История открытия ультрафиолетового излучения кратко

Обновлено: 10.05.2024

Каждый день мы сталкиваемся с излучением, оказывающим на нас постоянное влияние, о значении которого мы можем и не догадываться. От коэффициента (мощности) излучения зависит его положительное или отрицательное влияние на человеческий организм. Иногда оно имеет фиолетовый цвет. Таким излучением является ультрафиолет.

Ультрафиолетовое излучение (также УФ-излучение, от лат. ultra — сверх, и violet — фиолетовый) — волны электромагнитного излучения, которые занимают диапазон между видимыми и рентгеновскими лучами. Длина волн измеряется в интервале частот от 10 до 400 нм. Кратко главную функцию УФ-лучей относительно человеческой жизни можно описать как обеззараживание поверхностей.

История открытия УФ-излучения тесно связана с открытием инфракрасного излучения, которое произошло в 1800 году. Немецкий физик Иоганн Вильгельм Риттер, обнаружив ИК-спектр свечения, продолжил поиски излучения на противоположном спектре.

УФ-спектр ученый обнаружил благодаря опыту разложения хлорида серебра на свету. Оказалось, что вещество быстрее разлагается под действием невидимого излучения фиолетового спектра, а разложение, идущее под излучением других спектров, идет медленнее.

Разные участки спектра по-разному влияют на скорость потемнения вещества.

Именно этот вывод немецкого физика привел ученый мир к пониманию неоднородности света.

Тогда был сделан вывод, о том, что свет состоит из трех компонентов:

  • инфракрасного компонента (окислительного или теплового);
  • видимого света (осветительного компонента);
  • ультрафиолетового компонента (восстановительного).

Спустя почти полвека после открытия УФ-спектра, в 1842 году, появились идеи о единстве трех различных частей света. Этому способствовали труда Александра Беккереля, Мачедонио Меллони и других ученых-исследователей.

Современные исследователи выделяют три подтипа УФ-излучения, каждый из которых используется для разных нужд. Одним из способов применения УФ-лучей в жизни является применение в быту (УФ-лампы для обычного освещения и с оздоровительными целями; обеззараживание воды, воздуха, различных поверхностей). Также использование ведется в сельском хозяйстве (для выращивания растений, насыщения их витаминами); в практической и косметической медицине; криминалистике; при синтезе новых веществ; на производствах, на предприятиях пищевой промышленности.

Стоит отметить, что переизбыток УФ-излучения также является опасным для человека, какими бы полезными свойствами оно не обладало.

Бактерицидный УФ разрушает РНК и ДНК, приводя к мутациям, в том числе в человеческом геноме. Это приводит к необратимым последствиям изменения человеческой природы.

Даже несмотря на то, что человек появился и эволюционировал под воздействием Солнца и ультрафиолетового излучения, некоторые части нашего тела подвержены большей опасности, чем ороговевший слой эпидермиса. Слизистые — например, поверхность глаза, — должны быть защищены от УФ-лучей, для избегания ожогов и различных заболеваний глаза.

СЛОЖНА-А-А 🙀 Ты же знаешь, что если не разобраться в теме сейчас, то потом придется исправлять оценки. Беги на бесплатное онлайн-занятие с репетитором (подробности тут + 🎁).

Источники ультрафиолета

Источники ультрафиолета можно разделить на 3 типа:

  • природные;
  • искусственные;
  • лазерные.

Природные источники УФ-излучения включают множество источников, но самым главным среди них является Солнце. Лучи, достигающие Землю, находятся в разном соотношении по подтипам, что зависит от факторов:

  • степень отражения лучшей от поверхностей разных типов (воды, почвы и др.);
  • состояние облачного покрова и степень его интенсивности;
  • атмосферное рассеивание;
  • высота поверхности над уровнем моря;
  • высота Солнца относительно линии горизонта;
  • концентрация плотности озонового слоя, рост количества озоновых дыр и их состояние над определенным типом поверхности.

Искусственные источники ультрафиолета появились благодаря развитию науки и техники. Как только люди стали понимать плюсы от использования УФ-лучей, они стали пытаться получить их как можно больше.

На сегодняшний день номенклатура искусственных источников УФ-излучения очень велика и насчитывает более 80 видов. Их классификация происходит в соответствии с диапазонами спектра:

Лазерные источники обладают большой интенсивностью и позволяют получать излучение высокой интенсивности. Данный тип источников УФ-лучей характерен для медицины, биотехнологий, науки, где требуется точечное применение.

В УФ-лазерах для создания активной среды используются инертные газы, специальные газы, органические сцинтилляторы, свободные электроны.

Подтипы УФ излучения

Современные исследователи разделяют УФ-излучение на три подтипа:

  • УФ-А — ближний ультрафиолет;
  • УФ-Б — средний спектр;
  • УФ-С — дальний спектр.

Свойства УФ-излучения делятся на положительные и отрицательные по отношению к воздействию на человека.

Свойства и характеристики УФ-излучения:

  • невидимо без использования специальных устройств;
  • обладает всеми свойствами электромагнитных волн (отражением, интерференцией, дифракцией);
  • высокая химическая активность лучей;
  • способность ионизировать воздух;
  • большая проникающая способность;
  • антибактериальное воздействие — УФ-лучи способны уничтожать микроорганизмы (как положительно, так и отрицательно влияющие на человека). Отсутствие контроля может привести к облучению и повышенной радиации;
  • выработка витамина Д в организме человека и нормализация эмоционального состояния;
  • вызывает люминесценцию ряда материалов;
  • приводит к химическим изменениям во многих пластических материалах.

Молодец! Раз ты дочитал это до конца, вероятно, ты все отлично усвоил. Но если вдруг что-то еще непонятно - попробуй онлайн-занятие с репетитором (подробности тут + 🎁).

Ультрафиоле́товое излуче́ние (ультрафиолет, УФ, UV) — электромагнитное излучение, занимающее диапазон между видимым и рентгеновским излучением (380 — 10 нм, 7,9×10 14 — 3×10 16 Гц). Диапазон условно делят на ближний (380—200 нм) и дальний, или вакуумный (200—10 нм) ультрафиолет, последний так назван, поскольку интенсивно поглощается атмосферой и исследуется только вакуумными приборами.

Содержание

История открытия

Понятие об ультрафиолетовых лучах впервые встречается у индийского философа 13-го века Shri Madhvacharya в его труде Anuvyakhyana. Атмосфера описанной им местности Bhootakasha содержала фиолетовые лучи, которые невозможно увидеть обычным глазом.

Идеи о единстве трёх различных частей спектра были впервые озвучены лишь в 1842 году в трудах Александра Беккереля, Македонио Меллони и др.

Виды ультрафиолетового излучения

Наименование Аббревиатура Длина волны в нанометрах Количество энергии на фотон
Ближний NUV 400 нм — 300 нм 3.10 — 4.13 эВ
Средний MUV 300 нм — 200 нм 4.13 — 6.20 эВ
Дальний FUV 200 нм — 122 нм 6.20 — 10.2 эВ
Экстремальный EUV, XUV 121 нм — 10 нм 10.2 — 124 эВ
Вакуумный VUV 200 нм — 10 нм 6.20 — 124 эВ
Ультрафиолет А, длинноволновой диапазон, Чёрный свет UVA 400 нм — 315 нм 3.10 — 3.94 эВ
Ультрафиолет B (средний диапазон) UVB 315 нм — 280 нм 3.94 — 4.43 эВ
Ультрафиолет С, коротковолновой, гермицидный диапазон UVC 280 нм — 100 нм 4.43 — 12.4 эВ

Чёрный свет

Воздействие на здоровье человека

Биологические эффекты ультрафиолетового излучения в трёх спектральных участках существенно различны, поэтому биологи иногда выделяют, как наиболее важные в их работе, следующие диапазоны:

  • Ближний ультрафиолет, УФ-A лучи (UVA, 315—400 нм)
  • УФ-B лучи (UVB, 280—315 нм)
  • Дальний ультрафиолет, УФ-C лучи (UVC, 100—280 нм)

Практически весь UVC и приблизительно 90 % UVB поглощаются озоном, а также водным паром, кислородом и углекислым газом при прохождении солнечного света через земную атмосферу. Излучение из диапазона UVA достаточно слабо поглощается атмосферой. Поэтому радиация, достигающая поверхности Земли, в значительной степени содержит ближний ультрафиолет UVA, и, в небольшой доле — UVB.

Положительные эффекты

Отрицательное действие на кожу

Действие ультрафиолетового облучения на кожу, превышающее естественную защитную способность кожи (загар) приводит к ожогам.

Длительное действие ультрафиолета способствует развитию меланомы, различных видов рака кожи.

Действие на сетчатку глаза

  • Ультрафиолетовое излучение неощутимо для глаз человека, но при воздействии вызывает типично радиационное поражение (ожог сетчатки).Так, например, 1 августа 2008 года десятки россиян повредили сетчатку глаза во время солнечного затмения. Они жаловались на резкое снижение зрения и пятно перед глазами.

Источники ультрафиолета

Природные источники

Основной источник ультрафиолетового излучения на Земле — Солнце. Соотношение интенсивности излучения УФ-А и УФ-Б, общее количество ультрафиолетовых лучей, достигающих поверхности Земли, зависит от следующих факторов:

  • от концентрации атмосферного озона над земной поверхностью (см. озоновые дыры)
  • от возвышения Солнца
  • от высоты над уровнем моря
  • от атмосферного рассеивания
  • от состояния облачного покрова
  • от степени отражения УФ-лучей от поверхности (воды, почвы)

Искусственные источники

Спектр ЛЭ30 радикально отличается от солнечного; на область В приходится большая часть излучения в УФ области, излучение с длиной волны λ Сфера применения

Чёрный свет


Лампа чёрного света — лампа, которая излучает преимущественно в длинноволновой ультрафиолетовой области спектра (диапазон UVA) и даёт очень немного видимого света.

Для защиты документов от подделки их часто снабжают ультрафиолетовыми метками, которые видны только в условиях ультрафиолетового освещения. Большинство паспортов, а также банкноты различных стран содержат защитные элементы в виде краски или нитей, светящихся в ультрафиолете.

Ультрафиолетовое излучение, даваемое лампами чёрного света, является достаточно мягким и оказывает наименее серьёзное негативное влияние на здоровье человека.

Стерилизация

Стерилизация воздуха и твёрдых поверхностей


Бактерицидное УФ излучение на этих длинах волн вызывает димеризацию тимина в молекулах ДНК. Накопление таких изменений в ДНК микроорганизмов приводит к замедлению темпов их размножения и вымиранию.

Ультрафиолетовая обработка воды, воздуха и поверхности не обладает пролонгированным эффектом. Достоинство данной особенности заключается в том, что исключается вредное воздействие на человека и животных. В случае обработки сточных вод УФ флора водоемов не страдает от сбросов, как, например, при сбросе вод, обработанных хлором, продолжающим уничтожать жизнь ещё долго после использования на очистных сооружениях.

Дезинфекция питьевой воды

Метод дезинфекции с использованием УФ-излучения [1] доказал свою эффективность при дезактивации переносимых водой болезнетворных микроорганизмов и вирусов без ухудшения вкуса и запаха воды и без внесения в воду нежелательных побочных продуктов. Такой метод дезинфекции завоёвывает популярность в качестве альтернативы или дополнения к традиционным средствам дезинфекции, таким как хлор, из-за своей безопасности, экономичности и эффективности.

Хотя по эффективности обеззараживаня воды УФ обработка в десятки раз уступает озонированию, на сегодняшний день использование УФ-излучения — один из самых эффективных и безопасных способов обеззараживания воды в случаях, когда объем обрабатываемой воды не велик.

Химический анализ

УФ — спектрометрия

УФ-спектрофотометрия основана на облучении вещества монохроматическим УФ-излучением, длина волны которого изменяется со временем. Вещество в разной степени поглощает УФ-излучение с разными длинами волн. График, по оси ординат которого отложено количество пропущенного или отраженного излучения, а по оси абсцисс- длина волны, образует спектр. Спектры уникальны для каждого вещества, на этом основывается идентификация отдельных веществ в смеси, а также их количественное измерение.

Анализ минералов

Качественный хроматографический анализ

Хроматограммы, полученные методом ТСХ, нередко просматривают в ультрафиолетовом свете, что позволяет идентифицировать ряд органических веществ по цвету свечения и индексу удерживания.

Ловля насекомых

Ультрафиолетовое излучение нередко применяются при ловле насекомых на свет (нередко в сочетании с лампами, излучающими в видимой части спектра). Это связано с тем, что у большинства насекомых видимый диапазон смещён, по сравнению с человеческим зрением, в коротковолновую часть спектра: насекомые не видят того, что человек воспринимает как красный, но видят мягкий ультрафиолетовый свет.

При определённых дозировках искусственный загар позволяет улучшить состояние и внешний вид кожи человека, способствует образованию витамина D. В настоящее время популярны солярии.

УФ в реставрации

Что такое ультрафиолет

История открытия

После обнаружения инфракрасных волн учёные пришли к логичному предположению, что с другой стороны видимого диапазона тоже может иметь место излучение — с меньшей длиной волн, чем у фиолетового цвета.

Физик из Германии Иоганн Вильгельм Риттер приступил к практическим действиям. В 1801 году им было обнаружено быстрое разложение хлорида серебра под воздействием невидимого излучения, находящегося за чертой фиолетового спектрального диапазона. Разлагалось это соединение очень быстро, причём наиболее интенсивное потемнение поверхности происходило рядом с фиолетовой частью спектра. Этот факт подтолкнул учёных, в том числе Риттера к гипотезе о существовании ультрафиолетового излучения. Эта гипотеза позднее была подтверждена экспериментально.

Спектр ультрафиолетового излучения

Разновидности УФ-излучения

В соответствии со стандартом ISO, по длине волн ультрафиолет делится на 4 группы:

  • Ближний (300-400 нм);
  • Средний (200-300 нм);
  • Дальний (122-200 нм);
  • Экстремальный (10-121 нм).

Виды источников излучения

Источники ультрафиолетового света делятся на 2 главных категории:

  • Естественные. Это звёзды. Если говорить о жителях Земли, единственный естественный — это Солнце. Оно излучает УФ в диапазоне 200-400 нм. Его количество у поверхности нашей планеты определяется облачностью, плотностью озонового слоя, характеристиками атмосферы;
  • Искусственные. Это различные ультрафиолетовые лампы (эритемные, ртутно-кварцевые, люминесцентные, ксеноновые), оборудование, устанавливаемое в соляриях, газоразрядные устройства. Ещё одна разновидность искусственных УФ-источников — лазеры, функционирующие на генерировании азота и инертных газов.

Светильник ультрафиолетовый бактерицидный с лампой Т8 Uniel

Области применения

В основе применения УФ-излучения лежат его основные свойства. Это способность убивать бактерии, повышенная химическая активность и люминесцентные свойства. Исходя из этого, главными сферами использования являются:

  • Осуществление бактерицидной обработки, обеззараживание воздуха, различных поверхностей. Ультрафиолетовыми лучами убиваются, в том числе, болезнетворные микобактерии;
  • Дезинфекция питьевой воды. В настоящее время наряду с озонированием обеззараживание воды при помощи ультрафиолетового облучения — наиболее распространённый способ, доказавший свою эффективность и безопасность;
  • Ловля и уничтожение насекомых. Существуют специальные лампы, выделяющие лучи в ультрафиолетовом свете. Маленькие летающие насекомые (мошки, комары, мухи) летят на этот свет, срабатывает определённый механизм (например, затягивание насекомого внутрь вентилятором или удар слабым током), и мошкара погибает;

Противомоскитная лампа ЭРА

  • Санитарная обработка медицинских инструментов, которая должна проводиться регулярно;
  • Ионизация воздуха;
  • Применение в медицинской сфере. Производиться лечение лампами заболеваний носоглотки, ушей, ультрафиолетом успешно лечится рахит;
  • Получение искусственного загара, выработка витамина D в соляриях. Используется ближняя часть спектра (300-400 нм);
  • Проведение спектрометрического и химического анализа. В частности, этим излучением обрабатываются минералы, чтобы определить у них наличие или отсутствие различных примесей — например, марганца или урана;
  • Определение подлинности денежных купюр. Настоящие и фальшивые банкноты светятся под УФ-излучением по-разному.

Настоящие и фальшивые банкноты светятся под УФ-излучением по-разному

Принцип действия ультрафиолетового облучения при проведении дезинфекции

Дезинфекция ультрафиолетом применяется для обеззараживания воды или воздуха, уничтожения находящихся там болезнетворных микроорганизмов. Длина волн при этом составляет около 254-260 нм. Длительность процедуры зависит от конкретных условий. Излучение при таких длинах волн хорошо проникает в клетки вирусов и бактерий и воздействует на ДНК, разрушая её структуру. В итоге микроорганизмы теряют способность к воспроизведению и погибают.

В сегодняшнем посте мы выйдем за пределы видимого света, и окунемся в мир ультрафиолета. Выясним его природу, узнаем какие источники существуют, а затем отправимся на поиски неизведанного. Проведя три месяца с волшебным фонарём, нам удалось запечатлеть явления, которые редко встретишь в повседневной жизни. Эксперименты над собой и веществами показали, что в жизни всё не так просто, как кажется на самом деле.


Слыхали историю про то, что пчёлы умеют видеть мир в ультрафиолетовом спектре?
Это неспроста! Для того чтобы вести свой повседневный образ жизни, пчёлы должны выполнить большой план работ, который заключается в собирательстве пыльцы из самых отборных цветов, которые попадутся на пути.

Для визуализации подобного восприятия мира, возьмём ультрафиолетовый фонарик и посветим на обыкновенные полевые ромашки. Видно как белые лепестки цветка поглощают излучение и особо не выделяются, а вот с пыльцой ситуация обстоит несколько иначе, она начинает красиво светиться в желтом диапазоне видимого для нас света. Помимо ультрафиолета пчёлы еще видят нормальные цвета, как мы с вами, поэтому можно только предполагать, как на самом деле выглядит картинка у них в голове.


Ультрафиолетовых источников на самом деле существует целое множество. Все они отличаются друг от друга формами, назначениями и длиной волны. Если взять к примеру весь спектр волн от коротко-метрового радиодиапазона и до гамма-излучения, то человеческое зрение способно увидеть лишь крохотную часть из всего этого ассортимента.

Ультрафиолетовое излучение в зависимости от длины волны подразделяется на три диапазона:

1) УФ-А
2) УФ-В
3) УФ-С

Тип УФ-А называют длинноволновым тёмным светом, так как он уже не распознается нашими глазами. Интенсивность ультрафиолетового излучения УФ-В диапазона (280-315 нм) сравнительно невелика (лучи этого диапазона частично задерживаются атмосферой), однако оно обладает сильным повреждающим действием. В малых дозах ультрафиолетовое излучение УФ-В диапазона вызывает потемнение кожи — называемое загаром; в больших – солнечный ожог, что приводит к увеличению риска рака кожи. Самый коротковолновый и опасный диапазон излучения типа УФ-С и вакуумный ультрафиолет не успевают достигнуть поверхности Земли и полностью отфильтровываются атмосферой.

Установлено: чем короче длина волны, тем опаснее ультрафиолетовое излучение.


Переходим к источникам ультрафиолета. Это лампа EBT-01, излучение у неё в районе 370 нм. Стеклянная колба тут черного цвета, она служит фильтром пропускающим только ультрафиолет. Как по мне, это самый дешевый источник для проверки денег на защищающие знаки. Также в этом спектре светится одежда, пуговицы, леденцы и прочие вещи.


Китай сейчас в полную мощность производит ультрафиолетовые светодиоды с разной длиной волны. Тут видно светодиод с волной 420 нм, для проверки денег он не годятся. Защитные денежные знаки откликаются на 365 нм. Вот два одинаковых по виду светодиода. Чёрный стоит 1$, а белый в 10 раз дороже. Оба покупались на местном радиорынке. Можно посмотреть как они выглядят друг напротив друга. Вначале мне хотелось сэкономить и сделать детектор валют самому, так как нормальный фонарь стоил целых 26$, но идея эта оказалась провальной. В общем, пришлось сдавать бутылки и на вырученную сумму заказать правильный фонарь. Те, кто в теме, сразу догадались, о чём идет речь.



Как узнать какие очки подходят для этих целей, а какие нет?! Сейчас продемонстрирую.
На местном рынке продавалось аж 3 вариации защитных очков, но какие выбрать?! Итак, берём нужный экземпляр и проверяем. Подносим пластик к фонарю, и видим, как место излучения превратилось в темное пятно. Потрясающе, то что нужно!

Поляризационные очки за 90$ работают по тому же принципу, но для работы в лаборатории они вообще не годятся, во-первых — темные, во-вторых — разобьются при столкновении с шальными пулями. Годятся только для пляжа. С этим пунктом разобрались, надеваем защиту и двигаемся дальше.


Следующий источник ультрафиолета используется над головой практически в каждом дворе. Это лампа ДРЛ, мощность 250 Вт, используется в фонарях уличного освещения. Для сравнения, рядом обычная лампа накаливания на такую же мощность. В отличие от этого старого барахла, ДРЛ имеет больший световой поток люменов. Внутренние стенки колбы покрыты тонким слоем люминофора, который светится от воздействия жёстких сил, которые царствуют внутри колбы.

ДРЛ выходит на свой режим работы в течении 7 минут после включения, в то время как лампочка Ильича вспыхивает на полную яркость почти мгновенно. Итак, возьмём молоток и попробуем добраться до самого вкусного. Нас интересует внутренняя колба.


Эта ртутная лампа высокого давления, которая является источником жесткого ультрафиолета. По некоторым данным, возбужденные атомы ртути излучают свет с длиной волн в 184, 254, 300, 313, 365, 405 нм, более длинные волны из продолжения списка нас не интересуют. Тут целая куча-мала в комплексе с излучением в 254 нм, которая как раз интенсивней всего убивает различные микробы. Спектр излучения светящихся паров ртути зависит от давления в колбе. Их можно разделить на несколько типов. Обычные лампы дневного света имеют низкое давление в колбе. ДРЛ имеет высокое давление, около 100 кПа. Но это всё ничего, по сравнению с лампами сверхвысокого давления, грубо говоря, это ртутная граната в руках.

Почему лампа ДРЛ выходит на режим целых 7 минут?! Всё дело в каплях ртути, которые внутри колбы. За 7 минут в плазме они разогреваются и испаряются, что приводит к увеличению проводимости дуги, увеличению мощности и увеличению ультрафиолетового излучения. Уже спустя несколько минут после включения лампы смерти в помещении активно пахнет озоном. По сути, мы сейчас проводим кварцевание, обеззараживаем помещение путём обогащения бактерий высокоэнергетической волной, что активно ведёт к их преждевременной гибели. Выделяющийся озон желательно проветрить после процедур. Этим методом обеззараживания помещений активно пользуются в больницах, куда каждый день приходит куча подозрительного народу.


Специально для съёмок выпуска, мне одолжили интересное устройство, название которого УФО-Б. Конструктивно, артефакт состоит из ультрафиолетового излучателя и двух нагревательных элементов по бокам. Полагаю, у лампы будут другие спектральные характеристики. Сбоку на корпусе есть таймер от нуля до 24 минут. При включении зажигается лампа и нагреватели. Работают они всегда вместе. В руководстве написано, что облучатель УФО-Б представляет собой портативный прибор, имитирующий ультрафиолетовое излучение солнца. Облучатель предназначен для профилактических облучений в домашних условиях только практически здоровых людей.

Облучение проводить по рекомендации врача. Между курсами облучения перерыв должен быть не менее 2-х месяцев. В комплекте должны идти защитные очки. И большими буквами написан: прибором с поврежденным фильтром пользоваться запрещено. Спектральные характеристики лампы найти не удалось. А раз данных по лампе нет, значит всё в порядке, бояться нечего.


Человек, который дал прибор, говорит что приобрел его в СССР с целью очистки и перезаписи микросхем. Когда-то не было ардуино и прочих современных контроллеров, программирование было целым ритуальным процессом, с которым приходилось немало повозиться. Кстати, ножки у микросхемы позолоченные, наверно она целое состояние стоила в свое время.


Конструктивно фонарь состоит из алюминиевого корпуса, светодиода с драйвером, рефлектора и кучкой уплотнительных резинок, которые обеспечивают водонепроницаемость фонарю.


Светодиод тут японский, трехваттный. Фирма Nichia, в 1993 году впервые родил на свет синий светодиод, с тех пор всё пошло, поехало. Светодиод тут прилично греется, потому его подложка плотно прижата к латунному корпусу, внутри которого находится драйвер, ограничивающий ток до значения в 700 мА. Но светодиод ещё не показатель качества, когда рядом нет хорошего рефлектора, выполнен он из алюминия, покрытый внутри отражающим слоем.


Для демонстрации фокусировки луча света, опустим фонарь в воду и посмотрим на картину.Видим достаточно прямой сфокусированный луч, также небольшая часть света расходится по бокам. Это расширяет видимую область во время поиска различных светящихся артефактов.

Изначально фонарь поставляется с обычным стеклом, для прокачки отдельно продается фильтр Вуда — стекло пропускающее только определенный спектр излучения. Обычно такие светодиоды кроме ультрафиолета имеют ещё и некоторое паразитное свечение, которое необходимо отфильтровать. На конвое этот фильтр практически не влияет на восприятие засвечиваемых предметов. Интенсивность света немного уменьшается, но в принципе, разницы нет.



Спустя два дня получилось около 10 сеансов облучения Каждый был длительностью не более 5 минут. В общем, за 50 минут с перерывами, засвечиваемый участок кожи значительно изменил свой цвет. Он стал красноватый, при попытке стереть наклейку чувствовалось небольшое жжение, как после загара на солнце. Интересно, но рисунок полностью перебился на кожу, все сложные формы и детали замечательно просматриваются на красном фоне. Спустя 2 дня этот участок приобрел коричневые тона. Отсюда вывод что под 365 нм фонариком можно спокойно загорать.



За десяток лет у меня накопилась небольшая коллекция разных денег мира. Тут есть даже царские банкноты. С помощью фонаря были отобраны самые интересные экземпляры. На карбованцах слева засветилась скромная цифра с номиналом банкноты. 10 баксов по сравнению с евро вообще пустое место. А вот кто больше всего удивил, так это дядька Ленин, который отдыхал на 50-ти и 100 рублевой купюре. Вы посмотрите, какие сложные формы защитного рисунка. И это 1991 год. Евро на этом фоне нервно курит в сторонке. Более скромные знаки ставили на десятирублевых бумажках. Интересно, но 90% всей денежной коллекции не имеет ни единой светящейся метки.


Подобная сфера коллекционирования затронула также марки. Защита тут более скромная.
Из всех марок процентов 10 имеют защиту, все остальные образцы просто бумага с краской.


Прогуливаясь ночью по окрестностям района, в поле зрения фонаря попалось нечто необычное, что флюоресцировало ярко-желтым цветом. Обычного фонаря под рукой не было. Но это точно были какие-то растения, поэтому пришлось рвать их на месте для дальнейшего изучения. Каким было удивление, когда увидел свои руки. Они светились ярким желто-оранжевым цветом. Позже стало ясно, что это чистотел. Когда он попал в лабораторию, сразу было решено сделать из него узвар, листья и прочие составные растения были помещены в пробирку, и залиты дистиллированной водой. Дальнейшая процедура заключалась в вываривании растения в течение 10 минут. Получившийся состав фильтруем и получаем коричневую, горькую на вкус жидкость.


Опустим туда палец, говорят чистотел обладает целебными свойствами. Сейчас будем лечиться, одновременно проверяя качество флюоресценции. Покрашенная рука вышла на охоту…

Если раствор попадет на одежду, его трудно выстирать, при обычном свете будет всё нормально, а в ультрафиолете будут видны пятна. В общем, применений такой жидкости можно найти целое море.


Следующий образец является предметом коллекционирования настоящих гурманов. Это урановое стекло предположительно Богемское, возраст около ста лет, стоимость предмета даже озвучивать не буду. Нам пришлось немало повозиться, чтобы найти такой экземпляр. Урановое стекло получают путём добавления солей и оксидов урана в стекольную массу. Эта вещь является радиоактивной, её фон составляет 400 микрорентген в час, что в 20 раз выше нормы, потому его производство давно прекратили. Стекло, окрашенное соединениями урана, обладает зелёной флюоресценцией. Коллекционеры такой посуды практически опустошили рынок уранового стекла.


Со временем нам удалось достать еще пару экземпляров, они немного отличаются цветом, более салатовые по сравнению с Богемским образцом. Но стоит посветить на посуду, как свечение становится абсолютно одинаковым. На самом деле существует очень мало видов стекла, которое обладает подобным свечением.


Теперь посмотрим на кулинарные моменты, которые смогли удивить. Это обычный жареный кунжут, был подготовлен для приготовления суши. Его семечки обладают фосфоресцирующими способностями. Если водить по пакету фонарём, можно видеть затухающий шлейф света. Послесвечение имеют только кончики семечек. Интересно, что у них там в составе.


Природа в плане генных модификаций пошла намного дальше человека, понаблюдать за этим вы можете в следующих видео. Три месяца с ультрафиолетовым фонарем позволили заснять необычных насекомых в ночное время, параллельно заглянем в мир растений и всевозможной ботаники. За время съемок неоднократно приходилось совать нос в чужой огород. Надеюсь, моя жена это не слышит…

Читайте также: