.

Квадрат нечётного порядка

Среди несложных магических квадратов по математике выделяют разновидности чётного и нечётного порядка. Первая группа подразделяется на таблицы одинарной и двойной чётности.

Начальным шагом во всех случаях будет определение магической константы. Делается это с помощью специальной формулы [n * (n2 + 1)] / 2. Разобраться с принципом решения задачи этого класса можно на самом простом примере. Для этого выстраивается таблица из 9 ячеек. В неё нужно расставить цифры от 1 до 9. Дальнейший алгоритм:

Как решать магические квадраты

Как работает магический квадрат

  1. Подсчитывается сумма, которая должна получиться в каждой строке. Для этого используется формула: 3 * (32 +1) / 2 = 3 * 10 / 2. Ответом будет число 15.
  2. Числа в ячейках расставляются так, чтобы сумма их была равна 15 в каждой строчке. Это требует смекалки и воображения.
  3. В средней клетке верхней строки вписывается 1.
  4. Каждое следующее число ставится справа по диагонали вверх. Поставить цифру 2 нельзя, так как выше нет строк. Если мысленно добавить сверху ещё один квадрат, цифра 2 окажется в его нижнем правом углу. Значит, цифра 2 вписывается в нижнюю правую клетку.
  5. По тому же принципу вписывается цифра 3. Она попадает в среднюю ячейку слева.
  6. Если нужная клетка уже занята, очередной символ вписывается ниже предыдущего. Таким образом, 4 ставится под 3.
  7. Записывается цифра 5 по диагонали вправо и вверх, а 6 в верхний угол справа.
  8. Поскольку место цифры 7 уже занято, она вписывается ниже 6.
  9. Восьмёрка занимает место в левом нижнем углу.
  10. Оставшуюся клетку занимает девятка.

Общий алгоритм выполнения задания: каждый следующий знак пишется вверх и правее. Если там нет клетки — дорисовывается ещё один воображаемый квадрат. Если ячейка занята — число записывается ниже предыдущего. Таким способом можно составить любой квадрат нечётного порядка, включая самые сложные, с больши́м числом ячеек.

Одинарная чётность

Магические квадраты могут иметь порядок одинарной или двойной чётности. Для каждого случая предусмотрена отдельная методика вычисления. У таблиц одинарной чётности количество клеток в одной строке или столбце делится пополам, но не делится на четыре. Наименьшим квадратом, отвечающим этому требованию, будет прямоугольник 6х6. Фигуру 2х2 построить и заполнить невозможно.

Вычисление магической константы

Первый этап расчётов проводится по формуле [n * (n2 + 1)] / 2, где символом n обозначено число клеток в одном ряду. Если взять за пример квадрат 6х6, расчёт будет выглядеть следующим образом: [6 х (36 + 1)]: 2 = (6 х 37): 2 = 222:2.

Магический квадрат по математике

Волшебная постоянная прямоугольника со стороной 6 клеток равна 111. Общая сумма чисел от 1 до 36 в каждой строке и в разных направлениях должна быть равна 111.

Рисунок делится на 4 одинаковые части. В каждой будет по 9 клеток (3х3). Каждую часть обозначают латинскими буквами: А — верхняя левая, С — верхняя правая, D — нижняя левая и В — нижняя правая часть. Если квадрат имеет другой размер, n делится на 2, чтобы узнать точную величину каждой из 4 частей.

Дальнейшие действия

Следующий шаг — вписывание в каждую часть ¼ всех чисел. В квадрант А вносятся числа от 1 до 9, в квадрант В — от 10 до 18, в части С — от 19 до 27, в D — от 28 до 36.

Последовательность вписывания такая же, как при заполнении простейшего нечётного квадрата:

Математический магический квадрат

  1. Минимальное число, которым начинается заполнение ячеек, всегда ставится в верхнем ряду посередине. У каждой части эта ячейка находится отдельно.
  2. Каждая часть заполняется как новый математический объект. Даже если есть пустое место в другом квадрате, его в этих случаях игнорируют.

Алгоритм действий:

Цифры в квадрате

  1. Начинать нужно с крайней левой клетки в верхней строке. Если фигура имеет размеры 6х6, выделяется только первая верхняя строка части А. В ней должно быть вписано число 8. Если величина таблицы составляет 10х10, выделяют 2 первые клетки в верхнем ряду. В них стоят 17 и 24.
  2. Из выделенных клеток формируется промежуточный квадрат. В таблице с количеством строк и столбцов 6х6 он будет состоять из 1 клетки. Его условно обозначают А1.
  3. Если размер 10х10, в верхней строке выделяется 2 первые ячейки. Вместе с ними выделяется ещё 2 клетки, во второй строке получается поле из 4 прилежащих друг к другу ячеек.
  4. В следующей строке первая ячейка пропускается, затем выделяется столько клеток, сколько было в промежуточной таблице А1. Полученную фигуру можно обозначить А2.
  5. Таким же способом строят промежуточный квадрат А3.
  6. Эти 3 промежуточных фигуры формируют выделенную область А.
  7. Далее переходят в квадрант D и формируют обособленную область D.

Цифры, которые были вписаны в выделенных треугольниках А и D, нужно поменять между собой местами. После этого сумма в каждой строке должна быть одинаковой. Она равняется вычисленной магической константе.

Двойной порядок

Если головоломка имеет порядок двойной чётности, количество окон в каждой горизонтальной строчке или вертикальном столбце должно делиться на 4. Минимальной фигурой с такими свойствами будет таблица 4х4.

Решать магические квадраты двойной чётности следует по тому же алгоритму, что и остальные. Первый шаг при заполнении — вычисление магической константы. Формула применяется та же, что для расчёта других квадратов. Для фигуры со стороной 4 клетки значение константы будет равно 34.

Магический квадрат 15

В каждом углу основного поля выделяются промежуточные таблицы. Их размер должен быть равен n/4. Эти области обозначают буквами A, B, C, D, располагая их против хода часовой стрелки. Величина промежуточных фигур зависит от размера исходного квадрата:

  1. Если длина стороны составляет 4 ячейки, промежуточные зоны будут иметь по 1 клетке.
  2. В таблице 8х8 эти области включают 4 элемента (2х2).
  3. В квадрате 12х12 выделяются промежуточные фигуры размером 3х3.

Следующий этап — создание центрального промежуточного квадрата. Величина его стороны должна составлять n/2. Эта фигура не должна накладываться на периферические, но при этом соприкасаться с ними углами.

Далее в квадрат вносят цифры слева направо. Их допускается ставить только в свободные ячейки, которые входят в состав промежуточных областей. Например, при заполнении таблицы 4х4 порядок действий будет таким:

  1. В первой сверху строке и первом слева столбце пишется 1. В верхней клетке четвертого столбика — 4.
  2. В центр второй горизонтальной строчки ставятся цифры 6 и 7.
  3. В четвёртой строке слева пишется 13, а справа — 16.

По этому же принципу цифрами заполняются оставшиеся клетки. Числа проставляются слева в порядке уменьшения. Если всё сделано верно, сумма всех чисел в любой строчке будет одинаковой.

Составление магических квадратов представляет собой превосходную умственную гимнастику, развивающую способность понимать идеи размещения, сочетания, симметрии, классификации, обобщения и т. д.

Однажды за 3 минуты до конца урока математики учитель предложил нам решить следующую задачу.

Задача: заполнить квадрат 33 натуральными числами от 1 до 9 включительно, так, чтобы были использованы все цифры и сумма чисел на всех строках, столбцах и диагоналях была одинакова. Так как никто не справился с заданием за такое короткое время, решение задачи было предложено на дом. Из 28 учеников нашего класса с ней справился только один. Он изобразил заполненный квадрат на доске, сказав, что на его заполнение у него ушло минут 20-30. Он перебирал различные варианты, пока не пришел к нужному. Меня заинтересовала предложенная задача. Но метод перебора мне не понравился: он отнимает очень много времени, хотя и позволяет тренировать свои вычислительные навыки. Это и побудило меня заняться данной темой, так как считаю, что для заполнения магических квадратов существуют специальные приемы, позволяющие это сделать быстро.

Перед собой я поставила цель: изучение способов заполнения магических квадратов и знакомство с историей их появления. Из поставленной цели я пришла к следующим задачам:

- изучить историю появления и названия магических квадратов;

- познакомиться с известными способами заполнения магических квадратов;

- составить авторские задачи на заполнения магических квадратов.

В 1994 году в связи с очень сложными жизненными обстоятельствами эта работа была прервана. Возобновилась она только в июле 2007 года. В это время у меня, конечно, был уже и домашний компьютер, и Интернет.




II. Основная часть

Глава I. История появления магического квадрата.

1.1. МАГИЧЕСКИЙ КВАДРАТ,квадратная таблица из целых чисел, в которой суммы чисел вдоль любой строки, любого столбца и любой из двух главных диагоналей равны одному и тому же числу.

Полного описания всех возможных магических квадратов не получено и до сего времени. Магических квадратов 2х2 не существует. Существует единственный магический квадрат 3х3 ,так как остальные магические квадраты 3х3 получаются из него либо поворотом вокруг центра, либо отражением относительно одной из его осей симметрии.

Расположить натуральные числа от 1 до 9 в магический квадрат 3х3 можно 8 различными способами:

4 9 2
3 5 7
8 1 6

В магическом квадрате 3х3 магической постоянной 15 должны быть равны сумме трех чисел по 8 направлениям: по 3 строкам, 3 столбцам и 2 диагоналям. Так как число, стоящее в центре, принадлежит 1 строке, 1 столбцу и 2 диагоналям, оно входит в 4 из 8 троек, дающих в сумме магическую постоянную. Такое число только одно: это 5. Следовательно, число, стоящее в центре магического квадрата 3х3, уже известно: оно равно 5.

Рассмотрим число 9. Оно входит только в 2 тройки чисел. Мы не можем поместить его в угол, так как каждая угловая клетка принадлежит 3 тройкам: строке, столбцу и диагонали. Следовательно, число 9 должно стоять в какой–то клетке, примыкающей к стороне квадрата в ее середине. Из-за симметрии квадрата безразлично, какую из сторон мы выберем, поэтому пишем 9 над числом 5, стоящим в центральной клетке. По обе стороны от девятки в верхней строке мы можем вписать только числа 2 и 4. Какое из этих двух чисел окажется в правом верхнем углу и какое в левом, опять – таки не имеет значения, так как одно расположение чисел переходит в другое при зеркальном отражении. Остальные клетки заполняются автоматически. Проведенное нами простое построение магического квадрата 3х3 доказывает его единственность.

Такой магический квадрат был у древних китайцев символом огромного значения. Цифра 5 в середине означала землю, а вокруг нее в строгом равновесии располагались огонь (2 и 7), вода (1 и 6), дерево (3 и 8), металл (4 и 9).

С увеличением размеров квадрата (числа клеток) быстро растет количество возможных магических квадратов такого размера. Существует 880 магических квадратов порядка 4 и 275 305 224 магических квадратов порядка 5. Причем, квадраты 5х5 были известны еще в средние века. Мусульмане, например, очень благоговейно относились к таким квадратом с цифрой 1 в середине, считая его символом единства Аллаха.



В 19 и 20 вв. интерес к магическим квадратам вспыхнул с новой силой. Их стали исследовать с помощью методов высшей алгебры.



Единственный нормальный магический квадрат 3×3. Был известен ещё в Древнем Китае, первое изображение на черепаховом панцире датируется 2200 до н.э..

4 9 2
3 5 7
8 1 6

1.3. Дьявольский квадрат. Квадрат, найденный в Кхаджурахо (Индия). Самый ранний уникальный магический квадрат обнаружен в надписи XI века в индийском городе Кхаджурахо:

7 12 1 14
2 13 8 11
16 3 10 5
9 6 15 4

Это первый магический квадрат, относящийся к разновидности так называемых "дьявольских" квадратов.

Ломаной диагональю называется диагональ, которая, дойдя до границы квадрата, продолжается параллельно первому отрезку от противоположного края (на рисунке такую диагональ образуют закрашенные клетки).

Существует всего три дьявольских квадрата 4×4:

1 8 13 12
14 11 2 7
4 5 16 9
15 10 3 6

Но есть еще один МК не менее интересный, чем дьявольский. Выдающийся американский масон, ученый, общественный деятель и дипломат Бенджамин Франклин составил квадрат 16×16, который помимо наличия постоянной суммы 2056 во всех строках, столбцах и диагоналях имел еще одно дополнительное свойство. Если вырезать из листа бумаги квадрат 4×4 и уложить этот лист на большой квадрат так, чтобы 16 клеток большего квадрата попали в эту прорезь, то сумма чисел, появившихся в этой прорези, куда бы мы ее не положили, будет одна и та же – 2056.


Этот квадрат является самым магически-магическим из всех МК, составленных когда-либо каким-либо магом.

1.4. Магический квадрат Ян Хуэя (Китай). В 13 в. математик Ян Хуэй занялся проблемой методов построения магических квадратов. Его исследования были потом продолжены другими китайскими математиками. Ян Хуэй рассматривал магические квадраты не только третьего, но и больших порядков. Некоторые из его квадратов были достаточно сложны, однако он всегда давал правила для их построения. Он сумел построить магический квадрат шестого порядка, причем последний оказался почти ассоциативным (в нем только две пары центрально противолежащих чисел не дают сумму 37):

27 29 2 4 13 36
9 11 20 22 31 18
32 25 7 3 21 23
14 16 34 30 12 5
28 6 15 17 26 19
1 24 33 35 8 10

Реферат

Выполнила:

Назарова Дарья

Руководитель:

Джинисян Н.Г.

Содержание

Актуальность темы.

Цель и задачи.

Краткий обзор и анализ информационной базы

II. Основная часть

Глава 1. История появления магического квадрата

1.1. Определение магического квадрата…………………5-6

1.2. Первый магический квадрат…………………………7-8

1.3. Дьявольский магический квадрат…………………9-10

1.4. Магический квадрат Ян Хуэя………………………11

Квадрат Генри Э.Дьюдени и Аллана

Глава 2. Основная терминология……………………………14

Глава3.Способы заполнения магических квадратов нечетного

порядка

3.1. Метод А. де ла Лубера (сиамский метод)………………….15

3.2. Метод Ф. де ла Ира……………………………………………16

Достраивание до симметричной ступенчатой ромбовидной

Глава 4. Способы заполнения магических квадратов порядка,

кратного четырем……………………………………………………19

Глава5. Применение магических квадратов…………20 -21

IV. Список использованной литературы……………………………23

V. Приложение (подборка задач)………………………………24-25

Введение

Составление магических квадратов представляет собой превосходную умственную гимнастику, развивающую способность понимать идеи размещения, сочетания, симметрии, классификации, обобщения и т. д.

Однажды за 3 минуты до конца урока математики учитель предложил нам решить следующую задачу.

Задача: заполнить квадрат 33 натуральными числами от 1 до 9 включительно, так, чтобы были использованы все цифры и сумма чисел на всех строках, столбцах и диагоналях была одинакова. Так как никто не справился с заданием за такое короткое время, решение задачи было предложено на дом. Из 28 учеников нашего класса с ней справился только один. Он изобразил заполненный квадрат на доске, сказав, что на его заполнение у него ушло минут 20-30. Он перебирал различные варианты, пока не пришел к нужному. Меня заинтересовала предложенная задача. Но метод перебора мне не понравился: он отнимает очень много времени, хотя и позволяет тренировать свои вычислительные навыки. Это и побудило меня заняться данной темой, так как считаю, что для заполнения магических квадратов существуют специальные приемы, позволяющие это сделать быстро.

Перед собой я поставила цель: изучение способов заполнения магических квадратов и знакомство с историей их появления. Из поставленной цели я пришла к следующим задачам:

- изучить историю появления и названия магических квадратов;

- познакомиться с известными способами заполнения магических квадратов;

- составить авторские задачи на заполнения магических квадратов.

В 1994 году в связи с очень сложными жизненными обстоятельствами эта работа была прервана. Возобновилась она только в июле 2007 года. В это время у меня, конечно, был уже и домашний компьютер, и Интернет.

II. Основная часть

Глава I. История появления магического квадрата.

1.1. МАГИЧЕСКИЙ КВАДРАТ,квадратная таблица из целых чисел, в которой суммы чисел вдоль любой строки, любого столбца и любой из двух главных диагоналей равны одному и тому же числу.

Полного описания всех возможных магических квадратов не получено и до сего времени. Магических квадратов 2х2 не существует. Существует единственный магический квадрат 3х3 ,так как остальные магические квадраты 3х3 получаются из него либо поворотом вокруг центра, либо отражением относительно одной из его осей симметрии.

Расположить натуральные числа от 1 до 9 в магический квадрат 3х3 можно 8 различными способами:

4 9 2
3 5 7
8 1 6

В магическом квадрате 3х3 магической постоянной 15 должны быть равны сумме трех чисел по 8 направлениям: по 3 строкам, 3 столбцам и 2 диагоналям. Так как число, стоящее в центре, принадлежит 1 строке, 1 столбцу и 2 диагоналям, оно входит в 4 из 8 троек, дающих в сумме магическую постоянную. Такое число только одно: это 5. Следовательно, число, стоящее в центре магического квадрата 3х3, уже известно: оно равно 5.

Рассмотрим число 9. Оно входит только в 2 тройки чисел. Мы не можем поместить его в угол, так как каждая угловая клетка принадлежит 3 тройкам: строке, столбцу и диагонали. Следовательно, число 9 должно стоять в какой–то клетке, примыкающей к стороне квадрата в ее середине. Из-за симметрии квадрата безразлично, какую из сторон мы выберем, поэтому пишем 9 над числом 5, стоящим в центральной клетке. По обе стороны от девятки в верхней строке мы можем вписать только числа 2 и 4. Какое из этих двух чисел окажется в правом верхнем углу и какое в левом, опять – таки не имеет значения, так как одно расположение чисел переходит в другое при зеркальном отражении. Остальные клетки заполняются автоматически. Проведенное нами простое построение магического квадрата 3х3 доказывает его единственность.

Такой магический квадрат был у древних китайцев символом огромного значения. Цифра 5 в середине означала землю, а вокруг нее в строгом равновесии располагались огонь (2 и 7), вода (1 и 6), дерево (3 и 8), металл (4 и 9).

С увеличением размеров квадрата (числа клеток) быстро растет количество возможных магических квадратов такого размера. Существует 880 магических квадратов порядка 4 и 275 305 224 магических квадратов порядка 5. Причем, квадраты 5х5 были известны еще в средние века. Мусульмане, например, очень благоговейно относились к таким квадратом с цифрой 1 в середине, считая его символом единства Аллаха.



В 19 и 20 вв. интерес к магическим квадратам вспыхнул с новой силой. Их стали исследовать с помощью методов высшей алгебры.



Единственный нормальный магический квадрат 3×3. Был известен ещё в Древнем Китае, первое изображение на черепаховом панцире датируется 2200 до н.э..

4 9 2
3 5 7
8 1 6

1.3. Дьявольский квадрат. Квадрат, найденный в Кхаджурахо (Индия). Самый ранний уникальный магический квадрат обнаружен в надписи XI века в индийском городе Кхаджурахо:

7 12 1 14
2 13 8 11
16 3 10 5
9 6 15 4

Это первый магический квадрат, относящийся к разновидности так называемых "дьявольских" квадратов.

Ломаной диагональю называется диагональ, которая, дойдя до границы квадрата, продолжается параллельно первому отрезку от противоположного края (на рисунке такую диагональ образуют закрашенные клетки).

Существует всего три дьявольских квадрата 4×4:

1 8 13 12
14 11 2 7
4 5 16 9
15 10 3 6

Но есть еще один МК не менее интересный, чем дьявольский. Выдающийся американский масон, ученый, общественный деятель и дипломат Бенджамин Франклин составил квадрат 16×16, который помимо наличия постоянной суммы 2056 во всех строках, столбцах и диагоналях имел еще одно дополнительное свойство. Если вырезать из листа бумаги квадрат 4×4 и уложить этот лист на большой квадрат так, чтобы 16 клеток большего квадрата попали в эту прорезь, то сумма чисел, появившихся в этой прорези, куда бы мы ее не положили, будет одна и та же – 2056.


Этот квадрат является самым магически-магическим из всех МК, составленных когда-либо каким-либо магом.

1.4. Магический квадрат Ян Хуэя (Китай). В 13 в. математик Ян Хуэй занялся проблемой методов построения магических квадратов. Его исследования были потом продолжены другими китайскими математиками. Ян Хуэй рассматривал магические квадраты не только третьего, но и больших порядков. Некоторые из его квадратов были достаточно сложны, однако он всегда давал правила для их построения. Он сумел построить магический квадрат шестого порядка, причем последний оказался почти ассоциативным (в нем только две пары центрально противолежащих чисел не дают сумму 37):

27 29 2 4 13 36
9 11 20 22 31 18
32 25 7 3 21 23
14 16 34 30 12 5
28 6 15 17 26 19
1 24 33 35 8 10

Читайте также: